
PICODMA:
DMA ATTACKS
AT YOUR
FINGERTIPS

BLACKHAT USA 2019

WHO WE ARE
▸ Ben Blaxill (ben [at] blaxill.org)

▸ Former Principal Security Consultant with Matasano / NCC

▸ Currently independent hardware researcher

▸ Joel Sandin (jsandin [at] gmail.com / @PartyTimeDotEXE)

▸ Formerly Senior Security Consultant with Matasano / NCC

▸ Currently a principal at Latacora (https://latacora.com)
helping startups bootstrap their security practice

�2

mailto:ben@picodma.org
mailto:jsandin@picodma.com
https://latacora.com

TALK AGENDA

▸ Background on DMA attacks

▸ Introduce PicoDMA: wireless DMA implant

▸ FPGA / DMA engineering deep dive

▸ Radio module hardware and software

▸ Demos, conclusions, future work

�3

DMA ATTACKS

▸ Direct Memory Access (DMA): typically involve attacker
that gains physical access to a device

▸ Attacker reads and writes physical memory through high
speed expansion port (Thunderbolt, ExpressCard, more)

▸ Can recover sensitive data from memory

▸ Can backdoor target machine to read files, bypass
authentication, more

�4

SELECTED PREVIOUS WORK

▸ SLOTSCREAMER (2014) by Joe Fitz:
USB3380 reference board -> stealthy
DMA hardware implant

▸ Pcileech (2016+) by Ulf Frisk:
remarkable DMA attack suite

▸ HPE iLO vulnerability research
(2018+) Fabien Périgaud, Alexandre
Gazet, Joffrey Czarny:
groundbreaking research, PCILeech
integration

�5

This list only scratches the surface of interesting work in this space

PREVIOUS WORK: HID IMPLANTS
�6

▸ Incorporate deception / wireless

▸ TURNIPSCHOOL + USB Ninja:

▸ Masquerades as a cable!

▸ CactusWHID:

▸ WHID Elite adding SIM800L

▸ Maltronics internal keylogger:

▸ Tiny (), persistent1cm2

NOT JUST FOR ATTACKERS

▸ DMA invaluable for
forensics

▸ Use tools like Volatility
and rekall to extract:

▸ Memory contents
of running
processes

▸ Open network
connections, files

▸ Much more

�7

pslist example from rekall forensic blog

DMA ATTACK EXAMPLE (PCILEECH)
▸ Targeting hardened

workstation

▸ BIOs reset to
disable IOMMU

▸ Connect FPGA to
M.2 slot

▸ Use PCILeech to
patch memory and
unlock machine

�8

https://www.synacktiv.com/posts/pentest/practical-dma-attack-on-windows-10.htmlExcellent writeup at

https://www.synacktiv.com/posts/pentest/practical-dma-attack-on-windows-10.html

RESEARCH GOALS

DMA CAPABLE HARDWARE IMPLANTS

▸ Develop small DMA-capable hardware device

▸ Implant should be persistent

▸ Incorporate wireless capabilities

▸ Use off-the-shelf hardware

▸ PoC new attack and defense scenarios

▸ Provide low-cost building blocks for new applications

�10

PICODMA INITIAL PROTOTYPE
▸ Tiny: fits on a keychain

▸ DMA-capable: 64-bit
streaming reads,
writes, and FPGA-
enabled search

▸ PCILeech compatible!

▸ Commodity hardware

�11

HIGHLY EMBEDDABLE

▸ Easy to install

▸ Fits in small places

▸ Only needs M.2 A/E key
expansion slot (or adapter)

▸ Out-of-band access: no
network access on target

�12

DEPLOYING PERSISTENT WIRELESS DMA IMPLANTS

▸ Decoupling installation from exploitation allows:

▸ Interdiction attacks: install small physical implant when
target device is powered down and in transit

▸ Abuse physical access: remote hands-and-eyes
technician with temporary physical access installs implant

▸ Deploy prior to offboarding: Attacker may have
legitimate access to a system before reinstall

▸ Deploy during provisioning: Remote forensics later

�13

�14

NEW ATTACK VARIATIONS

▸ Don’t need access when machine is live

▸ Can capture ephemeral credentials from memory:

▸ GPG and ssh agents

▸ Web session cookies

▸ Profile and collect activity logs over time

▸ Protections enabled when machine is locked don’t apply

KEY INGREDIENTS

▸ FPGA platform for DMA

▸ Radio module for remote
access

▸ Some way to connect them

▸ Software to drive the attack

▸ Enter the PicoEVB from RHS
Research, LLC…

�15

PICOEVB

PICOEVB AS A DMA PLATFORM

▸ Commercially available: Launched on
Crowdsupply ($220 USD)

▸ Artix-7 XC7A50T on a 22 x 30 x
3.8mm board

▸ M.2 form factor: A/E slot

▸ Expandable: 4 multipurpose I/O
connectors, high-speed digital I/O

�17

PROTOTYPE
ENGINEERING

REMOTE PCIE DMA REQUIREMENTS

▸ PCIe requires

▸ High bandwidth capable chip

▸ Low latency

▸ Remote communication requires

▸ Low bandwidth

▸ High latency leniency

�19

PICODMA HIGH LEVEL

▸ Similar to previous PCIe DMA platforms

▸ Except we do more processing on the FPGA

▸ … and attach a radio to it

FPGAHOST PROCESSOR
&RADO

PicoDMA

PCIe SPI

DISCARDED IDEAS

▸ Microblaze/etc softcore on FPGA

▸ 250 MB/s+ challenging without additional engineering
effort

▸ We only need a fixed set of functionality

▸ Hardcore ARM/other more realistic (e.g. ZYNQ)

▸ SPI exposed directly over LoRa / Radio

FUTURE PLATFORM IDEAS

▸ Specialized PCB

▸ Lattice FPGA

▸ Lower cost

▸ Better support from Open Source community

▸ BOM cost potentially <$50

0 TO PCIE DMA IN
UNDER 5 MINUTES

PCIE CONNECTORS

▸ Standard

▸ mPCIe

▸ M.2

▸ A-M keying set by physical notch

▸ A / B / E / F / M defined, the rest reserved

�24

PCIE PINS

▸ Differential Pairs of Wires

▸ One pair for reference clock (100Mhz)

▸ One pair per direction per “lane” (1 lane == 4 wires)

▸ Standard connector up to x16

▸ M.2 up to x4

▸ Physical link width is negotiated

�25

… OR USE AN ADAPTER

▸ M.2 keying also selects availability of:

▸ USB 2.0 & 3.0

▸ I2C

▸ DisplayPort

▸ SATA

▸ & More

�26

PCIE PROTOCOL HIGH LEVEL

▸ Packet based

▸ Tries to look like old PCI bus for backwards compatibly

▸ Many features such as flow control not covered here

▸ We care about the Transaction Layer

▸ Looks more like a directly connected bus

▸ DMA usually host initiated

�27

PCIE PROTOCOL SECURITY HIGH LEVEL

▸ Protocol Insecure by default

▸ Valid threat model as physical access is required

▸ Device identification done by

▸ 16 bit physical slot address (e.g. 01:00.0)

▸ Device ID read from Endpoint configuration space

▸ No challenge response to secure element on device
means device ID can always be spoofed

�28

TRANSACTION LAYER PACKET (TLP) TYPES

▸ Read / Write Memory

▸ Completion

▸ Configuration Read / Write

▸ IO Read / Write

▸ Interrupts

▸ and more…

�29

Figure 3-1: 7 Series FPGAs Integrated Block for PCI Express v3.3 - Copyright Xilinx

�30

0 TO FPGA IN
UNDER 5 MINUTES

FPGA INTRO

▸ Synchronous circuits as programmable logic gates

▸ Wide range of capabilities and cost

�32

Lattice ECP5

▸ ~$10

▸ 25K LUTs

Xilinx XC7A50T

▸ ~$60

▸ 50K LUTs

Xilinx VU9P

▸ > $10,000

▸ 1,800K LUTs

▸ Great for high speed IO, cycle accurate timing, and more

▸ Bad for engineer productivity

FPGA OVERVIEW

▸ Mostly lookup tables (LUTs), routing between them and
clock networks

▸ “Hard cores” too - not just LUTs

▸ Ethernet controllers

▸ PCIe controllers

▸ Etc.

▸ Low / Mid range devices still capable of high clock rates

�33

FPGA DESIGN

▸ Tooling mostly proprietary

▸ Circuit design is very different to software design

▸ Different approach to design / coding

▸ Different bugs and debugging process

▸ Two major classes of design

▸ Register-transfer level (Verilog / VHDL / etc)

▸ Behavioral synthesis (OpenCL / HLS Compilers)

�34

CLASH / CHISEL / ETC

▸ RTL design, but at a high level, benefitting from

▸ Advanced type safety

▸ Higher order programming

▸ Can prevent user from making clock domain errors

▸ An additional compilation step

�35

SYNTHESIS AND IMPLEMENTATION

�36

DEBUGGING

�37

PCIE MEETS FPGA

PICODMA FPGA OVERVIEW

▸ FPGA core exposing PCIe DMA functions as SPI slave

▸ Read

▸ Write

▸ Search

▸ Probe

▸ Asynchronous commands

�39

SPI PROTOCOL

▸ Ubiquitous

▸ Simple to implement

▸ Microcontroller friendly

▸ Other options: I2C, UART, etc

▸ Master initiated communication

Copyright SparkFun

�40

GOTCHA #1

COMPILER INDUCED METASTABILITY

AKA

X = 1

If X == 0 then

 Y = 0

else

 Y = 1

>> Y == 0

GOTCHA #2

ENDIANNESS MADNESS

GOTCHA #3

NUMEROUS OTHER ISSUES - LOTS OF PAIN

PYCOM INTEGRATION

ADDING WIRELESS CAPABILITIES

▸ No radio on PicoEVB: Need a second
device to handle communication

▸ Chose Pycom family for prototyping:

▸ Micropython-enabled

▸ Drive DMA over multipurpose I/O

▸ Expose server that supports reads
and writes of physical memory

�52

PYCOM PROS

▸ Rapid prototyping with python

▸ Integrated radio modules: 802.11b/g/n,
LTE, LoRa, more

▸ Expansion via SPI, I2C, lots of pins for GPIO

▸ Pretty tiny: 5.5 x 2cm

�53

… AND CONS

▸ 32-bit architecture: (Xtensa dual-core LX6)

▸ Limited memory: 4MB ram, 8MB flash

▸ Data copies can lead to heap fragmentation

▸ Low-bandwidth SPI connection

�54

Our software accounts
for these challenges

PYTHON SOFTWARE STACK

WIRING GUIDE

FUN GOTCHAS
▸ If you connect 3.3V on Pycom (instead of VIN) to PicoEVB,

PicoEVB breaks (don’t pull a Joel)

▸ If code upload (via FTP) dies, Pycom becomes unbootable

▸ Hold P12 high via 3.3V pin to boot into recovery

▸ WLAN configuration is brittle and dangerous

▸ Use development board or enable UART

▸ Sensitive to AP hardware as well

�57

▸ TARGET: Intel BOXNUC8i7BEH1

▸ Ubuntu 16.04.06 LTE with
4.8.0-58-generic kernel

▸ VT-d disabled

▸ kaslr disabled

▸ “Airgapped” with implant

DEMOS

KEY TAKEAWAYS

▸ Wireless DMA implants are more flexible, allow new attack
variations and targets

▸ PicoEVB is a promising platform for DMA research and
implant development

▸ Plenty of challenges to overcome in developing a working
prototype

�64

SOFTWARE RELEASE

▸ Making open-source software available (see github.com/picodma):

▸ PicoDMA-fpga: Clash and Vivado projects with design files and
documentation

▸ PicoDMA-radio: Pycom-ready rawtcp:// server with pcileech
support

▸ Pcileech-with-offsets: pcileech kmd.c hack to load offsets

▸ Other useful tools!

▸ Pcileech-tcp-to-file: useful for testing and forensics

�65

http://github.com/picodma

FUTURE WORK

▸ Improve robustness of platform

▸ Add richer FPGA-native capabilities

▸ Explore implications for embedded systems

▸ Use PCILeech to understand challenge of new targets

▸ Windows, UEFI…

▸ Develop more tightly coupled system

▸ More

�66

THANK YOU!

▸ This work owes a huge debt to:

▸ Ulf Frisk for releasing PCILeech, and all project
contributors and users

▸ Fabien Périgaud, Alexandre Gazet, Joffrey Czarny for
groundbreaking research and showing the way for
PCILeech integration

▸ Audience for listening and feedback!

�67

