
Confidential + Proprietary

Look, No Hands!
The Remote, Interaction-less Attack Surface of
the iPhone

About Me

● Natalie Silvanovich AKA natashenka
● Project Zero member
● Previously did mobile security on Android and

BlackBerry
● Messaging enthusiast

iMessage Exploits

iMessage Exploits

“Karma allowed Raven to obtain emails,

location, text messages and photographs

from iPhones simply by uploading lists of

numbers into a preconfigured system, five

former project employees said. “

“Karma was particularly potent because it

did not require a target to click on any link

to download malicious software. The

operatives understood the hacking tool to

rely on an undisclosed vulnerability in

Apple’s iMessage text messaging

software.”

Questions

● Do bugs exist?
○ Where?
○ How do they work?

● What is the remote attack surface of the iPhone
○ Is it just iMessage?

● Are they exploitable?

Fully Remote Bugs

● Also “interaction-less” or “zero click”
● No user interaction required
● Short wait time
● Require a reasonable set of identifiers

○ Email address
○ Phone number

iPhone Remote Attack Surface

Carrier Network

SMSMMS iMessage Email Packet Processing

Public InternetiMessage Server

SUPL WAP VVM Message

Data Detectors

... Message Extensions

SMS/MMS

● Started by looking at SMS/MMS
○ This was the wrong call in hindsight

● Most processing is in CommCenter binary

SMS Message Flow

sms::Controller::handleRawMessage

PDU

sms::Controller::parseRawBytes

sms::Controller::
handleSMSReceived

sms::Model

sms::Controller::
reassembleConcatenatedPdu

sms::Controller::
processReceivedSms_sync

handleCellBroadcast_sync

handleSMSAsMMS_sync

filterVVMIndicators_sync

handleNetworkNotification_sync

MessageCenterModel::receiveSms

...

IMDPersistence

MMS Message Flow

Message MmsOperation::processStoredMmsOperation

MmsOperation::decodeMessage

MessageCenterModel::handlePersistedMmsNotification

Testing

● Can write applications that call exported
symbols
○ Allows limited fuzzing

● Modified Android device to send raw SMS PDUs
○ sendRawPdu in SMSDispatcher.java

SMS Simulation

● CommCenter contains an SMS simulator
○ See sms::Controller::simulateSmsReceived

● Requires a library not included in standard iPhone software
● Implemented library that calls

sms::Controller::simulateSmsReceived
● Can then simulate SMS over XPC
● See code on GitHub: https://github.com/googleprojectzero

VVM

● Visual Voicemail is an interesting SMS receiver
● Intended use: carrier sends SMS to indicate new

voicemail message available
● VVM SMS messages can be sent from any

mobile device

VVM

● Sample message (decoded)

STATE?state=Active;server=vvm.att.com
;port=143;pw=asdf;name=5556667777@att
.com

● Device contacts IMAP server when SMS is
received

VVM

● IMAP is available as a fully remote attack surface
○ Equivalent to connecting to a malicious IMAP server

● PrivateFrameworks/VisualVoicemail.framework/
IMAP.vvservice/IMAP in dyld_shared_cache

● Some limitations
○ Must be supported by carrier*
○ Carrier filtering
○ User must have configured voicemail

VVM

● Reviewed IMAP service in IDA
● Wrote a fuzzer that generated malformed IMAP

○ Used SMS simulation to cause device to continuously
ping server

● Found one vulnerability

CVE-2019-8613

Use-after-free in IMAP NAMESPACE processing

● Device sends LIST to get separator
● Device sends NAMESPACE to get prefix
● If NAMESPACE fails, separator is freed

○ Limited info leak
○ Calls selector on freed NSObject

Email Client

● Apple native email client processes incoming messages
without user interaction

● Email client must be set up
○ Usage unclear

● Message contents partly controllable by the email sender
○ Filtering can vary by provider

● /PrivateFrameworks/MIME.framework/MIME in

dyld_shared_cache

Email Client

● Reviewed in IDA
● Sent malformed MIME messages over SMTP

with Python
● Found one vulnerability

○ Looks exploitable in 11.3
○ DOS only in 12

CVE-2019-8626

CVE-2019-8626

iMessage

● Can send iMessage to email or phone number
● Both Mac and iPhone support iMessage
● Encrypted, peer-to-peer messages
● Many formatting features, including extensions
● Worked with Samuel Groß

Dumping/Sending iMessage Messages

● Samuel Groß wrote iMessage sending and
intercepting client

● Used Frida to hook incoming and outgoing
messages
○ Works on Mac and iPhone

iMessage Format (binary plist)

to: mailto:TARGET@gmail.com
from: tel:+15556667777
{
 gid = "FAA29682-27A6-498D-8170-CC92F2077441";
 gv = 8;
 p = (
 "tel:+15556667777",
 "mailto:TARGET@gmail.com"
);
 pv = 0;
 r = "68DF1E20-9ABB-4413-B86B-02E6E6EB9DCF";
 t = "Hello Black Hat";
 v = 1;
}

Important iMessage Properties

t Plain text message content

bid “Balloon identifier” for plugin

bp Plugin data

ati Attribution info

p Participants

iMessage Serialization

● bp and ati fields are serialized using
NSKeyedArchiver/NSKeyedUnarchiver

● NSKeyedUnarchiver deserialization format is a plist
containing dictionaries with class and other properties

● Objects are created by calling [DECODED_CLASS
initWithCoder:], which processes other properties
○ Several past bugs

iMessage Serialization
<dict>

<key>$class</key>
<dict>

<key>CF$UID</key>
<integer>7</integer>

</dict>
<key>NS.base</key>
<dict>

<key>CF$UID</key>
<integer>0</integer>

</dict>
<key>NS.relative</key>
<dict>

<key>CF$UID</key>
<integer>6</integer>

</dict>
</dict>

<string>http://natashenka.ca</string>
<dict>

<key>$classes</key>
<array>

<string>NSURL</string>
<string>NSObject</string>

</array>
<key>$classname</key>
<string>NSURL</string>

</dict>

iMessage Serialization Security Features

● NSSecureCoding
○ Requires class to implement a specific

method (that cannot be inherited) for its
initWithCoder: to be generally available

○ Avoids accidental initWithCoder: exposure
○ Requires list of allowed classes to be

provided while decoding recursively

Secure versus Insecure Decoding

● Safe
○ initForReadingFromData:
○ unarchivedObjectOfClasses:fromData:error:

● Unsafe
○ initWithData:
○ unarchiveObjectWithData:error
○ initForReadingWithData:

Secure versus Insecure Decoding

● Safe
○ initForReadingFromData:
○ unarchivedObjectOfClasses:fromData:error:

● Unsafe
○ initWithData:
○ unarchiveObjectWithData:error
○ initForReadingWithData:

Secure versus Insecure Decoding

● Safe
○ initForReadingFromData:
○ unarchivedObjectOfClasses:fromData:error:

● Unsafe
○ initWithData:
○ unarchiveObjectWithData:error
○ initForReadingWithData:

Where does deserialization happen?

● In SpringBoard, for bp
○ SpringBoard can also call _previewText for extensions
○ Practically, only Link Presentation supports this
○ SpringBoard is unsandboxed

● In MobileSMS, for bp (but requires one click)
● In imagent, for ati

Idea 1

Find an insecure deserialization call and create a
WebKit instance

● Did not find any insecure calls in SpringBoard or
imagent

Idea 2

Find an extension that misuses a deserialized
object

● CVE-2019-8624 -- out-of-bounds read in
DigitalTouch tap message processing
○ Code handling deserialized objects trusts length field

over byte array length
○ Very low-quality bug

Idea 2

Find an extension that misuses a deserialized
object

● Looked at Link Presentation layer for use of
WebKit instances, but does not seem to load
received URLs

Idea 3

Find a bug in supported deserialization code

● Reviewed all available initWithCoder:
implementations

Which initWithCoder: implementations are available?

● Classes in allowed class list and their
subclasses
○ NSDictionary, NSString, NSData, NSNumber, NSURL,

NSUUID, NSValue for messaging generally
○ Must support secure coding

● Libraries loaded by the process
○ Not the entire dyld_shared_cache

Idea 3

Find a bug in supported deserialization code

● CVE-2019-8661 -- heap overflow when
deserializing URL

● Mac only

CVE-2019-8661

● [NSURL initWithCoder:] supports several
decoding methodologies, including decoding a
bookmark from a byte array

● On Mac, bookmarks can include alias files,
which have a buggy decoder (CarbonCore)

● Bookmarks are never used by iMessage
legitimately

Idea 3

Find a bug in supported deserialization code

● CVE-2019-8646 -- NSKeyedUnarchiver
deserialization allows file backed NSData
objects

● Remote info leak and file access!

CVE-2019-8646

● _NSDataFileBackedFuture subclasses NSData
○ Private class

● Two problems:
○ Trusts deserialized length, even though file could be

shorter
○ Can bypass check that URL is local file

CVE-2019-8646

1) Create NSData with local file
2) Append NSData to NSURL
3) Use bug again to visit new NSURL
4) URL parameters contain leaked file or memory

Idea 4

Wait, what happens if a class subclasses an
allowed class but doesn’t extend initWithCoder?!?!

● Regular inheritance rules apply
○ e.g. different initWithCapacity implementation could get

called
○ Some direct inheritance checks, especially in

placeholders

Idea 4

Wait, what happens if a class subclasses an
allowed class but doesn’t extend initWithCoder?!?!

● CVE-2019-8647 -- NSArray deserialization can
invoke subclass that does not retain references
○ [_PFArray initWithObjects:count:] is a private method

which should only get called when objects are
appropriate

Idea 5

What if an object has cycles in it?

● Deserialization gets complicated

NSKeyedArchiver Object caching

NSObject* a = [NSSomeClass alloc];
temp_dict[key] = a; //No references!!
NSObject* obj = [a initWithCoder:];
temp_dict[key] = NIL;
obj_dict[key] = obj;
return obj;

NSKeyedArchiver Object caching

if(temp_dict[key])
return [temp_dict[key] copy];

if(obj_dict[key])
return [obj_dict[key] copy];

NSObject* a = [NSSomeClass alloc];
temp_dict[key] = a; //No references!!
NSObject* obj = [a initWithCoder:];
temp_dict[key] = NIL;
obj_dict[key] = obj;
return obj;

Problems with cycles

● Object can be used before initWithCoder: is
complete

● initWithCoder: isn’t guaranteed to return object
created by alloc

● temp_dict has no references
○ What if object returned by alloc is released by

initWithCoder: ?*
* The docs say doing this is okay

Idea 5

What if an object has cycles in it?

● CVE-2019-8641 -- decoding CLASS can read object out of
bounds
○ Buffer length is calculated based on a singly linked list
○ If initWithCoder: isn’t finished, the list isn’t complete
○ Buffer is too short

Idea 5

What if an object has cycles in it?

● CVE-2019-8660 -- memory corruption when
decoding NSKnownKeysDictionary1
○ Length of key data is deserialized separately from data
○ New buffer length is calculated with deserialized length
○ Length consistency is checked after the object can be

used in a cycle

What’s the attack surface of an NSURL

NSURL* myurl = [NSKeyedUnarchiver
unarchivedObjectOfClasses:@[NSURL]
fromData:mydata error:NIL];

clang app.m -fobjc-arc -framework
UserNotifications

What’s the attack surface of an NSURL?

● [NSURL initWithCoder:]
○ Top level class

● [MyURLSubClass initWithCoder:]
○ App-defined subclass

● [UNSecurityScopedURL
initWithCoder:]
○ Subclass from UserNotifications framework

What’s the attack surface of an NSURL?

[NSURL initWithCoder:](NSURL *u, id decoder){
NSData* book = [decoder decodeObjectOfClass:[NSData class]

forKey:@"NS.minimalBookmarkData"];
if(book)

return [URLByResolvingBookmarkData:data];
NSString* base = [decoder decodeObjectOfClass:[NSString

class] forKey:@"NS.base"];
NSString* relative = [decoder decodeObjectOfClass:[NSString

class] forKey:@"NS.relative"];
return [NSURL initWithString:base relativeToURL:relative];

}

What’s the attack surface of an NSURL?

[NSURL initWithCoder:](NSURL *u, id decoder){
NSData* book = [decoder decodeObjectOfClass:[NSData class]

forKey:@"NS.minimalBookmarkData"];
if(book)

return [URLByResolvingBookmarkData:data];
NSString* base = [decoder decodeObjectOfClass:[NSString

class] forKey:@"NS.base"];
NSString* relative = [decoder decodeObjectOfClass:[NSString

class] forKey:@"NS.relative"];
return [NSURL initWithString:base relativeToURL:relative];

}

What’s the attack surface of an NSURL?

[NSURL initWithCoder:](NSURL *u, id decoder){
NSData* book = [decoder decodeObjectOfClass:[NSData class]

forKey:@"NS.minimalBookmarkData"];
if(book)

return [URLByResolvingBookmarkData:data];
NSString* base = [decoder decodeObjectOfClass:[NSString

class] forKey:@"NS.base"];
NSString* relative = [decoder decodeObjectOfClass:[NSString

class] forKey:@"NS.relative"];
return [NSURL initWithString:base relativeToURL:relative];

}

What’s the attack surface of an NSURL?

● Bookmark parsing
● [_NSDispatchData initWithCoder:],

[__NSLocalizedString initWithCoder:],
[NSLocalizableString
initWithCoder:],[UNLocalizedString
initWithCoder:]
○ Subclasses of NSString and NSData in Foundation and

UserNotification framework

What’s the attack surface of an NSURL?

● Etc.
○ Continue down initWithCoder: implementations
○ [UNLocalizedString initWithCoder:] decodes

an NSArray
○ [__NSLocalizedString initWithCoder:]

decodes a NSDictionary, an NSDate and an NSNumber

What’s the attack surface of an NSURL?

● [NSBigMutableString initWithString:], [NSDebugString
initWithString:], [NSPlaceholderMutableString
initWithBytes:length:encoding:], [NSPlaceholderString
initWithBytes ...]

○ Classes from Foundation, CoreFoundation and
UserNotifications with initWithString/initWithBytes

○ Similar for NSArray, NSDictionary, NSDate, NSNumber
and any classes they decode

What’s the attack surface of an NSURL?

● Legitimate URLs almost certainly contain one
instance of NSString

Securing Deserialization

● Imagine adding a few extra allowed classes
● Imagine importing a few more libraries
● Imagine being a developer trying to secure this

NSKeyedArchiver serialization cannot be secure

● Securing a class in the face of
NSKeyedArchiver is an intractable problem
○ There are too many interdependencies between

unrelated components
○ Requires full knowledge of all other components
○ Makes small changes to low-risk components have

unexpected consequences

Demo

Conclusions

● Fully remote iPhone bugs exist
○ 10 bugs total reported

● The remote attack surface includes SMS, MMS,
VVM, Email and iMessage

● Design problems with iMessage serialization
make it an especially bug prone surface

Conclusions

● The are methods for an attacker to send
malformed messages in most formats

● Released tools for remote iOS research:
https://github.com/googleprojectzero

● Especially dangerous attack surface

Questions

https://googleprojectzero.blogspot.com/
@natashenka

natashenka@google.com

