blge:k hat

LSA 2020

Escaping Virtualized Containers

Yuval Avrahami
Palo Alto Networks

NNNNNNNN

Agenda

e Containers 101
e Kata Containers
o Virtualized Containers Runtime

e Break out of the Container
o Container Escopology

e Escape the VM
e Takeaways

Classic VS Kata

Containers Containers

Container

Lightweight
VMs

Containers

Chroot
on
Steroids

Restricted processes
running in a
separate filesystem

What Can
| See?

What Can
| DO?

Resource
Isolation

C)
namespaces
(U J

[pid] [mnt] [net] [utc][usr]

chroot

~

()
capabilities
(U J

[net_bind_service]

* sys_reboot]

seccomp

open()

K[LSMs J | apparmor |

* init_module()]

[selinux]

/
BN

[cgroups

[memory]

[devices

net_cls

ﬁ

Shared Kernel - a Disturbing Attack Surface

e Unlike VMs, containers share the host’s Kernel
e Kernel vulnerabilities may lead to breakouts

3

Kata Containers
Sandboxing Containers

Kata Containers

e Virtualized Containers
e Encapsulates each container

Container
inside a lightweight VM

e Simple way to sandbox Container
containers mGuest vy
o Compatible runtime for Kernel
Docker & Kubernetes Host

Traditional Containers Kata Containers

Use Cases

e Untrusted or targeted workloads

e Multi-tenant environments

e Cloud Service Providers

Cloud Container Instance
Cloud

fess Kubernetes container engine

security of vi
containers.

Serverless Container
Deploy containerized applications without .
managing clusters or servers.

T A
soc.uvfly Virtual machines and the speed of
Pay by the Second Serverless Container containers.

Using Kata

(container engine) (container runtime)

S docker run --runtime=kata ubuntu bash

Host Guest

Run a ctr
config={...}

image

image

Shared Directory

Spawn a VM

Qemu / Cloud Hypervisor (Intel) / Firecracker (Amazon)
e

Host Guest

image

S

image

Shared Directory

Qemu / Cloud Hypervisor (Intel) / Firecracker (Amazon)
e

Let’s Escape!

Why?

e Fun and challenging
o Two isolation layers to break

e Learn about container security

Attack Scenarios

e Enterprises use Kata to contain untrusted / targeted
containers

o We're that untrusted container ;&:
e Cloud Service Providers use Kata to segregate

containers from different customers

o We're the evil customer running a malicious container :’@:

The Plan

e [Escape the container

e Break out of the VM

Scope

e Kata Containers is highly configurable
o Vulnerabilities won’t work in every config, targeting standard

e Focus on simple single-container guests under Docker
o K8s+kata vulnerable to issues, exploitation gets complex

e Not an indictment against Kata

Escape the Container

Escape the Container

e Don’trely on a guest
kernel privilege escalation C

e Find a Kata-native issue

Container Escapology
In a nutshell

The Usual Suspects

config (what restrictions) containerize

Cengine | roneime |

Container Escapology (in a nutshell)

config (what restrictions) containerize

Cengine | runtine

1) Setup of the containerized process (runtime issue)
e Untrusted variables: image, cmd, existing ctr

2) Running container isn’t restricted enough (engine issue)
e Permissive engine defaults, new breakout technique

Kata Modifies the Container’s Config

e Kata changes the config received from engine
o Config generated on host needs to adjusted for VM

e That’s dangerous!

Modifies configuration
to suit VM

config: - Modified

ns, cgroups, etc config

Kata Modifies the Container’s Config (-

. [kata-agent |
e Kata discards several cgroups [_Guest Kernel |

o Host and guest have different hardware resources

o Some cgroups don’t make sense it the the guest
m blkio, device

e Cgroups are mainly about denying DoS
o Container DoSing the guest isn’t an issue

Device cgroup
Not only DoS

Device cgroup

® Restricts container’s access to system’s devices
e Kata doesn’t enforce

e \What guest device can interest us?

o The hard disk!

Accessing Hard Disk / Block Devices? \/

root@test:~$ mkdir -p test/fs

root@test:~$ mknod test/dev-sdal b 8 1 # sdal = 8:1
root@test:~$ mount test/dev-sdal test/fs/

root@test:~$ 1s test/fs

bin boot etc 1nitrd.img 11ib lost+found
bin_copy dev home 1initrd.img.old 1i1b64 media

e Container has CAP_MKNOD but no CAP_SYS ADMIN - can’'t mount

yuval@bh:~$ docker run -it --rm --runtime=kata-gemu yuvalavra/util
root@426c0751a9cf:/# mknod /dev/guest_hd b 259 1
root@426c0751a9cf:./# mkdir guest_fs

root@426c@751a9cf:/# mount /dev/guest_hd guest_fs

mount: /guest_fs: permission denied.

Direct Device Access Q

e Directly reading / writing to device file

o Normally used to debug and fix corrupted hard disk
o debugfs - ext2/3/4 filesystem debugger

yuval@bh:~$ docker run -it --rm --runtime=kata-gemu yuvalavra/util
root@63f271fdf934:/# mknod --mode 0600 /dev/guest_hd b 259 1
root@63f271fdf934:/# debugfs /dev/guest_hd -R "ls /usr/bin" | grep kata-agent

435 (12) . 33 (12) .. 436 (20) kata-agent 437 (16) ldconfig

root@e3f271fdf934:/# debugfs -w /dev/guest_hd -R "write /bin/bash test"
Allocated 1inode: 169

root@e3f271fdf934:/# debugfs /dev/guest_hd -R "ls /" | grep test
33 (12) usr 2061 (12) var 169 (3812) test

Container can Modify Guest Hard Disk

e Did we breakout?

e Not so fast
o Page cache and dentry cache

e Device-level changes may not be
seen by guest processes!

Page & Dentry Cache N TTTErTTTC
[systemd |
Guest outside ctr is static...
Not invoking new files

read(file)
:l)::pbll |nb) debugfs .
getdents(dir) write(dev-file) Userspace

cache hit Kernel

cache misNI I I
hPage Cache } [Dentry Cache]

cache fetch S L

Gaining Execution on Guest

e Guest is static - need to replace a running executable
o kata-agent, systemd
o But those are already loaded to the page cache

e Force the guest kernel to free the page cache

Gaining Execution on Guest - Freeing Cache

e Container allocates small chunks of memory

Guest memory Guest memory

Used memory Used memory

Ask for a lot of
memory

Page Cache

Small $ _______ kata-agent

chunks

Page Cache

Container-to-Guest
Attack

Our malicious container runs
under Kata

1. Container overwrites
kata-agent on hard disk
with malicious binary

2. Container allocates small
chunks to clear
kata-agent from page
cache

3. Execution passes back
to kata-agent, kernel
must read kata-agent
binary from disk

4. Kata-agent process now
maps to our malicious
binary

Replacing a process binary
mid-execution is tricky!

Container overwrites
kata-agent on hard disk
with garbage data
Container overwrites a
non-cached binary -e.g.
systemd-shutdown

kata-agent

3. Container allocates small
chunks to clear
kata-agent from page
cache

kata-agent

4. Execution passes back
to kata-agent, kernel
must read kata-agent
binary from disk

kata-agent

kata-agent

5. kata-agent process now
maps to garbage data,
and crashes

kata-agent

kata-agent
kata-agent

6. A shutdown sequence is
started, calling
systemd-shutdown

kata-agent

kata-agent

6. A shutdown sequence is
started, calling
systemd-shutdown

kata-agent

kata-agent

7. Our malicious
systemd-shutdown runs
on the guest as root!

kata-agent

kata-agent

PoC

e Malicious systemd-shutdown will create a
guest-is-now-malicious file in shared dir

Demo:
container-to-guest
escape

Container-to-Guest Breakout

e Breakout technique exploiting direct

device access
o If you modify a container’s config, you
better be adding restrictions
e Container needs CAP MKNOD

o Default in docker & k8s+containerd,
not in k8s+crio

e CVE-2020-2023

Escaping the VM

VM Attack Surface

e kata-runtime parsing of kata-agent msgs

Malicious
Guest

Host (mnn) (D

| Shared Dlrectory

Qemu / Cloud Hypervisor / Firecracker

VM Attack Surface

e kata-runtime parsing of kata-agent msgs x
e Issue with a VMM

Malicious
Guest

Host [t - y==—x

| Shared DirectorL |

Qemu / Cloud Hypervisor / Firecracker

VM Attack Surface

e kata-runtime parsing of kata-agent msgs
e |[ssue with a VMM (to be continued..))
e Shared directory between the host & guest

Host (e ~(_kata-agent | Malicious

Qemu / Cloud Hypervisor / Firecracker

Shared Dir Attack Surface

e kata-runtime (host) operates on files in shared dir
e Guest can control as much as host
e Used to deliver the image to the guest W

Shared Dir Attack Surface

1. kata-runtime bind-mounts ctr image to shared dir

2. Container starts
3. Container terminates

4. kata-runtime unmounts ctr image from shared dir

Both mount and unmount follow symlinks!

Unmount Redirection
Guest-to-Host DoS

Unmount Redirection Attack

Unmount Redirection Attack

symlink ($id/rootfs,
S$target-on-host)

Unmount Redirection Attack

umount ($id/rootfs) symlink ($id/rootfs,
i Starget-on-host)

¥

Unmount - Guest-to-Host DoS

e Targeting /" unmounts all mount points underneath it
o /proc, /sys, /dev, /tmp

e Hostis unusable, can no longer run containers

e CVE-2020-2024

Demo
Guest-to-Host DoS

Image Mount Redirection
Guest-to-Host RCE

Mount Redirection Attack

CreateSandbox

- T -

Mount Redirection Attack

CreateSandbox

- o

symlink (XYZ/rootfs,
$target-on-host)

Mount Redirection Attack

CreateSandbox
sbx-id = XYZ

Ack

bind-mount ($img, | symlink (XYZ/rootfs,
XYZ/rootfs) ; Starget-on-host)

Mount Redirection Attack
Attack requires guest
- to be compromised
before container runs!

Cloud Hypervisor

Cloud Hypervisor (CLH)

e One of the the 3 VMMSs options
e Kata didn’t work after container-to-guest PoC on CLH
e Inspected VM image, kata-agent had garbage data!

Cloud Hypervisor (CLH)

e One of the the 3 VMMSs options
e Kata didn’t work after container-to-guest PoC on CLH
e Inspected VM image, kata-agent had garbage data!

Cloud Hypervisor

e One of the the 3 VMMSs options
e Kata didn’t work after container-to-guest PoC on CLH
e Inspected VM image, kata-agent had garbage data!

Guest-to-Future-Guests RCE (CVE-2020-2025)

e Kata+CLH commits guest HD changes to VM image

e A malicious guest can control all future sandboxes!
o By defaults, all VMMs use the same VM image

e That’s bad for multi-tenancy

Back to Redirecting Image Mount

e Guest needed to be compromised before ctr runs

e Malicious VM image = Guest malicious from boot
o Can create the malicious symlink!

Container-to-Host
Code Execution

CVE-2020-2023 (Container-to-Guest)
CVE-2020-2025 (CLH commits to VM image)
CVE-2020-2026 (Mount Redirection)

Guest

Host Guest

Container overwrites
kata-agent binary on disk
(CVE-2020-2023)

Host | Guest

Malicious kata-agent
committed to VM image
(CVE-2020-2025)

Host Guest

Next time the malicious container is run,
the guest runs a our evil kata-agent

Second Guest Redirects Mount

CreateSandbox

- o

symlink (XYZ/rootfs,
$target-on-host)

Second Guest Redirects Mount

CreateSandbox

sbx-id = XYZ
Ack
bind-mount ($img, | symlink (XYZ/rootfs,

XYZ/rootfs) Starget-on-host)

Demo:
Container-to-Host
Code Execution

CVE-2020-2023 (Container-to-Guest)
CVE-2020-2025 (CLH commits to VM image)
CVE-2020-2026 (Mount Redirection)

Got Code Execution on Host!

ACHIEVEMENT UNLOCKED

Sandbox Escape

Shared Directory is a Big Attack Surface

® [ssues with host apps using it
o mount & unmount redirection (CVE—2020—2024/*
e \ulnerabilities within the mechanism itself
o Virtio-fs daemon - Ctr-to-Host DoS (CVE-2020-10717) *

Summary of Vulnerabilities

Container to Guest, device access, RCE
Guest to Host, umount, DoS

Guest to future Guests on CLH, RCE
Guest to Host, mount, RCE
Container to Host, virtio-fsd, DoS

Disclosure

e All issues were responsibly disclosed and fixed by

Kata Containers maintainers

o CVE-2020-2023, CVE-2020-2024, CVE-2020-2025,
CVE-2020-2026

o Read more at

https://github.com/kata-containers/community/tree/master/\VV
MT/KCSA

https://github.com/kata-containers/community/tree/master/VMT/KCSA
https://github.com/kata-containers/community/tree/master/VMT/KCSA

Takeaways

e Containers are only as secure as their configuration
o Apply best practices
> User namespaces / run as non-root
o Drop unused privileges
> Who really needs CAP_ MKNOD?
e Sandboxes limit the attack surface, but aren’t magic
o Enhancement, not a replacement
o Enable security features
> Kata integrity checks

Questions?

DAX (simplified)

Process memory is debugfs

directly mapped to device Userspace
Kernel

DAX =

Direct Device Access

i \4 A4 *

