
Spectra
Breaking Separation Between Wireless Chips

Jiska Classen
Secure Mobile Networking Lab - SEEMOO
Technische Universität Darmstadt, Germany

Francesco Gringoli
Dept. of Information Engineering

University of Brescia, Italy

2

Motivation

3

When you got Bluetooth on-chip RCE...

35C3 Talk: https://media.ccc.de/v/35c3-9498-dissecting_broadcom_bluetooth, Frankenstein Fuzzer: https://github.com/seemoo-lab/frankenstein

https://media.ccc.de/v/35c3-9498-dissecting_broadcom_bluetooth
https://github.com/seemoo-lab/frankenstein

4

...but Wi-Fi has more privileges.

“But it’s connected via UART!”

“Can you pop calc?”

5

Let’s break inter-chip separation!

6

Spectra: SpeculativeSpectrum Transmission

● Wi-Fi, Bluetooth, and even LTE share frequencies in the
2.4 GHz spectrum.

● They cause interference in small devices like smartphones.

● Wireless combo chip performance optimization:
enhanced coexistence mechanisms.

● Observable side effects of transmission delays and
coordination lead to side channels.

● Attackers require code execution privileges,
but they can escalate between wireless cores
without further checks by the operating system.

SPECTRA

7

Wireless Architecture (iOS)

8

Spectra Impact

1. Denial of Service
One wireless core denies transmission
to the other core.

2. Information Disclosure
One wireless core can infer data or
actions of the other core.

3. Code Execution
One wireless core can execute code
within the other core.

9

Broadcom
Coexistence

(and Cypress)

10

Broadcom: ~ 1 Billion Devices

● Apple
○ All iPhones, MacBooks, iMacs, older Apple Watches

● Samsung
○ Samsung Galaxy S and Note series in Europe

● Google
○ Only older devices, e.g., Nexus 5/6P

● Raspberry Pi
● IoT devices

○ Fitbit Ionic

...and no firmware checks. A perfect prototyping platform \o/

11

Coexistence: Escalation within the chip

From the BCM4339 datasheet (Google Nexus 5).

12AN214852 - Collaborative Coexistence Interface Between Cypress-to-Cypress Solutions and Cypress-to-third-party Chips

By the way, throughput really sucks with ECI disabled. You cannot stream a
video with Wi-Fi and listen to it with your Bluetooth headset.

13

Serial Enhanced
Coexistence Interface

(also SECI, ECI, GCI)

14

● Separate Bluetooth (CYW20719) and
Wi-Fi (CYW490307) boards.

● Only connection: Serial Enhanced Coexistence
Interface (SECI).

● Separate antennas, exclude side effects!

● Debugging with logic analyzer.

Serial Enhanced Coexistence Interface

Wi-Fi

Bluetooth

15

What does it look like?

16

Reconfigure SECI

17

CVE-2019-15063 (reported August 2019)
● When Bluetooth writes to the gci_chipcontrol register at 0x650200,

this crashes Wi-Fi.
● We can observe a voltage drop with the logic analyzer.
● Causes a kernel panic on various devices, Wi-Fi PCIe behaves really strange

afterward...

Denial of Service BT→Wi-Fi

18

macOS Kernel Panic Demo

19

Denial of Service BT→Wi-Fi

20

Speaker switch Jiska -> Francesco

21

Wi-Fi D11 Core

22

Quite the same real-time architecture since 2003:
● Initial version: Soft MAC Linux host talks directly with low level stuff.
● Newer versions: Full MAC additional ARM core offloads almost all operations.

Broadcom Wi-Fi Architecture

Since BCM94303 (2003) and BCM94318E (2006), chipset initially called Airforce One

Userspace Linux Kernel Wi-Fi Module

Shared Memory

ucode Memory

D11 PSM CPU

Tx
 F

IF
O

R
x

FI
FO

Baseband
PHY

DSSS
PHY

OFDM
PHY

D
11

 M
A
C
 C

or
e

R
ad

io

Fr
on

t-
en

d
H

os
t

W
i-

Fi
 C

h
ip

se
t

RF

Userspace Linux Kernel Wi-Fi Module

Shared Memory

ucode Memory

D11 PSM CPU

Tx
 F

IF
O

R
x

FI
FO

Baseband
PHY

DSSS
PHY

OFDM
PHY

D
11

 M
A
C
 C

or
e

R
ad

io

Fr
on

t-
en

d
H

os
t

W
i-

Fi
 C

h
ip

se
t

RF

ARM CM3 RAM/ROM DMA

Fu
ll

M
A
C

23

Runs ucode, instruction set very proprietary, never seen in other architectures
● 8 bytes fixed-length instructions
● three operands instructions plus very weird bit-oriented operators
● tightly connected to PHY hardware
● example from the main loop:

 jext EOI (COND_RX_PLCP), rx_plcp // Preamble (Physical-layer convergence protocol)

 jext COND_RX_COMPLETE, rx_complete

 jext EOI (COND_RX_BADPLCP), rx_badplcp

 jnext COND_RX_FIFOFULL, rx_fifofull

● example from send_response code:
mov 0x0D4, SPR_TME_VAL6 // ACK indicated by 0xD4

mov 0x035, TX_TYPE_SUBTYPE

je RX_TYPE_SUBTYPE, TS_PSPOLL, pspoll_frame

Existing disassembler/assembler (customized to support later instructions)
● Michael Büsch created it back in 2007, updated since then within Nexmon.
● hints about registers from many piece of software leaked publicly.

D11 Core: A Specialized Microcontroller

Public ucode tool initially released by Michael Büsch in 2007 (https://bues.ch/cgit/b43-tools.git), continued within Nexmon (https://github.com/seemoo-lab/nexmon).

https://bues.ch/cgit/b43-tools.git
https://github.com/seemoo-lab/nexmon

24

Inside the D11 Core

Specialized MAC CPU
● Controls Tx and Rx engines

○ channel access scheduling, retransmission
○ filters incoming packets

● Direct access to hardware:
○ PHY registers
○ Radio
○ Interfaces, i.e., coexistence with Bluetooth

● Up to 64kB ucode memory
● Up to 8kB own RAM (called Shared Mem)
● Indirect access to host memory/FIFO
● Sub-µs accuracy
● many interfaces, like SECI...

ARM CM3 RAM/ROM DMA

Tx/Rx FIFO

Rx EngineTx Engine

Template RAM
Maps memory/frames

from main host

D11 CPU
Decides if frames are
pushed to host (CRC)

ucode
Loaded by ARM

firmware

Shared Mem
Indirectly accessible

by ARM firmware

PHY

25

Quite a few registers directly accessible from D11
● a 64-bit buffer for rxing messages from Bluetooth (time indications and msg type!)

○ messages are “streamed” from Bluetooth with high rate (every 1.25ms)
● programmable timers
● one register btcx_trans_ctrl with two bits for telling Bluetooth

○ who has priority
○ who is controlling antenna

D11 ucode (reference 43909B0 from Cypress):
● 12% of the 47kB ucode for coexistence

Jitter to Bluetooth measured with FPGA
● receive a frame, wait until the end
● transmit a SECI message
● approximately 200ns std

D11 Coexistence Interface (SECI)

Wi-Fi #1

Wi-Fi #2

FPGA

26

Grant/Reject Scheme

27

Bluetooth Grant and Reject Counters

28

CVE-2020-10370 (reported March 2020)
● When Wi-Fi is active and then stops sending SECI messages,

Bluetooth stops transmitting packets.

Denial of Service Wi-Fi→BT

29

Observe SECI in Wi-Fi

30

Let’s take a closer look!

Bluetooth keyboard connected, Wi-Fi is idle. Bluetooth sends a message every 30ms and Wi-Fi is sleeping.

31

Accurate Key Timings

32

CVE-2020-10369 (reported March 2020)
● Each Bluetooth Human Interface Device (HID) event generates a SECI message.
● HID devices exist in different event timing variants, the keyboard under test had

30ms, but other keyboards have 12.5ms, 15ms, etc.
● SECI messages are polled every 1.25ms by the Wi-Fi D11 core.
● The SECI message for keep alive packets is different from the SECI message

containing a HID keystroke.
→ Infer keystroke timings and keypress amounts.

Information Disclosure Side Channel

33

Speaker switch Francesco -> Jiska

34

WLAN RAM Sharing

35

When you spent too much time looking for side channels...

36From the BCM4339 datasheet (Google Nexus 5).

RAM sharing??! Only one direction?

37

● Bluetooth-only chips with coexistence interface?

Cypress WICED Studio contains partial symbols for CYW20719, CYW20735,
CYW20819 including register mappings, but nothing in there.

● Bluetooth/Wi-Fi combo chips?

But they also forgot the symbols of one MacBook Pro (2016 model).

wlan_buf_* … let’s go for this!

Where is the shared RAM?

38

CVE-2020-10368 (reported March 2020)
● Bluetooth can read information from the Wi-Fi RAM starting at register 0x680000.

This is mapped to Wi-Fi 0x180000. This range starts with a packet buffer.

Information Disclosure

39

CVE-2020-10367 (reported March 2020)
● Bluetooth can write data to the Wi-Fi RAM starting at register 0x680000. This is

mapped to Wi-Fi 0x180000.
● At 0x181000, Wi-Fi contains a function pointer table.

We can gain Wi-Fi code execution on a Samsung Galaxy S10 by writing to
0x681024 in Bluetooth.

Code Execution

CONSOLE: 000288.686 THREADX TRAP INFO:

CONSOLE: 000288.686 Thread: main_thread(ID:0x54485244) run cnt:7792

CONSOLE: 000288.686 Thread: Stack:002fff24 Start Addr:002fdff0 End Addr:002fffef Size:8192

CONSOLE: 000288.686 Thread: Entry func:001c556d

CONSOLE: 000288.686 Thread: Timer:0022cfcc

CONSOLE: 000288.686

CONSOLE: FWID 01-a4172c0

CONSOLE: flags 30040007

CONSOLE: 000288.686

CONSOLE: TRAP 3(2ffeb8): pc 67452300, lr 19b569, sp 2fff10, cpsr 68000193, spsr 68000033

CONSOLE: 000288.686 ifsr 0, ifar 67452300

CONSOLE: 000288.686 srpwr: 0x100b0000 clk:0xb0040 pmu:0x13e 0x5fcbc7df 0x0

CONSOLE: 000288.686 r0 2e15a8, r1 2c96a4, r2 2ca298, r3 0, r4 2c9708, r5 19c46f, r6 467ae

CONSOLE: 000288.686 r7 40, r8 28bde0, r9 2f9224, r10 2fdff0, r11 0, r12 67452300

CONSOLE: 000288.686

CONSOLE: sp+0 00000000 13d75f00 002d3a84 0028bde0

CONSOLE: 000288.686 sp+10 00299b74 00000000 0022d084 0028bde0

CONSOLE:

CONSOLE: 000288.686 sp+20 0019c46f

CONSOLE: 000288.686 sp+3c 00195a55

CONSOLE: 000288.686 sp+54 0019c46f

CONSOLE: 000288.686 sp+5c 001c5a3d

CONSOLE: 000288.686 sp+7c 001c5629

CONSOLE: 000288.686 sp+84 001c54b5

CONSOLE: 000288.686 sp+a0 0000c02b

CONSOLE: 000288.686 sp+bc 000670f5

CONSOLE: 000288.686 initing the fatal buf block: 0020dca8(113660)

40

...also on macOS, MBP 2019/2020 (BCM4377)

41

CVE-2020-10367 and -10368: A few devices...

42

PCIe

43

When you have no idea what you’re doing...

44

Wi-Fi code execution leads to various kernel panics

Kernel panics captured so far:
● Samsung Galaxy S10e on Android 9
● iPhone 8 on iOS 13.3, iPhone 6 on iOS 12.4
● ...also macOS but likely another issue in the Bluetooth driver.

45

iOS Kernel Panic Demo

46

Other Chips

47

Mobile Wireless Standards: Bluetooth/LTE Coexistence

48

Everyone has proprietary coexistence features \o/

● Asked Broadcom if we can also include other wireless manufacturers into the
responsible disclosure process.

● Yes, we can :)

● Forwarded to Intel, MediaTek, Qualcomm, Texas Instruments, Marvell, NXP.
They all mention similar coexistence interfaces in their datasheets.

● Some wireless chips do not separate wireless cores at all.
→ Not directly vulnerable to Spectra?
 Operating system based side channels might exist...

49

Summary

50

Q&A

 Twitter: @naehrdine, @seemoolab

 jiska@bluetooth.lol, francesco.gringoli@unibs.it

