
Heroku Abuse Operations:
Hunting Wolves in Sheeps Clothing

#BHUSA @BLACKHATEVENTS

Forward-Looking Statement
Statement under the Private Securities Litigation Reform Act of 1995:

This presentation contains forward-looking statements about the company’s financial and operating results, which may include expected GAAP and non-GAAP financial and other
operating and non-operating results, including revenue, net income, diluted earnings per share, operating cash flow growth, operating margin improvement, expected revenue
growth, expected current remaining performance obligation growth, expected tax rates, the one-time accounting non-cash charge that was incurred in connection with the
Salesforce.org combination; stock-based compensation expenses, amortization of purchased intangibles, shares outstanding, market growth and sustainability goals. The
achievement or success of the matters covered by such forward-looking statements involves risks, uncertainties and assumptions. If any such risks or uncertainties materialize or if
any of the assumptions prove incorrect, the company’s results could differ materially from the results expressed or implied by the forward-looking statements we make.

The risks and uncertainties referred to above include -- but are not limited to -- risks associated with the effect of general economic and market conditions; the impact of
geopolitical events; the impact of foreign currency exchange rate and interest rate fluctuations on our results; our business strategy and our plan to build our business, including
our strategy to be the leading provider of enterprise cloud computing applications and platforms; the pace of change and innovation in enterprise cloud computing services; the
seasonal nature of our sales cycles; the competitive nature of the market in which we participate; our international expansion strategy; the demands on our personnel and
infrastructure resulting from significant growth in our customer base and operations, including as a result of acquisitions; our service performance and security, including the
resources and costs required to avoid unanticipated downtime and prevent, detect and remediate potential security breaches; the expenses associated with new data centers and
third-party infrastructure providers; additional data center capacity; real estate and office facilities space; our operating results and cash flows; new services and product features,
including any efforts to expand our services beyond the CRM market; our strategy of acquiring or making investments in complementary businesses, joint ventures, services,
technologies and intellectual property rights; the performance and fair value of our investments in complementary businesses through our strategic investment portfolio; our
ability to realize the benefits from strategic partnerships, joint ventures and investments; the impact of future gains or losses from our strategic investment portfolio, including
gains or losses from overall market conditions that may affect the publicly traded companies within the company's strategic investment portfolio; our ability to execute our
business plans; our ability to successfully integrate acquired businesses and technologies, including delays related to the integration of Tableau due to regulatory review by the
United Kingdom Competition and Markets Authority; our ability to continue to grow unearned revenue and remaining performance obligation; our ability to protect our
intellectual property rights; our ability to develop our brands; our reliance on third-party hardware, software and platform providers; our dependency on the development and
maintenance of the infrastructure of the Internet; the
effect of evolving domestic and foreign government regulations, including those related to the provision of services on the Internet, those related to accessing the Internet, and
those addressing data privacy, cross-border data transfers and import and export controls; the valuation of our deferred tax assets and the release of related valuation allowances;
the potential availability of additional tax assets in the future; the impact of new accounting pronouncements and tax laws; uncertainties affecting our ability to estimate our tax
rate; the impact of expensing stock options and other equity awards; the sufficiency of our capital resources; factors related to our outstanding debt, revolving credit facility, term
loan and loan associated with 50 Fremont; compliance with our debt covenants and lease obligations; current and potential litigation involving us; and the impact of climate
change.

Further information on these and other factors that could affect the company’s financial results is included in the reports on Forms 10-K, 10-Q and 8-K and in other filings it makes
with the Securities and Exchange Commission from time to time. These documents are available on the SEC Filings section of the Investor Information section of the company’s
website at www.salesforce.com/investor.

Salesforce.com, inc. assumes no obligation and does not intend to update these forward-looking statements, except as required by law.

Allan Stojanovic, Internet Mall Cop
heroku-abuse@salesforce.com

Spencer Cureton, Internet Mall Cop
heroku-abuse@salesforce.com

Heroku Abuse Operations
Hunting Wolves in Sheeps Clothing

Heroku provides services and tools to build, run, and scale web applications. We
enable developers and teams to focus on the design and craft of their apps..

Quickly go from idea to online application.
Supports Ruby, Node.js, Java, Python, Clojure, Scala, Go and PHP.

Heroku

Heroku was purchased by Salesforce about ten years ago.

It’s a platform as a service that offers an easy interface to quickly go from idea to
online application without having to manage and configure the underlying
infrastructure. Developers are free to focus on code and deploying it to the internet
without much effort.

It supports multiple languages and provides features like scalability, backups,
continuous integration, sane default configuration and much much more. And all you
need is an email address to create an account.

Heroku

And to give an idea about the size of the platform - over 9 million apps have been
created, over 2 million databases are managed and the infrastructure handles billions
of requests per day.

Oh, and Heroku runs on Heroku.

Heroku

Platform as a Service

Remote Code Execution as a Service

PaaS…
More like RCEaaS

Heroku has other offerings that are not like this, but we won’t be talking about them
today.

Our focus will be on how we defend the “common runtime” from abusive bad actors.

What is Abuse?

Unintended monetization of anything

If a free service has an angle to extract value,
somebody is already trying to use it for profit

No single organization seems to have a full picture of the entire operation

We define “abuse” as unintended monetization of anything.

If you have a free service, a free trial, or any offering that has an angle to extract
value, somebody is already trying to figure out a way to make money off of it.

It’s a very fine line between a business trying to get off the ground and an abuser
trying to take advantage of your services. Sometimes it’s obvious - theft of resources.
Other times it’s not so clear.

For example, a social media poll. Intended for honest input, but gameable because
it’s not one person - one vote. It’s one account - one vote. The person in control of the
most accounts wins.

The problem isn’t new, the scams aren’t new, but we see them leveraging more of the
cloud.

Is there a single view that captures the full picture of the entire operation?

Across the industry, we may have that full picture, but not right now.
From our limited view, we’ve identified a number of puzzle pieces that have been
underreported.

What is Abuse?

Misuse, malice and crime on the platform

Now on a more practical layer, we see a portion of that picture realized through
misuse, malice and crime on our platform.

Legal documents like the Acceptable Use Policy, the AUP, provide a list of prohibited
content and actions - the list of “don’t’s” for users to follow, as well a set of guidelines
for us to uphold.

Obviously, this can’t cover every type of abuse activity. Even if it did, it would act as a
laundry list for an abuser to know what badness _can_ be performed from the
platform.

Let’s look at how we group AUP violations.

AUP Violators

Unintentional Intentional

There are unintentional violations and intentional violations

To determine if intentional or unintentional, good or bad, we establish intent by
collecting and connecting as many indicators of abuse as necessary.

AUP Violators

Unintentional
● Not malicious
● Accidentally jerks
● Misuse - disruptive “noisy neighbor”
● Example, run-away scrapers

Intentional
● Script kiddies
● Swarms
● Quick and loud
● Slow, low and dangerous

Exploit business logic rather than technical
vulnerabilities

Persistent, financially motivated threat
actors

Unintentional could be a customer that deploys a poorly written app that consumes
more than its share of resources and now they’ve become a “noisy neighbor”. Not
malicious, but kind of like they were accidentally jerks, totally unaware until we
suspend their app and open a support ticket.

The intentional abusers are what make this job really interesting.
Users with skills that range from script kiddies to rogue, advanced developers, which
we call our “apex actors”.

Skids will be skids and deploy code found on github, youtube, or whatever their buddy
gave them to run.

At times, we’ll get what feels like a swarm of abuse centered around a particular app,
like a proxy kit or a P2P app.

Then there are the “quick and loud” abusers that could care less about being detected
and will attempt to stand-up a DDoS farm and attack a target as quickly as possible.

The actors that are patient, skilled and criminal are the more dangerous group. These
actors attempt to iterate past our detection capabilities, they may social engineer our
support staff in order to gain insight into how they were detected after being

suspended, and will try anything to maximize their use of our platform.

Now, these users are not exploiting technical vulnerabilities in the platform. They take
advantage of gaps in business logic.

The majority are not too advanced, but are very persistent. Think APT with little “a”
and big “P” and again, financially motivated.

And by “persistent” we mean that after an account has been suspended, the same
actor will use a different email address or a subinbox of the original email address to
create a new user account.

What are we?

Red Team?

Blue Team?

Purple Team?

CSIRT?

Security?

GRC?

Anti-Fraud?

SRE?

Here’s a fun one - how do we define ourselves? Where do we fit within the company?

Let’s start by listing the things that we’re not.

We’re
Not Red Team, but we learn from them
Not Blue Team, but we borrow from them
Not purple team, but we talk to more groups across the organization
Not CSIRT, but we conduct investigations
Not Security, but we monitor for outbound attacks
Not GRC, but we write up risks around business rules
Not Anti-Fraud, but use the same data
Not service reliability, but we help keep the platform stable.

We’re not encompassed by any one of these groups, but we overlap in so many
ways.

What are we?

Abuse Operations

We’re Abuse Operations.

We exist because the business understands that there is risk of having unwanted
activity given an environment that is RCE as a service.

Abuse Operations

Information Security
● Availability
● Data Forensics Incident

Response & Ops
● Malware analysis & reverse

engineering
● Threat management

Business
● Fraudulent signup, bulk

account creation and payment
fraud

● Know Your Customer
● User activity

Service Reliability
Engineering
● Similar indicators and metrics
● “Ops” - on call, manual

intervention, tickets

Overall, we define Abuse Operations as a specialized DFIR team that requires a wide
view across the business, as shown.

Our goal is to push bad actors from the platform and put a spotlight on abuse patterns
for engineering teams and the business to address.

Heroku is exceptionally collaborative, where teams openly share views and metrics
and ping us when things look odd on their end. This enables us to move very fast.

Hunting For Badness

We. Hunt.

We don’t want to wait for the badness to hurt us. We are looking for wolves in sheep’s
clothing, after all.

Most of our hunting starts with ...

Suspicious Indicators

Internal
● Static: Account information, app

information, addons connected ...
● Event-based: App created at, app

CPU load, app communicated with …
● Tickets: another department

escalating something

External
● Threat Intelligence: IP address

belongs to known C2, a previously
suspended users used this IP...

● Informational Enrichment: Credit card
was issued by, Domain belongs to…

● Community: Complaints, abuse
reports

z
Most of our indicators are low value (to start)

Suspicious indicators are derived from a combination of user supplied data, and
data about that data.

The hunt starts with a suspicious indicator. Suspicious indicators are derived from a
combination of internal user data, and external information about that data.

For example, an app with an abnormally high CPU load would generate an event
based alarm (internal indicator).

Internal indicators point out odd or unusual activity that should be investigated. They
can come from any of a number of sources, but usually though some sort of alert
derived from user data or platform activity.

External indicators are usually derived from complaints, abuse reports, threat intel,
and Informational enrichment.

Individually these indicators are of low value because they are _not atomic_. If this
doesn’t make sense yet, don’t worry, we’ll get there.

What other indicators can tell you about the indicators already gathered, and do they
help add context?

● High CPU?
● Communicating with questionable internet addresses?
● Is it a paying customer in good standing?
● Is the code public?
● Is it communicating with strange protocols?
● Does it wholly or partially match known malware/software signatures?

Adding Context

Collections of low value indicators are actor footprints!

Given a starting suspicious indicator or two, we form one or more hypothesis about
the intent of the actor. We start looking for related indicators to try and prove or
disprove that hypothesis.

This is where it starts to get interesting.

For instance, it just so happens that given:
● High CPU
● High Network utilization
● Match for a popular file download program
● And the substring “torrentz” in the app name

… is probably a P2P app. True story.

Each of these indicators is not proof of intent individually, but you can see that
collectively they make a very strong case. A collection of low value indicators does
become very good footprint of malicious activity.

Increasing Confidence

We keep adding indicators (What else you got?)

Keep thinking about why an indicator is the way it is

● A “facerolled” email address? (ie. “fdafdsad@gmail.com”)
● Facerolled app name?
● Multiple attempts to verify CCs?
● Shares the same CC with a previously identified malicious actor?

To increase confidence, we keep asking the question, “What else ya got?”

And as more indicators are discovered, we try and think about why they are the way
they are.

For instance, a “facerolled” email address, like shown, is a pretty good indicator that
the user does not really value the account. It is likely a throw-away account, this by
itself is not necessarily bad.

A “facerolled” app name, similarly, is not necessarily bad, it could be something built
for a quick test, meant to be discarded.

However, a facerolled email address with a collection of facerolled app names, _and_
multiple failed attempts to verify different credit cards, and finally landing on a working
credit card that has been previously used by a previously identified malicious actor, is
worthy of further scrutiny. Don’t you agree?

By the way, in case it is not clear, the difference between a “facerolled” string and a
“random” string is whether it was created by hand or by computer. Think “Keyboard
Mashing”

Establishing Intent

Goal #1: determine what the actor is trying to do

● Analyse all data supplied by a user
● Validate all the data supplied by the user

Goal #2: determine what the actor is trying to do before they do it

● Determine if we have seen this actor before.
● Perform the same action if and only if there is high confidence that this is a returning actor

Establishing intent is, as one would expect, the art of figuring out what the actor is
trying to do.

Goal #1 is determining what the actor is trying to do

Goal #2 is determining what the actor is trying to do before they do it.

We reserve goal #2 for actors we have seen before to avoid the “precrime” scenario.
We try really really hard not to kick someone off the platform before they have “done
bad”.

Making a Decision / Take an action

At this point there should be enough indicators to make a decision

If the intent is bad,
● Suspend the user or app
● escalate to legal/law enforcement
● … or whatever the policy requires

If the intent is not bad,
● Add to watch lists / allow lists / other lists as appropriate
● Log as a false positive, if appropriate

If the intent is undetermined,
● Do nothing (and reassess if/when it shows up again)

Making a decision and taking an action is the crux of the matter. At this point, we have
collected a bunch of indicators that should give us a reasonably good idea of the
intent of the activity. It is time to take action.

If the intent is bad, then suspensions / evidence collection / deletions, etc. come into
play.

If the intent is NOT bad then watchlists or allow lists, adjustments for false positives,
and/or opening of support tickets are among the paths forward. Analyst discretion is
necessary here; is it GOOD, or just not BAD yet?

Sometimes undetermined intent really just means that there are not enough indicators
that help establish the intent of the activity. In which case it may go “back into the
pool” as no other actions can be taken. It will be reassessed if something perculates it
to the top again.

Investigating for more indicators

This is a retroactive view of historic events to determine how widespread the activity is

● Given the indicators that collectively showed intent
○ are there other users with the same set of indicators?

● Given the indicators that collectively showed intent and other users with the same set of indicators
○ are there other common indicators that are worth tracking?

●
Are there any atomic indicators that are always bad?

Are there any previously missed indicators that strengthen the decision?

We have a bunch of indicators. We have enough to estable intent. We made our
decision, and we’ve taken the corresponding action. Now, we look to see how
widespread this activity is.

We gather all the accounts associated with those indicators we have, and look for
other common indicators that may have been missed. We then add those indicators to
our collection, and see if any accounts match that we may have missed.

If one gets lucky, there may be a single very strong indicator (what we call an atomic
indicator) that ties all the accounts or apps together and cannot be interpreted any
other way than being an indicator of Bad Intent.

If not, the entire collection of indicators already gathered can be augmented with the
new set, groomed, and listed as the new footprint of badness.

Sampling across a larger population of users or apps, will quickly confirm the
accuracy of the footprint, and help weed out any remaining false positives.

This strengthens the footprint and makes it suitable for …

Automation

Given one or more indicators of badness:

● Automate the detection, collection of indicators and action we just took
○ Never want to see it again.

● Automatically action the footprint retroactively as well
○ Clean up any stragglers

● Alert on subset of activity
○ Detect change in actor behaviour

● Log actions by indicator for future consideration
○ “Have we seen this before” step of the loop through the hunt cycle

The number one goal of automation is to reduce toil!

Automation is how we reduce toil. We never want to see the same abuse again, so
we automate the collection, detection and actioning of the footprint we just actioned
manually.

Our automation can also be set up to run the new footprint retroactively, so that older
implementation of badness will also be detected and actioned as well. This cleans up
any stragglers.

We log the actions taken so that we can use that information the next time we run
though the loop: this is how we get the “have we seen this before” question answered.

There is a trade off. Automation will result in some loss of visibility. The investigation
performed in the previous step helps build robustness so that there is longevity in the
automation of this action. Counterintuitively, taking that extra step helps reduce toil in
the long run.

Why do we use the term footprint? Simply because fingerprint or profile implies
something too unique. A footprint, as a collection of indicators, helps us remember
that an actor can be more than one person, can be a bot, can be multiple specialised
actor groups, or any combination thereof.

Rinse and Repeat

And then we do it all over again.

********************* extra info **************************

Logging every action that the system takes allows for analysis of the effectiveness of
the system over time, and allows for the automation of reporting. Who doesn’t love
reporting?

We found that implementing partial footprint actions can be tricky to get right, so to
avoid a runaway false positive streak, we implement new rules in an alert-only mode,
monitor it until the analyst is satisfied, and then turn it to “action mode”. We then
continue to monitor it, and if it turns out that it is not correct, we can turn it back to an
alert-only mode very rapidly.

We have a number of different allow-lists implemented to help avoid total disaster,
certain VIP customers are on the list (especially those with their own security teams),
as are certain technologies that we simply cannot put at risk.

Overall this path is a lot to take in. But if you have familiarity with network monitoring
tools, malware fingerprinting, and / or basic behavioural analytics, you can see that
we borrow heavily from these techniques, frameworks and more.

Hunting in Nutshell

Suspicious Indicator Add context and related
indicators Increase Confidence

Establish Intent

Investigate For More
IndicatorsAutomatic Actions

Rinse and Repeat

Make A Decision and
Take Action

To recap:
suspicious indicators come to us as high watermark alarms, abuse complaints or as a
result of artifact exploration (including previous historic indicators)

We add context and more indicators from both internal and external sources ...
… to increase confidence...
… through establishing intent ...
… to make a decision.

We then investigate, often retroactively, to find more indicators that collectively are
suitable for automation.

Rinse and repeat.

Hunting Environment - Tooling

Event collection
● Alerting
● Reporting
● Implements allow and deny lists

Database query tools
● Automated (scheduled or triggered)
● Manual (for hunting and analysis)

Malware analysis tools
● Application scanning
● Implements allow and deny lists

Ticketing system
● Email to ticket functions
● Other communications
● Work tracking (SOC2)

Suspension Tools
● Suspends users
● Suspends apps
● Implements “guard rails”

We have an event collector that acts as a classic SIEM. It handles our alerting and
reporting, and can send info to other tools as well as receive.

We have database query tools that can run queries automatically, and we also run
them manually when we test hypotheses, or results of automatic suspensions.

We have malware analysis tools that can scan apps statically and dynamically, and
send results to other tools.

We have a ticket system, most places don’t consider ticket systems part of the tooling,
but we do if for no other reason that it is responsible for a lot of our toil, so we need to
be able to reduce toil there as well.

And we have our suspension tools that suspend users and apps. This also
encompasses complex rules implemented as guard rails so that we don’t accidently
suspend the world.

********************* extra info **************************

Event collection
Our SIEM install is big. When I first started the number banded about was 63 TB of
logs per _day_. I do not know how big it is now, but I know it has grown.
Back-of-the-napkin math has also guesstimated that if we actually gathered
everything we wanted we would be adding another 20 PB of logs to the system per

day (yes, PetaBytes … with a P). This is not feasible for all the reasons. We are
resigned to the fact that our SIEM has so much data, but never enough. Our SIEM
instance is also shared across the entire organization. The good news there is that is
why we have close proximity to performance and metrics data.

Some of our footprint tracking is implemented in the SIEM as reports and alerts.
Things that we find interesting can kick off other processes using webhooks or email.

Database query tools
Our database tools are Heroku apps that can make automated database calls that
look for footprints and take an action, including kick off other processes, and sending
logs. We can also run many queries manually, and we often use that to test
hypotheses and double check automated outcomes.

Malware Analysis
Our malware analysis tools look for footprints in the apps themselves, in either the
static state or running state. It also has the capability to kick off other processes, and
send logs.

Ticketing System
We have our own ticket system. Standard stuff so that we can queue work and gather
abuse reports. There is a lot of toil here, and it is not immune to our “reduce toil”
requirement, but changes here take a long time. They do get made though, and that is
important.

Suspension Tools
Finally we have suspension tools, this is the tool that has the ability to suspend users
and apps. It can also kick off other processes, and send logs. More on this in the next
section.

Hunting Environment - Tracking

Campaigns
● Tracks actors
● Tracks victims
● Tracks specific implementations of software

Prohibited Software
● Tracks malware
● Tracks C2
● Tracks known abusive software

We track two general types of activities, campaigns and prohibited software.

Campaigns track actors and/or victims, and custom bespoke software that they have
written.

Prohibited software looks for known malware, tracks C2 communications and similar
artifacts, and known abusive software that anyone can install, including those with a
“Deploy to Heroku” button.

********************* extra info **************************

Campaigns are usually about tracking actors. For example, phishers that keep
returning with more than one phishing kit. Sometimes it is easier to track victims, for
example, credential stuffing attacks against another site, tracked under the name of
the target site rather than trying to separate out the actors. We also end up tracking
specific implementations of software here when the software has not been
commoditized, meaning some of the quick and dirty code written by the actors for a
particular malicious purpose.

Prohibited software is tracked slightly separately, and usually includes software that
anyone can install. Cryptomining software, torrenting software, and similar are tracked
here. A lot of the badness that is installed via a “deploy to Heroku” button ends up
getting tracked and actioned here. Remember, just because it has a “Deploy to
Heroku” button, does not mean that it is sanctioned by Heroku.

There is overlap between these two categories, and even internally we blur the lines.
An actor installing prohibited software multiple times is still worth tracking as a
campaign so that we can see what they do next. This is also how we keep abreast of
new developments before they become a problem.

Hunting Environment - Summary

Making all the tools …

● ... talk to all other tools
● … make suspend decisions
● … refuse to suspend (tools have their own allow lists / deny lists / business logic)
● … record activities for future consideration
● … talk to a central tool used to make a decision easier

This complexity brings flexibility.

Let’s put it together.

Any tool can “talk” to any other tool, even if it is the machine equivalent of, “I see bad.
Do you see bad?”

Any tool can tell the suspension tools that any user or app needs to be suspended.

Suspension tools have their own allow and deny lists and internal business logic to
help identify and stop mistakes before they become costly.

And everything that these tools do is recorded.

This may be complex, but this is what gets us the flexibility we need without taxing
any singular system.

********************* extra info **************************

Suspension business logic can be really simple, like lists of non-allowed domain
names. Or really complex ones, implemented as business logic. Like, a VIP account
that has long history and is in good standing should get a support ticket instead of
being suspended outright.

Every action any tool takes should be recorded for all the usual measurements and
metrics reasons, but also for later consideration with new tools.

When a footprint spans multiple tools, even though they may be triggering each other,
it is often easier to create a central authority to implement a “meta rule” to make the
final decision. This is very similar to a classic SIEM model. However we are looking to
improve this path with a richer communications system to avoid putting even more
burden on our SIEM infrastructure. THINK distributed SIEM, and SIEM as originally
defined, not as some singular product.

Previous decisions help drive future decisions. This is part of the feedback loop. A
simple example is that if every usage of a particular IP address has belonged to a bad
actor, then every future usage should be examined automatically. Further, it can be
raised as a new indicator for inclusion into new footprints.

Flexibility is the key. The tools should always be questioned, measured and reported
on. New data sources are implemented all the time, and as in any high performance
environment, changes happen that can render your hunt obsolete, or worse;
completely broken. Stay on top of it.

To do this correctly, there will be “care and feeding” requirements.

Responding and Reacting

Align with the Business

The business wants:
● Faster Whack-a-mole
● Faster removal

Faster and more accurate detection logic

The business also wants:

● Less abuse
● Less costly abuse

The business really wants:

● The problem to “just go away”.

Study TTPs and abuse cases, understand
how they affect the platform/business

Platform hardening, actor demotivation, and
making things less hospitable to abuse

AbuseOps is selfish, we want it all

We align with the business. They of course set the tasks and the priority, but it is up to
us to be able to interpret them.

The business wants us to remove abuse faster. Fair Enough. This means we need
faster and more accurate detection logic.

The business also wants less abuse, or at least less costly abuse. That requires us to
study the actors, what they are doing and how they affect the platform and the
business.

What the business really wants is the problem to “just go away”. This seems
simplistic, but after giving it some thought, we realised that there is a path here, via
platform hardening and demotivating actors.

If we make the entire thing less hospitable to abuse, maybe we can get close.

We in AbuseOps are selfish. We want all of this.

********************* extra info **************************

We joke about “what the business wants” but really it is about different aspects of the
business requiring different things and prioritizing different things. Each department,
team or organization may have a differing view. For this talk, we’ll still call it “The

Business” but understand there is complexity there.

The business expects a certain cadence to removing abuse. The earliest sentiment,
especially in the early days of abuse operations is to “do the needful” faster. Faster
Whack-a-mole, faster removal, faster firefighting. This is a tricky time, because if you
get used to doing nothing but firefighting, firefighting is all that you will end up doing.
So the real goal here should be the building and improvement of the detection logic
and tools, so that you can turn around investigations faster, move towards
automation, and speed up that loop. “Never see the same abuse twice”, right?

The business also wants less abuse and less cost to abuse. There does seem to be
two measures of cost here, unrealised billings and cost to serve. In other words the
amount of money failing to come in, and the amount of money being paid out,
because of abuse. To be able to tackle this aspect of the problem requires some
study. Studying the tactics, techniques and procedures and understanding how they
affect the platform and the business is needed. The results can be fed into loop loop,
and and can be used as the start of some good metrics.

There is a fun little point that someone in the business will reach, which is that
moment of ... heavy sigh followed by, “why won’t they just go away”. It’s Reporting
Fatigue. When you report the same thing happening over and over again, they get
annoyed / bored / frustrated as well. However, at this point it becomes possible to
explore what it will take to “make it go away”. And this usually entails platform
hardening, devaluation of loot, actor demotivation, and making things less hospitable
to abuse. This is hard.

Finally, we in AbuseOps are selfish. We want all of this. And More.

Quicker vs. Slower

Reasons for Quicker Action
● Cheaper
● Easier to automate
● Can deal with volume better
● Only needs visibility

● Prone to false positives
● Loss of situational awareness

Reasons for Slower Action
● Studying TTPs
● Studying Platform Effects
● A/B testing badness
● Provides Situational Awareness

● Potentially more damaging

The first two items on the list in the previous slide have competing requirements.

The first requires us to respond quicker, and the second to study the actor and their
actions and hence respond slower.

There are pros and cons to each strategy, the big ones being that quicker is usually
easier but prone to false positives, while slower provides better situational awareness,
but since the actor may still be active it could be more damaging.

We have found that is sometimes worth switching back and forth depending on what
we see, and we have also found that going slow first does allow us to act quicker
later, with accuracy.

********************* extra info **************************

The first two items in “the business list“ have competing requirements. The first
requires us to respond quicker, while the second requires us to study the actor, and
hence respond slower.

There are pros and cons to each strategy. Responding quicker will result in keeping
the cost of abuse down, it is easier to automate and because of that, it is easier to
deal with volume.

However, it is more prone to false positives and can result in the loss of situational

awareness since the results of fully automated systems are usually logged in some
report at best, and are rarely looked at.

On the other hand, if you slow down and study what the actors are doing, and how
they do it, you have a chance at really making an effect by choosing a course of
action that will be devastating to the actor’s activities. Also, you have a chance at
better understanding what is happening to your systems, and hardening against the
abuse altogether. The con is that the longer the actor is on the platform, the more
potential damage they can do and the more it may cost the business.

Again, abuse operations is greedy. We want it all.

We will inherently choose a strategy that make sense to the type of activity we are
seeing and how often we are seeing it. Sometime we write up a detection footprint
and automatically action the results in minutes, sometimes we study the actions and
the effects for a while to figure out what they are doing and how.

To mitigate the false positive rate of quick actions, we usually deploy new detections
in an “alert only” mode until we are satisfied that there will be no false positives.

To limit the damage when we move slow, especially with “actor badness” that requires
multiple accounts, we may suspend some subset of the accounts, and study the rest.
There is a bit of a bonus here, in that we have noticed that there is potential for a sort
of A/B testing. If we suspend half of the accounts on an obscure piece of criteria, will
that actor notice? Can this be used to change their behaviour? The answer is “Yes”, in
a crude sort of way.

There are more things we do here as well, but we are skirting dangerously close to
our secret sauce. Besides, if you are exploring these kinds of things right now, we
would love to have a conversation, compare notes, and see if we have come to the
same conclusions.

On a final note, we have found value in switching between the two strategies,
depending on how the actors change their behaviour. Actor TTPs are not static, your
activities and responses should not be either.

Visibility vs. Situational Awareness

Visibility
● Do you have access to the information you need to make a decision?

Situational Awareness
● Do you have an understanding of what or who is currently active, and where?

Visibility allows you to move quicker, visibility is required for situational awareness, to get
good situational awareness requires you to move slower.

Moving quicker requires visibility. Situational awareness not only require visibility, but
also requires studying the actors, and hence going slower.

So overall, we end up going slower to ultimately go faster, with accuracy.

But when we first started out, we had to go fast just to get our heads above water.

Understand that there is some hidden complexity here.

********************* extra info **************************

It is noteworthy that “Moving Quicker”, requires visibility. Situational awareness also
requires visibility, and the study steps of “Moving Slower” is what gets you situational
awareness.

Situational awareness is also partially derived from the logs of previous actions, and
we have found that the volume of logs from quicker actions are going to be bigger
than those of slower actions. Naturally.

Add in the fact that quicker actions are more prone to false positives, and one quickly
realises that the situational awareness you may have derived is actually incorrect.

The full relationship between the two is more complex than initially expected, and we
have not explored all the outcomes and ramifications of this beyond the head of the

singular analyst.

It seems that an analyst that is steeped in the system intuits a lot of this, and the only
thing we are missing is the ability to articulate it. Maybe.

We will have to look into this deeper because...

Tracking Actors

There does not seem to be a well defined way to do this. (At least not one that suits us.)

● A footprint can be an indicator of one or multiple actors with the same TTPs
● Footprints can overlap
● A partial footprint can be an indicator of a change in the actor’s behaviour
● Because Heroku is highly instrumented, many of our indicators are not traditional, and traditional

indicators are valued differently
● Complete success in kicking an actor off the platform may lead them to retool from scratch. Does

this make them a new actor?

We are just scratching the surface here. There is much more work to be done.

Tracking actors is hard. Tracking persistent returning actors is haaarrrrd.

Ok, not quite, but there does NOT seem to be a well defined way to track actors by
footprint as we defined it that gives us the flexibility we desire.

We want to know if an actor changes behavior and we want to know in an automatic
way.

● And when they do, we want to be able to add a new indicator to the footprint in
as few steps as possible.

● We want to be able to split and merge footprints as we track multiple actors.
● We want this to be a tool just like the rest, remember the requirements back in

the tools slide?

We want a lot.

Today, we track mostly manually, and this is a lot of toil.

We are looking to build a system that enables us to spot returning actors that have
changed a TTP (AKA a pivot),
or spot when a footprint is covering for multiple actors (AKA a splash)
or …. Fingers crossed … spot an actor that returns and starts from scratch (AKA
retools).

********************* extra info **************************

Tracking actors is about situational awareness.

We want to know if an actor changes behaviour, and we want to know in an automatic
way. And when they do we want to be able to add the new indicator in as few steps as
possible to the footprint. We also need to be able to age out or otherwise manage
indicators that no longer apply, and be able to map individual indicators to multiple
footprints, and that in turn to one or multiple actors.

In the extreme case, when we successfully evict a persistent actor, and they
completely retool and return, they will get a completely new footprint, and may be
tracked as a completely new actor. So any system used to track actors will also need
to be able to merge actor “profiles”, and have multiple footprints per actor.

But if that is the case, we will also need to track historic footprints.

Today we do all of this with a combination of manual work, and making things inherent
to how the platform functions. And this is not good enough.

If we can make this functional, not only will we gain and continue to have situational
awareness, but we can also start to automate our automation! The DREAM.

This is an area we will be working on in the coming year.

Let’s dive into a couple of the more interesting things that will make tracking actors
not only interesting, but fun.

Pivots

A pivot is when an actor changes a tactic, technique or procedure

Since footprint is a collection of indicators:

● Greater than X% match is considered a perfect match to that actor
○ do the action

● Between X% and Y% match is considered a probable match to that actor
○ Do the action and alert for possible pivot

● Less Y% match is considered a non-match to that actor
○ Log for situational awareness

When there is a probable match, that match is examined, and new indicators added to
the footprint (or a new footprint created) to bring it back to a 100% match.

A pivot is what we call a change to a TTP of a returning actor (different from a
pentester pivot). If a footprint is a collection of indicators, then given enough of them,
a partial match usually indicates a change in behaviour by the same actor.

Actors are people too. When they are suspended, they will test how, by isolating for
variables and making small changes one at a time until they “get it working again”.

So a form of threshold detection, like shown, works really well as an accurate way to
detect their return and take the same action.

Then updating the footprint with new indicators reflecting the change they just made
keeps the footprint accurate. This is designed to make it difficult for a persistent actor
to regain a foothold on the platform.

And frustrates the heck out of the actor, especially if we cut them off
● at each pivot
● before they profit.

********************* extra info **************************

A pivot is what we call a change to a tactic, technique or procedure (different from a
pentester pivot). If a footprint is a collection of indicators, then given enough of them,
a partial match usually indicates a change.

Examination of a partial match and discovery of what has changed will reveal more
indicators, and the addition and redefinition of the footprint with the new indicators will
bring one back to a 100% detection rate.

The reason that this works for most actors is that they are developers like any other.
When presented with a problem, like their account getting suspended, they will isolate
for variables, redo their work changing one thing at a time, and test what they believe
may have been the thing that got them caught.

Tied together with automation, and an appropriate level or automatic suspension, the
system can send alerts for “close enough” suspensions for review.

There can also be multiple watermarks for how much of a match there needs to be to
do each of the things, but having two levels seems to work quite well.

● Greater than X% of indicators, suspend automatically.
● Between X% and Y%, alert as a partial match.
● Under Y%, log and ignore.

How to choose the levels still seems a bit of an art. However, two things to consider
when doing so, are the number of indicators in a footprint (higher numbers seem to
allow a lower threshold for partial matches without false positives), and having
different levels per actor, for at least the long running actors that may have been
hiding for a while. They have a tendency to understand the platform a bit better than
most.

Splash

Think of it as multiple pivots at the same time

● Greater than two partial footprint matches with different changed indicators
● Seems to mean more than one actor was operating under the same TTPs
● Likely got their starting tactics from the same source
● Are they knowingly or unknowingly sharing tactics? Is there a way to tell?

Try and find the source material, you might get lucky.

Sometimes instead of seeing a singular pivot, we see multiple pivots but with different
partial footprints.

We call this a splash. Ever slap a mud puddle?

This seems to mean that there are multiple actors operating under the same set of
TTPs.

We have found great value in looking for how they are sharing these tactics. Are they
all reading the same forums? Or, all using the same instructional youtube video?

When we find that source then we can have some more fun.

Imagine knowing what they are going to do before they finish implementing it
(especially a code change), and adding those as indicators to the footprint before the
changes are deployed.

Frustrating them as well.

Shout-out to our fantastic Threat Intel team. They help find the stuff out there.

********************* extra info **************************

Sometimes, after suspension, instead of a one-change pivot we will suddenly see
new accounts with multiple partial footprint matches all at the same time, but not the
same subset of indicators.

Some analysis of these have shown that there was actually more than one actor
under that original footprint, and since they were all caught out and kicked from the
platform (usually twice), they are looking for a way back and are again trying to figure
out how they got caught.

How did they start with the same TTPs? Sometimes they simply started with the same
how-to document someone published, sometimes they all got the same software or
the same kit.

Actors that converge to a new set of working TTPs, and get back on the platform, do
appear to be more likely to be sharing information in some way, whereas actors that
bounce around for a while don’t, especially when you can see that they are each
making the same mistakes.

One interesting scenario that comes up often enough is where multiple actors are
sharing TTPs via some forum, and racing each other to “find a fix” to the suspension
problem. They may each be looking for the glory of fixing the problem, and hence not
sharing. At least not until they have found it.

If you can find the forum, or the how-to, or whatever, and watch the fun, you can
easily stay ahead of them by updating your footprints and detection logic before they
finish implementing a new TTP. And the bonus here is that you can do it with little
effort. Less effort than it takes the actor to change their TTP.

Do it right, and you can cause a lot of “banging of chest” and “gnashing of teeth”.

Retooling

When:
● We kick an actor off the platform
● Have both simple and complex

footprints configured
● Automatically detect their return and

kick them off again
● Keep adding indicators to footprints

as needed
Then:
● They can go elsewhere
● They can completely retool and try

again

Retooling:
● Change in programming language
● Changes in signup info or other

metadata
● Change in target/victim
● Deploy a new kit
● Obfuscate/encrypt code
● Spread out over multiple providers

● When we have all the tooling in place,
● when pivot detection is working as designed, and
● When we manage to stop actors before they have even begun,

then they have only two choices: Go somewhere else, or retool.

When they retool they change significant portions of their

● apps,
● code,
● infrastructure, and
● behaviours

that make them indistinguishable from a new actor. This used to bother us quite a bit,
but then it occurred to us, “So what?”

The only reason that we could think of that we needed to tie two actors together was
for law enforcement purposes, so that we could collect more evidence. But this does
not apply to all actors, and is kind of rare.

So, retooled actors end up being identified as new actors just by the nature of how
our hunt works.

And because we are pretty thorough in our indicator collection, sometimes we still find
evidence that a new actor is in fact a returning actor that has retooled.

********************* extra info **************************

When we kick an actor off the platform, and have all the rules in place to detect their
return and automatically kick them off again… when we are successfully keeping up
with footprint management … and even successfully predicting what they will do

next…

Then the only avenue they have is to go elsewhere, or retool.

Retooling usually means starting from scratch, and rebuilding whatever infrastructure
they were running in some sort of novel way. We have seen changes in language,
changes in how they sign up to the platform, changes in targets, attempts at
obfuscation or encryption of code, deployments of new kits, or spreading their kit
across multiple services providers.

It can be really difficult to tell if a new “badness” detected on the platform is truly new,
or if it is previous actor that has retooled. And this was bothersome for a while, until
we realised that it does not matter all that much. All that really matters is, “Is there a
new footprint that needs to be deployed?”

We can go back to our hunt loop, follow the steps, and build a new footprint under a
new actor profile, and worry about tying that to old actors later.

Sometimes the very process will lead us to evidence showing that it is indeed the
same actor retooled.

Things like:

● A change in programming language, but with the same naming convention
and code profile.

● A change in credit card, but still the same credit card provider.
● Obfuscation or encryption of code? This one is odd, because the technique

sticks out like a sore thumb, it does the opposite of hiding. The code still has
the same communications profile.

● Spreading out over multiple providers? Although this shrinks their footprint on
our system, once we have latched onto the communication profile, we can
usually tell if it is the same actor or not.

We do ultimately want to know if it is the same actor, because it will help us to devalue
loot, and demotivate them, and in the case of pursuing legal action, provide more
evidence.

Actor Reactions

Swearing and cursing at us
● We get called all sorts of fun names usually in the app naming or email username fields.

Socially engineering support
● Sometimes they try and get their access back by trying to SE the support team. Usually when they

have lost access to C&C or their loot

Selling their kits and their access / Convincing others to run stuff
● Sometimes they go about convincing others to install their stuff. Not sure if it is franchising, sale, or

straight up giving stuff away for “internet points”

Actor reactions are fun.

Some actors call us names.

Others open tickets and try to socially engineer support to get their loot or
infrastructure back.

Others, maybe seeing the writing on the wall, realise they have squeezed out what
they can and got about convincing other to run their kits. “Look what I did and you can
do it too!” It’s like they have found their own replacement for that actor’s footprint.

********************* extra info **************************

Actor Reactions.

Other than trying again, some of the reactions from actors we have shut down are
somewhat interesting.

Sometimes, when they come back and create new accounts or new apps, they will
call us all sorts of nasty names. They will also occasionally do it in forums on the
Internet. We love this; their tears sustain us. But my personal favourite is when they
complain to the creator of the app and blame them for getting suspended.

Sometimes they try and convince others to run their stuff. Someone else creates an
account, tries to do exactly the same thing as a known actor, and is detected long
after that actor has been kicked off the platform and gone dormant. They can usually
be spotted because they are sloppier in their opsec, and less persistent than the
previous actor.

Sometimes they open a ticket, claiming everything from ignorance to outright
threatening us telling us that we must reinstate them or their app. The ones that stick
out to me are those that are blatantly and openly phishing and honestly don’t think
they are doing anything wrong. At least they seem honest. They are still not getting
their account back.

I need to give a shout-out to our support team, they are an absolutely fantastic crew.

Devaluing Loot

Other things to do

● Getting passwords reset
● Getting credit cards flagged and / or reissued
● Choking CPU so crypto-mining can only make dust
● Make them spend more time rebuilding their C2 than it is worth

Harden the platform against abuse

That last business category, “wanting the problem to go away” can be achieved by
devaluing loot.

If we devalue the actor’s loot

● by making it worthless after the fact, like reporting stolen credentials
(responsibly),

● or making “it not worth the effort”, like limiting CPU usage so that an actor
can’t cryptomine anything of value,

Then it is more likely they WONT return.

We have done this, but so far with mixed success.

This is where hardening the platform come into play. Since we are already studying
how the actors act, and how the platform reacts, we recommend fixes to make the
platform less hospitable to abuse. We “Push Left”.

Find me later and I’ll tell you a fun story from a previous job about devaluing a
phisher’s loot.

********************* extra info **************************

In the category of “what the business really wants” : “Wanting the problem to go
away”, one strategy is the devaluation of loot.

Loot began as a slang term for stolen credentials. We expanded the term to also
mean anything gained through abuse, malice, and crime. This allowed us to include
the value of any cryptocurrency, the access to and control of malware (also known as
command and control infrastructure), and credit card information to name a few.

One of the things that seems intuitively correct, is that if we can devalue loot
effectively, then the actor will be less likely to return. It seems that the trick is to make
certain that the actor knows you are doing it, or are willing to do it.

We have done this with mixed success. Find me later, and I’ll tell you a fun story from
a previous job.

This also ties into hardening the platform against abuse. There are measures that can
and should be put into place that can ruin the ROI for abuse, but as you can imagine,
it will be different per abuse category, and some are easier to implement while others
involve effort.

Demotivation

When actors test our defences:

● They test one thing at a time, while
isolating for variables.

● They form a hypothesis and then they test
to see if that hypothesis is correct.

● They research
● And in some cases, they talk to each other

So we:

● Provide different results while they are
testing

● Change up our timing so it is not easy to
tell which change belongs to which
behaviour

● Occasionally seed misinformation in the
right circles

● Occasionally seed correct information in
the “wrong” circles

Break spirits, not code

On top of devaluation of loot, of killing off ROI, there is an even wider goal of
demotivation.

If we really want to keep the actor away, we should work towards making it so that
they don’t want to come back.

All of the things we have talked about adds friction to abusive actions ... the
monetization of “Free”. And since our ultimate goals are to make abuse less valuable
AND less desirable without affecting legit customers, we need to break the spirits of
the bad actors.

Break spirits, not code!

<pause>

These two section contained a lot of information. There are more in the notes of these
slides. Feel free to download and read them. I hope that there are things in these two
sections that resonate with you, and that may help you define what you want or need
to do.

But enough of all this philosophy, let’s go back to Spencer with some show and tell!

********************* extra info **************************

A tiny bit of misinformation in the right places can go a long way. It keeps them
guessing. Do it right and it can be quite frustrating. We know because some come
back and swear at us.

Also in the category of “what the business really wants” : “Wanting the problem to go
away” ... we started thinking about what that would take.

One thing became very obvious, very quickly, is pursuing demotivation strategies.

When an actor is testing our defences
● They test one thing at a time, while isolating for variables.
● They form a hypothesis and then they test to see if that hypothesis is correct.
● They research
● And in some cases, they talk to each other

So we
● Provide different results while they are testing, poisoning their results
● Change up our timing so it is not easy to tell which change belongs to which

behaviour
● Occasionally seed misinformation in the right places.
● Occasionally seed correct information like “OMGWTF, every time I try to run

this code on Heroku, I get suspended!”
● And other things….

Demotivation is on top of devaluation of loot and killing ROI. Obviously if the only
motivation is the ROI, then reducing that will already be demotivating.

This take a lot of time, study and resources to pull off successfully, so we reserve this
strategy for only the most persistent of actors. It is difficult to do this and still claim that
we are reducing toil. But as we get better, through relentless incrementalism, we
should be able to even reduce that.

Break Spirits Not Code!

Enough of all this philosophy, let’s go back to Spencer for a little show and tell.

SHOW & TELL

Cryptocurrency Miner

Coins from the cloud

Persistent financially motivated actor

Abnormal user activity
● Bulk account creation
● Started with 100 identical apps

The first actor is a huge fan of decentralized currency, loves blockchains and hates
electric bills.

They appeared on our radar by spinning up 100 apps per user account across
multiple accounts from free email providers.
(A user account is limited to running five apps until they verify their account by adding
a payment method, after that, 100 apps is the max.)

So... new accounts immediately adding a payment method and spinning up 100
apps...
THAT’S NOT NORMAL. (internal indicators!)
This is really not exposing any detection logic. That activity stands out and gets on our
radar fast.

And to top things off, fraudulent credit cards were used to verify each account AND all
of the apps were identical.

Cryptocurrency Miner

So we inspected one of the apps and saw that they were running a Tor hidden service
accessible through ssh.

Here’s a screenshot of the script that would run once their app was deployed.

Cryptocurrency Miner

We suspended the accounts and very soon, the actor was back and the cat and
mouse began.

One clear sign that “it’s on” with a bad actor is when they start getting cute with their
app names.

Obviously, this is the G-Rated end of the spectrum and didn’t really hurt our feelings.

Cryptocurrency Miner

After a short while the code changed and we saw what they were really after - mining
Monero.

The apps were mining with libxmr and sending all traffic through Tor.
To maximize profit, each app was pegging CPU resources. Fantastic.

After seeing this, we believe that the initial wave of apps was part of some capabilities
testing. Some real live bad actor devops.

Cryptocurrency Miner

After a short while the code changed and we saw what they were really after - mining
Monero.

The apps were mining with libxmr and sending all traffic through Tor. (refer to the
previous slide when looking at this script, which was in index.js)
To maximize profit, each app was pegging CPU resources. Fantastic.

After seeing this, we believe that the initial wave of apps was part of some capabilities
testing. Some real live bad actor devops.

Cryptocurrency Miner

Unzip binaries when app starts

Decrypt gpg payload (custom name/passphrase per app)

We suspended the accounts and the actor would pivot, each time trying to minimize
their footprint to avoid detection.
The top image is from an app that packed the Tor and mining binaries in a zip file
which was unzipped with a unique passphrase at deployment.

The bottom image is from a later pivot, this time using gpg encrypted payloads with
unique names and unique passphrases.
Decrypt, unpack and mine, sending everything through Tor.

Cryptocurrency Miner

Noisy neighbor

Reached automated detection and response limits

Unsustainable toil

This type of activity at this scale threatened the performance of some of the shared
resources. Other customers were impacted due to this noisy neighbor situation.

We had to stay on top of this actor, but they were automating _their_ operations and
getting faster, mostly during our off hours.

Playing never ending whack-a-mole was unsustainable and a path toward team burn
out.

Cryptocurrency Miner

Constellation of indicators to form TTP profile
● Signup patterns
● App patterns

5/5 hits = automatic suspension

3/5 hits = likely pivot

2/5 hits = logged

So we took a step back and looked at all of the data provided from this actor’s use of
the platform.

We were able to identify five indicators to form a TTP footprint. This included
indicators observed before code was even deployed, like signing up from

- a Tor exit node
- from a particular free email provider
- and using an email address that fit a naming pattern.

That’s three right there and no code has been deployed yet!

A system was developed to gather these indicators and compare against the TTP
footprint. If 5 out of 5 were present, automatically suspend.
If 3 or 4 out of five, it was likely a pivot and would be manually reviewed to see if the
footprint needed updating.

This worked extremely well. We were now able to detect the actor very early and
reduce their success mining. Soon after this, we stopped seeing this campaign for a
while. They did return a few times and were quickly stopped even though they were
using entirely different kits.

Now, an important note here, from the more recent attempts, the apps checked to see
what kind of environment they were on, like if GPUs were available, which is not our
platform. This kit appeared to be tooled for multiple platforms so they may be
someone else’s problem now. Something to consider.

Phishing

Let’s look at another persistent actor.

Hopefully it’s clear that fighting phishing campaigns is a challenge on a platform like
Heroku. Phishing infrastructure gets reported to us either directly by wonderful people
on the Internet or through third party services that we subscribe to. The
“infrastructure” may be landing pages or just backend functionality or a full kit that
may include message distribution.

Most of the time, we’ll perform a quick investigation to confirm phishing and suspend
the user from the platform and then get back to our queue.
However, if the same phish gets identified again, the actor will be tracked as a
campaign, like Allan mentioned earlier.

Phishing

This particular actor was targeting customers of an insurance provider.

When inspecting the app, we see the following directory structure for the slug, which
contains message sending capabilities through third party messaging addons. This
may have been for distribution or handling of the loot.

Phishing

We suspended the accounts and hunted for more and found an entirely different app
used for the same campaign:

This time it was a Javascript React app

Phishing

Which had some added functionality, like now they were after credit card information
as well as credentials.

Phishing

This image shows the collection of credit card number, expiration date and cvv in
French.

Phishing

We developed a TTP footprint for this actor and continued to update the rules to apply
friction.
They were very persistent and continued to pivot.

This one pivot started using a search engine addon to handle loot from their
campaign as well as still having the option to mail it out.

Phishing

Here’s a look at information they were after

We also noticed that they were distributing their efforts across multiple service
providers.

Phishing

The next big shift was another kit, although it does not appear to have been created
by this actor, but used in the same campaign.
The root of the app looks like this - with obvious indicators like DROVN003

Phishing

And in the index.js file, they really didn’t try to hide what they were up to.

As the cat and mouse continued, we noticed that this actor was further spreading out
across multiple service providers -
The front end on one provider, the backend on ours and the distribution through
another.

Phishing

Demotivate
● Continuously update detection and response rules
● Devalue loot
● Communicate with service providers

Where are they now?
● Likely sold kit - we continue to see automated suspensions
● Platform with less friction

We want to break this bad actor’s spirit. Not help them improve their coding skills as
we go back and forth. Typically, being in proximity to sensitive information like what
this campaign was gathering is like playing hot potato with toxic waste.

Unless you’re the bad actor.
Then it has value.
But it’s only valuable if the information is valid.

Considering this, we did our best to get the information into the appropriate hands so
password and payment information could be reset and nullified.

Also, we found ways to notify the other service providers that were used in this
campaign which put even more pressure on this actor.

These two things disrupted their operations enough that it appears to have pushed
them from the platform. But now they’re someone else’s problem.

LESSONS LEARNED

A Guiding Philosophy

Relentless Incrementalism
● Fix one thing at a time, fix it well. (Move Fast And Fix Things)

Non-repetition
● Never see the same abuse twice.

Hyper-Automation
● Remove toil to enable the above two.

We’ve identified three guiding philosophies for our team.

The first, relentless incrementalism - break complex problems into manageable tasks
so that each is a step toward the final solution.
Move Fast and Fix Things. Think agile framework!

Then, Non-Repetition. We never want to see the same abuse pattern twice. Nobody
wants to be a button pushing drone. This keeps the job interesting! Although as you
may imagine, this is much easier said than done. This is the closest we get to
prevention.

And third, Hyper-Automation. Every click counts toward toil. Having tools that talk to
tools, including the ticketing system, enables hyper-automation and reduces toil
without losing accuracy.
Automation can even be quickly putting the right information in front of the analyst.
The idea is to create more than just detection rules - imagine whole detection chains.

Serve the Business

Break silos - know teams, their data, their alerts
● More indicators
● Improved situational awareness
● Provide feedback to business

“Push left”
● Harden platform
● Increase cost for abusers

Customer support focused
● Everyone’s a customer until they’re not

Know the business you are serving. It’s said a lot, but we’re not here for the sake of
technology or security or playing whack-a-mole, even though it’s a lot of fun.
We’re here to serve the business.

Learning about the different teams across the organization, their data, their language,
what kind of alerts they have enabled, what keeps them up at night.

As we understand the priorities of other teams, we can help remove some of their
pain points caused by abuse. It gives us increased situational awareness and that in
turn allows us to spot abuse much earlier.

This helps all of us succeed.

Most importantly though, our collaboration provides a channel to let the right people
know about the gaps in business logic.
We have valuable insight which we use to “push left” and harden the platform.

This results in a platform that's “too much trouble” to abuse by the bad actors.

This works for us… But does this all really solve abuse?

The unintended monetization of anything

Is there a more accurate definition that covers misuse, malice, or outright crime?

How are your services being abused?

What is Abuse?

Bad actors try to use Heroku for a variety of abuse scenarios, this is only ONE view of
a much wider problem.

Have you had a scam phone call during dinner?
OR have you purchased a product based on phony reviews
OR were you unable to get a grocery store pickup time because somebody
reserved all of the slots to resell?

We’ve listed what we don’t allow in our AUP, but that’s a limited list when considering
that abuse is “the unintended monetization of anything”.

Now, we are barely scratching the surface. And this definition is just an initial attempt.

Maybe there’s a more accurate definition? A more encompassing one? A more
appropriate one?

Think about your free services or any service that your company offers. How are
those being abused? How do they fit into the larger picture of abuse? What are you
doing about that?

Abuse is a zero-sum game, let’s change that

Demotivate - quickly devalue loot

Conversations to have
● How do you define abuse?
● What do you do with malicious customers?
● How do you protect the good while sanctioning the bad?
● How do you devalue loot?
● Is the Internet worth saving?

Upcoming Cloud Abuse ISAC under the Cloud Security Alliance (to start)

Serve the Internet

We want to take what we’ve discussed to the greater internet.

Right now, abuse feels like a zero-sum game.
We push bad actors from our platform and they take the path of least resistance to the
next or distribute their workflow across other service providers.

Abuse is a people problem. Removing the actor’s motivation will be much more
effective than continuously actioning what gets reported. But it requires more.

There are some challenging questions to work through like these loaded questions:
- How do you define abuse?
- What do you do with malicious customers?
- How do you protect the good customers while sanctioning the bad?
- How do you devalue loot when it’s treated as a customer’s private data?
- Is the Internet worth saving?

We are co-founding a Cloud Abuse ISAC with the Cloud Security Alliance to have
these difficult conversations - more than just sharing TTPs and stolen credentials. If
you’re already a member, you’re already invited.

The sharing groups and backchannels that exist today, although excelling in their own

regard are hobbled by politics, procedures and business policy. Let’s take a deeper
look, and see if we can make this better.

Thank You
Allan Stojanovic, @allansto
Spencer Cureton, @secureton

heroku-abuse@salesforce.com

