Hunting Invisible Salamanders:
Cryptographic (in)Security with Attacker-Controlled Keys

Paul Grubbs

Cornell Tech, New York University, University of Michigan

About Me

Now: PhD student in . : Next fall: starting

. This fall: starting o
Computer Science at ostdoc at NYU as junior professor
Cornell’s NYC campus P at Michigan EECS

This Talk

Intended audience: those who design, implement, and use cryptography.
Others will find talk interesting and enjoyable but may lack some context.

This symbol: if you don’t understand
all the details, don’t worry about it!

This is a talk about cryptography.
Some of the slides involve math.

Authenticated Encryption

@ ‘ Cat Picture ‘ @
Do

Q(:%??? -~

Encrypt message with(~— using

authenticated encryption (AE)
(Galois/Counter Mode, Chacha20/Poly1305) If key is random + hidden:

AE hides cat pictures,
prevents modifications

Agree on random key ¢ -~

Core of protocols
like TLS, IPSec, SSH

New Settings, New Needs

‘ Attacker Message ‘ @

6 =

Attacker chooses key(s)@=

Encrypt message with @== using

authenticated encryption (AE) . :
(Galois/Counter Mode, Chacha20/Poly1305) Key isn’t random + hidden!

What security do we need?

Increasingly important setting for AE: What security do we expect?

Password-Based Encryption/PAKE
E2EE Group Messaging
Abuse Reporting in Encrypted Messaging

Overview

Describe “attacker-controlled keys” setting + examples,
explain committing security property AE needs

Many widely-used AE schemes are not committing:
can break for GCM, ChaCha20/Poly1305, others

Attacks resulting from non-committing AE:

- Inconsistent plaintexts in multi-receiver encryption
- Invisible salamanders in Facebook’s message franking
- Key recovery via partitioning oracle attacks

Based on these research papers:
Message Franking via Committing Authenticated Encryption
G., Lu, Ristenpart. IACR CRYPTO17. https://eprint.iacr.org/2017/664
Fast Message Franking: From Invisible Salamanders to Encryptment
Dodis, G., Ristenpart, Woodage. IACR CRYPTO18. https://eprint.iacr.org/2019/016
Partitioning Oracle Attacks
Len, G., Ristenpart. In submission.

https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2019/016

Overview

Describe “attacker-controlled keys” setting + examples,
explain committing security property AE needs

Many widely-used AE schemes are not committing:
can break for GCM, ChaCha20/Poly1305, others

Attacks resulting from non-committing AE:

- Inconsistent plaintexts in multi-receiver encryption
- Invisible salamanders in Facebook’s message franking
- Key recovery via partitioning oracle attacks

Based on these research papers:
Message Franking via Committing Authenticated Encryption
G., Lu, Ristenpart. IACR CRYPTO17. https://eprint.iacr.org/2017/664
Fast Message Franking: From Invisible Salamanders to Encryptment
Dodis, G., Ristenpart, Woodage. IACR CRYPTO18. https://eprint.iacr.org/2019/016
Partitioning Oracle Attacks
Len, G., Ristenpart. In submission.

https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2019/016

Attacker-Controlled Keys

Do

0~ is hidden, has
lots of randomness

b =

Re

Try to learn message or
change decryption output

*

Message and encryption key
both chosen by adversary

Example: Password-based AE

\%O
Guess

€ Decryption succeeded!

They’re
using
passwordl!

an’t decrypt! @

:
[]

A

C

If attacker doesn’t

Brute-force feasible if key is not very random know decryption k?V,
(e.g. password/PIN) or if side channel leaks key bits can learn using (online)

brute-force attack

Example: Reporting Plaintexts

Can’t let the
auditor see
records...

Attacker chooses encryption
and decryption key: tries to
lie about ciphertext contents

6 ==

@
@ﬂ\ AE.Decrypt(()-, [EmidinReods)

Auditor

—

Decrypt outputs something
other than fraudulent records

10

Committing Security for AE

Useful to imagine AE as a lockbox

Intuition holds for hidden random key:

e (Can’tsee inside (confidentiality)
 (Can’t change contents (integrity)

No matter the key, only one thing
can come out when it’s unlocked

11

Committing Security for AE

Useful to imagine AE as a lockbox

Intuition holds for hidden random key: Committing security binds attacker
Can’t see inside (confidentiality) to a Slngle AE decryptlon’ prevents
Can’t change contents (integrity)

invisible salamanders in ciphertexts

Without this, AE lockboxes
could unlock many ways...

’—
@

12

R

6 ==

R ([Y ormivivg Y
f\ﬁ/z}il: AE.Decrypt((=, <’)
Auditor Decrypt F——

report salamanders

If AE is committing, attacker
can’t lie about plaintext by
choosing different key

13

Overview

Describe “attacker-controlled keys” setting + examples,
explain committing security property AE needs

Many widely-used AE schemes are not committing:
can break for GCM, ChaCha20/Poly1305, others

Attacks resulting from non-committing AE:

- Inconsistent plaintexts in multi-receiver encryption
- Invisible salamanders in Facebook’s message franking
- Key recovery via partitioning oracle attacks

Based on these research papers:
Message Franking via Committing Authenticated Encryption
G., Lu, Ristenpart. IACR CRYPTO17. https://eprint.iacr.org/2017/664
Fast Message Franking: From Invisible Salamanders to Encryptment
Dodis, G., Ristenpart, Woodage. IACR CRYPTO18. https://eprint.iacr.org/2019/016
Partitioning Oracle Attacks
Len, G., Ristenpart. In submission.

14

https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2019/016

Invisible Salamanders for CTR Mode

... Piaintext
D
Do Pad
Derive Pad y
L v | Ciphertext
Derive Pad’ b
@

Galois/Counter Mode (GCM)

GCM is a fast, modern AE.
NIST/IEEE/ISO standard

Uses AES-CTR + message authentication
code (MAC) to prevent tampering

Decryption recomputes, checks tag,
fails if tags do not match

To get invisible salamanders for GCM,
need to find [Liessee] with same MAC

output | = |for ¢~ and @r==

Input

Output

Input

16

Colliding GCM’s MAC /\

MAC is polynomial evaluation + XOR.
Fast but not collision-resistant (cf. SHA-256)

1. Split ciphertext into blocks (coefficients)
2. Compute hash point (H) and pad (Pad)

3. Evaluate polynomial at H, then XOR Pad
(‘len’ is encoded ciphertext length)

17

Colliding GCM’s MAC /\

|Tag is a “simple” algebraic function of ciphertext:
solve one equation to collide for two keys

Choose any| v
For keyc , derive ,

For key @=, derive H,, Pad,

Set tag equations equal, solve for C;:

S

C,* ?+len* +

— *k 2 k

- + + o :
C;*H,*+len*H, + Pad, Not true for collision-resistant

5. Let [Message |be C,, recompute Tog hashes like SHA-256
6. Output |V

- C,*(H 2+ H,2)=len*(+H,) + + Pad, 2x =6 One equation,
¥ = 3 one unknown!

C,=[len*(, +H,) + + Pad,]*(".2+ H,?)?

18

From Two Keys to Many /\

Colliding GCM’s MAC on two keys is pretty easy.
Can even collide many (>>2) keys: use interpolation

[ym+1 2]
H] .. H:

[Cl]
HMY . HEZ| LGy
_ I omd

As many variables as ciphertext blocks: ~ O"© ee:'ll:;t'on
can solve when m = k in O(k2) time P y
C;*H 2+ len*H + = C;*H,%+ len*H, + Pad, —~

C,*(H 2+ H,?)=len*(. + H,) + + Pad,

Tag + Pad; + lens x Hy

Tag + Pad, + lens * Hy

J

Polynomial MACs are very common:

Poly1305 (libsodium, NaCL), GCM-SIV, etc.

C,=[len*(-. +H,) + +Pad,]*(H 2+ HAT)

19

</math>

1. Widely-used AE schemes are not committing
(though they are fine for use in TLS/IPSec/SSH!)

2. Crafting invisible salamanders for them is easy

3. One ciphertext can have 100,000s+ invisible salamanders
(E.g., my colleague generated one with 131,072 correct decryptions)

Overview

Describe “attacker-controlled keys” setting + examples,
explain committing security property AE needs

Many widely-used AE schemes are not committing:
can break for GCM, ChaCha20/Poly1305, others

Attacks resulting from non-committing AE:

- Inconsistent plaintexts in multi-receiver encryption
- Invisible salamanders in Facebook’s message franking
- Key recovery via partitioning oracle attacks

Based on these research papers:
Message Franking via Committing Authenticated Encryption
G., Lu, Ristenpart. IACR CRYPTO17. https://eprint.iacr.org/2017/664
Fast Message Franking: From Invisible Salamanders to Encryptment
Dodis, G., Ristenpart, Woodage. IACR CRYPTO18. https://eprint.iacr.org/2019/016
Partitioning Oracle Attacks
Len, G., Ristenpart. In submission.

21

https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2019/016

Multi-Receiver Encryption

In group messaging applications, senders
must encrypt and send messages to group

Keys shared pairwise; only one ciphertext

22

Multi-Receiver Encryption

In group messaging applications, senders
must encrypt and send messages to group

Keys shared pairwise; only one ciphertext

Used by Whatsapp, Keybase, others

v

Cat Picture

Cat Picture

&

Cat Picture

N @

Multi-Receiver Encryption

In group messaging applications, senders

must encrypt and send messages to group Theoretical attack. Unclear if

these are vulnerable (homework!)

Keys shared pairwise; only one ciphertext

Used by Whatsapp, Keybase, others

If encryption is not committing: =
send different keys, ciphertext
with invisible salamander

Different receivers see
different messages!

24

Abuse Reporting for pted Messaging

1%S# !

=

[Facebook 2016]:
Reporting via ad-hoc proof
of contents: message franking

_ They said 1%5#!

=

Service can’t tell if “1%S#!” was sent.
Need secure reporting of message content

Attack: use of non-committing
encryption means any sender could
have sent unreportable content

1 19%S#!

Facebook’s Message Franking Protocol

19%S# ! @
>

= 3. P=

Message franking:
1. GCM Encrypt w{iender-chosen|per-message key

" 0
K - 2. Facebook stores, forwards ciphertexts
o 3. Report all recent keys, FB

- decrypts unique| ciphertexts

e

26

Evading Mes Franking

3. receiver
sees both

2. Send

twice with -/ @ 4. Only the innocuous

image appears in
report to Facebook!

1. Craft GeMm ciphertext : Message franking:
1. Encrypt w/sender-chosen per-message key

2. Facebook stores, forwards ciphertexts
3. Report all recent keys, FB
decryptsjuniqueciphertexts

 Decrypts under¢ - to innocuous image
* Decrypts under @== to abusive image

i 27

Crafting the Ciphertext

Proof of concept: ciphertext which decrypts to
valid JPEG under @==and valid BMP under(—

Decrypt Y 43 | CLo,CLy JPEG data (JPEG)
with @r==

Decrypt ‘

with 0 e 424d | L, L, | o000 BMP data (BMP)

1| 2 3

Abusive JPEG receiver sees, Innocuous BMP

1. Image headers

but not in abuse report in abuse report

]
L N7 £ |
R L 74 R 4 i
= ‘-’ S N A f”' 3
T)
» ks
o
i
Ll
- K

2. BMP length and
comment header
3. Comment length

Partitioning Oracles

\i% Can’t decrypt! @

Guess

) passwiore : Decryption succeeded!

Use of non-committing AE with passwords
can lead to partitioning oracles: speedup
for online brute-force key recovery for AE

29

Partitioning Oracles

o 5

Decryption succeeded!
w—

Check two guesses with one ciphertext

Use of non-committing AE with passwords Found partitioning oracle attacks on:
can lead to partitioning oracles: speedup e Shadowsocks UDP proxying
for online brute-force key recovery for AE * Incorrect OPAQUE prototypes

Latent vulnerabilities elsewhere

Worst-case exponential reduction in guesses!
E.g., one million passwords = only 20 guesses

Preventing Invisible Salamanders

Committing AE schemes do exist!
E.g., CTR-then-HMAC (done correctly)

Not standardized, nor widely available in libraries
(also can be less efficient than non-committing AE)

Needed only if attacker-controlled
keys are part of threat model

31

Conclusion

Thanks for
listening! Any
guestions?

Describe “attacker-controlled keys” setting + examples,
explain committing security property AE needs

Many widely-used AE schemes are not committing:
can break for GCM, ChaCha20/Poly1305, others

Attacks resulting from non-committing AE:
- Inconsistent plaintexts in multi-receiver encryption

- Invisible salamanders in Facebook’s message franking
- Key recovery via partitioning oracle attacks

Special thanks to all my coauthors,
and Hugo Krawczyk, Katriel Cohn-
Gordon, and BlackHat organizers

Based on these research papers:
Message Franking via Committing Authenticated Encryption
G., Lu, Ristenpart. IACR CRYPTO17. https://eprint.iacr.org/2017/664
Fast Message Franking: From Invisible Salamanders to Encryptment
Dodis, G., Ristenpart, Woodage. IACR CRYPTO18. https://eprint.iacr.org/2019/016
Partitioning Oracle Attacks
Len, G., Ristenpart. In submission.

32

https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2019/016

33

