
Beyond Root
Custom Firmware For Embedded Mobile

Chipsets

Biography

Christopher Wade

Security Consultant at Pen Test Partners

@Iskuri1

https://github.com/Iskuri

https://www.pentestpartners.com

Project Origin

Smartphones contain a huge amount of closed firmware

This limits the capabilities of even rooted devices

By breaking firmware protections and reverse engineering embedded chipsets,
smartphones can be used as attack tools

Wi-Fi Monitor Mode

Many smartphones support Wi-Fi Monitor Mode

Activated in Snapdragon chipsets via:

echo 4 > /sys/module/wlan/parameters/con_mode

Broadcom chipsets can utilise custom firmware

Well known, implemented in modern mobile testing tools

USB Device Emulation

Linux Kernel supports emulating USB devices via
GadgetFS

This can be used to emulate any standard USB device

Rarely used, but very effective

NFC On Android – Standard Functionality

NFC on Android is restricted to very specific features:

Generic Reader Modes

Mobile Payments

NDEF Communication

Host-Card Emulation

NFC On Android – Unsupported Functionality

Desired features for an NFC attack tool:

Reader Based Attacks

Raw Tag Emulation

Passive Sniffing

Target Device

Samsung S6 - SM-G920F

Older smartphone – readily available

Allows for OEM unlocking and deployment of Custom ROMs

Found to use a proprietary Samsung Semiconductor NFC
Controller in non-US versions

NFC Controller – S3FWRN5

Custom chip developed by Samsung Semiconductor

Utilised in non-US Samsung S6, and Note 4 devices

Boasts the ability to securely update firmware

Utilises ARM SC000 SecurCore architecture

Communicated with via I2C and GPIO on phone

Communication abstracted to device driver: /dev/sec-nfc

NCI Communication

NFC chips communicate via a standard protocol

This abstracts and restricts NFC functionality, to simplify the process

Send and receive packets consist of the following:

GID – Byte containing identifier of functionality group (Core, RF, Vendor Specific)

OID – Byte containing identifier of specific operation

Length – Byte containing the length of parameters

Payload – Data related to the operation

NCI – Non Standard Functionality

Vendor GID (0xf) allows for any non-standard functionality to be implemented

Vendor operations from 0x00-0xff can be enumerated by checking error responses

Vendor defined operations are most likely to contain actionable weaknesses

In addition, configuration and mode operations allow for non-standard functionality

S3FWRN5 – Firmware Updates

S3FWRN5 chip supports firmware updates via I2C

Firmware updates are never implemented via NCI, a custom bootloader is used

Loaded from firmware files are found in vendor partition

Analysis Of Firmware Update Protocol

Update traces can be pulled from Logcat

Utilises four byte header followed by payload:

0x00: Command type

0x01: Command

0x02-0x03: Payload size

0x04-0x100: Payload data

0x80 is added to first byte on alternating sends

S3FWRN5 Firmware File Analysis

Basic format: metadata, signature, and full firmware

Payload provides size information about internal memory of device

Firmware Update Files – Identifying Architecture

Simple mnemonics can be used to identify chip
architectures

Thumb’s “BX LR” operation translates in hex to
“0x70 0x47”, and in ASCII to “pG”

A high number of instances of this imply Thumb
code in use

This was identified in the firmware

Implementing Firmware Updates

Dump the Firmware Update protocol command
sequence

Send dumped IOCTL and commands in
sequence

Compare received values for each command

Header files from Open Source Kernel drivers
can aid this: “sec_nfc.h”

Firmware Update Protocol and Sequence

Utilises numbered commands for firmware updates:

0: Reset

1: Boot Info

2: Begin Update

4: Update Sector

5: Complete Update

A numbered command is missing from the sequence

This heavily implied additional hidden commands

Identifying Hidden Bootloader Commands

Commands only work at certain stages of update process

Chip returns error 2 if command is not valid at that stage

Chip returns error 9 if the payload is too small

This can be brute forced through the firmware update protocol

Command 3 was found to send 512-byte blocks for updates

A hidden command 6 was also noted

Hidden Bootloader Command 6

Takes eight bytes of parameters, two 32-bit values

Individual bits were set in parameters and responses
were checked

Testing showed this allowed for reading of arbitrary
memory – address and size

This allows for dumping of RAM, the firmware and the
secure bootloader

Dumping The Bootloader

Memory can be stitched from hidden
command 6

This showed a standard Cortex-M firmware
format starting at address 0x00000000 (vector
table followed by code), with a size of 8KB

This allowed for static analysis and emulation

The firmware contained no strings, drastically
increasing time to analyse

Bootloader Artefacts

On start-up, the bootloader checks for a magic
number at address 0x3000:

0x5AF00FA5

This magic number is only written if the
signature is valid during upgrade

Attempts to manually write the value were
unsuccessful – first block must start with
0xFFFFFFFF

Bootloader Artefacts

Bootloader commands can be swiftly identified for analysis

Bootloader Artefacts

RSA Public Key can be found in memory

0x80 high entropy bytes followed by “00 01 00 01” – 65537 as exponent

Identifying Memory Corruption

Fuzzing any embedded firmware could irreparably damage the chip

Only one phone was available for testing

Debugging and analysis via I2C would be difficult

Emulation of the bootloader was attempted

Emulating Embedded Firmware With Unicorn Engine

Library for emulating architectures and hooking all functionality

Can define architecture, memory mapping, and hardware integration

Emulating Embedded Firmware With Unicorn Engine

Bootloader was loaded at address 0x00000000

Program Counter was set to value in reset vector (0x000002BD)

Memory was mapped for flash, RAM and hardware registers

Emulating Embedded Firmware With Unicorn Engine

The firmware was allowed to run, until it hit a hardware
register

This was a read at address 0x40022030

The disassembly showed specific bits were checked

This implied it was a status register for I2C

The read was overridden to return random data

Emulating Embedded Firmware With Unicorn Engine

Next, the firmware continually read bytes from a
single address - 0x40022038

This implied it was the I2C FIFO buffer

Firmware update commands were sent via this
register

Responses to commands were sent to address
0x40022034

This constituted full emulation of the I2C
communication

Memory Corruption Opportunities

Randomised fuzzing would now be viable

Commands have 16-bit sizes – larger than entire contents of RAM

Some commands send additional data in chunks

Size of hash and signature are defined in initialisation command

Bypassing Signature Checks

Manipulation of the hash and signature sizes allowed for more data to be sent in chunks

Analysis in Unicorn showed that this caused out of bounds memory access

Further analysis showed that this overwrote the stack

Bypassing Signature Checks

Overwriting the stack allowed for
manipulation of Program Counter

SC000 chipsets cannot execute from RAM

Stack was too small for complex ROP exploits

Program Counter was set to just after
signature check:

0x016d (PC + 1 for Thumb code)

Bypassing Signature Checks

The exploit was performed on the physical
chip

This booted the main firmware without
power cycling

The firmware was started and could be
run, bypassing signature checking

This would allow for custom firmware to be
developed

The vulnerability was disclosed to Samsung

Bypassing Signature Checks – Remediation Methods

Method 1:

Patch the bootloader from the main firmware, removing the buffer overflow

This could brick the chip, as the core bootloader would be overwritten

Method 2:

Patch the Kernel to disallow large hashes and signatures

Trivially bypassed by kernel modification or direct I2C access

Further Research - Samsung Semiconductor NFC Chips

Multiple NFC chips outlined on company website

Samsung Semiconductor NFC Chips – Identification In Phones

Device specifications do not always contain NFC
chipsets

It is more accurate to identify the firmware
filenames in Android images

Android images can be downloaded directly from
online archives

The /vendor directory contains these firmware files

Occasionally, this is a separate partition

Further Research – S3NRN82

S3NRN82 was selected as the next target – latest available chipset

Multiple chip firmware revisions available

Found in Samsung Galaxy S9

S9 was purchased, and rooted using OEM unlocking and a Custom
ROM

S3NRN82 – Firmware File

Same format as S3FWRN5

Initial Stack Pointer larger – more RAM

Reset Vector lower – smaller bootloader

Firmware size 32kB larger

Further Research – Replicating Vulnerability

Commands 3 and 6 were removed

A new command, 7, was identified to reboot the chip

New bootloader size implied that it had been modified

Lack of memory readout would force any exploitation to be blind

Signatures checks utilising SHA-1 were found to fail

Further Research – Replicating Vulnerability

I2C communication was no longer provided by Logcat

A /proc/nfclog file was found which contained the sizes of
commands in sequence

From this, the change from SHA-1 to SHA-256 could be
deduced

This was verified by modifying the firmware update tool

Further Research – Replicating Vulnerability

Nature of device crashes allowed for analysis of stack size

The entire stack could be overwritten with pointers into code memory

Demo

Further Research – Disclosure

Vulnerability was disclosed to Samsung

The vulnerability was patched on newly manufactured chipsets from April 2020

All future chipsets will not be vulnerable

Custom Firmware would still be viable for older devices

Patching Existing Firmware

Custom firmware could be written for any of these chips

An initial goal was to dump the S3NRN82 bootloader

The only method for accessing data would be via I2C

This would also facilitate debugging

Patching Existing Firmware

Unreferenced/blank memory in firmware can be used to store new code

Compiled machine code can be patched in

The oldest available firmware was found, and used as a base – found in a Galaxy S8 ROM

Patching Existing Firmware

C functions can be compiled as a raw binary
using “gcc –c”

Stack handling is performed as with normal
compilation

Function relocation is not performed

No standard C libraries can be included

Patching Existing Firmware

In C, function calls are generated as Branch
and Link Instructions

These can be directly patched in order to
implement different functionality

This can completely override intended
functionality

Patching Existing Firmware

Branch And Link uses two’s complement
relative addresses

Using the function address and current
address can allow for creation of new BL
functions

This can be directly patched over original
BL functions

Patching Existing Firmware

A build application for linking and relocation was developed, which directly patched firmware

Patching Existing firmware

The vendor-specific NCI command “2F 24”
was selected for modification

Its response was found by searching for
“MOVS.*#0x24”

sub_11A76 was overridden to the new
“getArbitraryMemory” function

Writing of new firmware took ~20 seconds

The new function could be expanded as
needed

Patching Existing firmware

To receive parameters, location of command in RAM must be found

A crafted NCI request was generated: 2F 24 04 FA CE FA CE

The parameters were searched through RAM, and address set in response payload

This could allow for parameters to be used in readout

S3NRN82 Bootloader

The patched firmware allowed for
dumping of arbitrary memory

With this, the new bootloader was
downloaded

This allowed for analysis of how the
initial exploit worked at 0x0165

Exploit was modified to point to 0x0173

Custom Firmware – Tag Emulation

The hardware of the chip supports multiple protocols:

ISO14443a, ISO14443b and more

Access to hardware registers allow for arbitrary
communication

A goal was to emulate a Mifare Classic tag in its entirety on
the S9

A Proxmark was used for debugging

Custom Firmware – Tag Emulation

NCI commands to initialise device were dumped from phone
and replayed

Unnecessary commands were removed

The NCI RF Discover command was modified to only act as
ISO14443a tag

Custom Firmware – Tag Emulation

Initial reversing requires knowledge of functions and hardware in depth

Lack of any strings means that this would require inferring the purpose of functions
manually

To begin, the ISO14443A SELECT command (0x93) was searched for in IDA: “CMP.*#0x93”

The first result provided immediate

information:

Custom Firmware – Tag Emulation

Placing the phone on a reader allowed this to be verified

It was possible to use the patched I2C function to dump
the entire hardware configuration

This corroborated the results from IDA

Reader commands could be read

Access to these registers would also allow for passive
sniffing

Custom Firmware – Tag Emulation - Enumeration

ISO14443a enumeration occurs using the following information:

ATQA – defined by NCI

SAK – defined by NCI

UID – randomised on phones, first byte always 0x08

These define tag type and unique identifier

Via NCI, ATQA and SAK values are restricted to specific values

Due to their purpose, these values were stored in individual hardware registers

Custom Firmware – Tag Emulation - Enumeration

Via NCI, SAK and ATQA values were sent to the
chip

Using the patched I2C command, a RAM dump
was taken

The SAK and ATQA values were identified in RAM,
and compared with IDA

This lead to a single function referencing
hardware registers

Custom Firmware – Tag Emulation - Enumeration

This function was overridden, then called within the new function

Custom SAK, ATQA and UID values were added via hardware to replace initial values

Confirmation of this patch was performed using a Proxmark as a reader

Custom Firmware – Tag Emulation - Enumeration

Analysis via the Proxmark demonstrated that this was successful

This would allow for modification of enumeration information, but not full
communication

Custom Firmware – Tag Emulation – Full Communication

Chip was known to respond to commands 0x50
(HALT) and 0xE0 (RATS)

RATS was searched via: “CMP.*#0xe0”

Four results were found, and analysed
individually

This lead to finding the state machine
functions

Additional valid commands were noted

Custom Firmware – Tag Emulation – Full Communication

Further tracing from RATS found the function which sent responses

This was found to set a buffer, size, and some configuration
information

The written registers were copied and added to a new function

Custom Firmware – Tag Emulation – Full Communication

A basic read command was first implemented : 30 XX + CRC

This was configured to return unencrypted memory blocks

This could later be extended to include appropriate encryption

Custom Firmware – Tag Emulation – Full Communication

The state machine function was overridden

A switch statement was used to respond to Mifare
commands

Analysis showed that the HALT command affected
the internal state machine

This function was called from the new state
machine

Non-standard debugging commands were also
added

Custom Firmware – Tag Emulation – Full Communication

With full control, any ISO14443a tag could be emulated

Mifare Classic’s Crypto-1 authentication and access mechanisms were implemented

While this worked with a Proxmark, it would not work on a legitimate reader

Custom Firmware – Tag Emulation – Restrictions

Mifare Classic encrypted communication overrides the parity bit of each communicated byte

The chip hardware was configured to auto-generate this parity bit

It was possible that a hardware register setting may allow for modifying parity bits

Each register was modified in turn, while responses were checked on a Proxmark

Custom Firmware – Tag Emulation – Restrictions

The parity register was found at address
0x40020004, by setting bit 0x4000

With this set, parity could be modified

This required adding additional bits to the buffer,
and increasing the length set by one bit per byte

With this in place, a Mifare Classic tag could be fully
emulated

Custom Firmware – Tag Emulation – Dumping Writes

Writes to tags were hooked to send I2C messages

This allowed for persistent modification of tags

Demo

Custom Firmware – Final Notes

Tag emulation allows for spoofing of 13.56MHz access control cards, as well as more
esoteric uses

All other NFC functionality works as normal, despite patching

More subtle than a dedicated attack tool

Expansion of this functionality could allow for offline cracking attacks

The same emulation could be performed on any supported protocol

Now framework is in place, easy to develop for

Conclusion

All outlined vulnerabilities were patched by Samsung as of April 2020

The vulnerability required root access, but fully compromised the chip

Phones are exploitable embedded devices, and should be treated as such

Bootloader vulnerabilities are more common than you think, especially in phones

Developing custom firmware for proprietary chips is challenging, but rewarding

If an undisclosed vulnerability is found in an old chip, it’ll likely be in the new one

