
Hiding Process Memory
via

Anti-Forensic Techniques

Frank Block

#BHUSA @BLACKHATEVENTS

Black Hat | USA 2020

Security Research Group

Department of Computer Science

Friedrich-Alexander University Erlangen-Nürnberg (FAU)

Hiding Process Memory via Anti-Forensic Techniques

Ralph Palutke*, Frank Block*, Patrick Reichenberger, and Dominik Stripeika

Black Hat | USA 2020

• Introduction

• Memory Subversion Techniques

• Considerations

• Memory Subversion Evaluation

• Memory Subversion Detection

• Memory Subversion Detection Evaluation

• Conclusion

Agenda

Black Hat | USA 2020

• Related Work

• Shadow Walker by Sherri Sparks and Jamie Butler [1].

• Gargoyle by Josh Lospinoso [2].

Introduction

Black Hat | USA 2020

Process Address Space

• Process address space contains executables, libraries, heap, …

• Are described by what we will call Memory Area Structures.

• Memory Area Structures (MASs) describe each memory area.

• Linux: Virtual Memory Areas (VMAs)

• Windows: Virtual Address Descriptors (VADs)

Black Hat | USA 2020

Paging

• Physical memory is structured into page frames.

• Referenced by Page Frame Numbers (PFNs).

• Translation from virtual to physical done with paging

structures.

• Last part in translation process: PTE

• Reverse mapping: Windows PFN DB and on Linux the

page structures

• The physical view on memory.

Black Hat | USA 2020

Shared Memory

• Memory shared among multiple processes.

• Allows the exchange of data.

• We focus on anonymous/page-file-backed shared memory.

• Available until no process owns a handle anymore.

• Private memory is lost after owning process unmaps it.

• OS-specific APIs for creating and mapping shared memory.

• Windows:

• Memory-mapped files (CreateFileMapping/MapViewOfFile)

• Linux:

• POSIX shared memory objects (shm_open/mmap)

• Anonymous files: (memfd_create/mmap)

• System V shared memory segments (shmget/shmat)

Black Hat | USA 2020

Memory Subversion Techniques

Black Hat | USA 2020

• Anti-forensic techniques that hide process memory.

• Can be used independently or in combination.

• Attacker Scenario: Hide malicious parts of otherwise benign process.

• Either launched or infected during run time.

• Injected shellcode, loaded libraries, parts of the application.

Overview

Black Hat | USA 2020

MAS Remapping

• Many forensic tools rely on the integrity of MASs.

• Idea: Remap MASs from malicious to benign areas.

• Requires kernel-level privileges.

Black Hat | USA 2020

MAS Remapping

• Manipulate MASs virtual start and end addresses.

• Windows: StartingVPN/EndingVPN (VAD)

• Linux: vm_start/vm_end (vm_area_struct)

• MASs are not involved in the translation process.

• Memory can be accessed despite being hidden.

• Underlying PTEs still intact.

• No necessity to revert modifications during runtime

Black Hat | USA 2020

PTE Subversions

• No modification of process’ virtual memory layout.

• Requires kernel-level privileges.

• Accessing malicious memory requires PTE restoration.

Black Hat | USA 2020

PTE Remapping

• Remap malicious page frames to equal amount of benign ones

• Virtual addresses might resolve to same PFN

• Redirection target ideally contains similar content

Black Hat | USA 2020

PTE Erasure

• Erase/Nullify PTEs of malicious page frames

• PTEs seem to be not initialized, accessed, or present

• Inherently invalidates PTE

• Solely invalidating present bit is not sufficient

• Analysis tools could detect remaining information

• Windows/Linux does not rely on PTEs to find free memory

• No risk of being freed or reused by the OS

Black Hat | USA 2020

Shared Memory Subversion

• Shared memory does not have to be shared between processes

• Can be used to store executable code

• Initial setup:

• Create shared memory section

• Map shared memory into target process

• Write malicious data to shared memory

• Unmap shared memory

• No kernel privileges required

Black Hat | USA 2020

Shared Memory Subversion

• Temporarily remap memory when being required

• E.g. for executing included code

• Unmap immediately afterwards

• Tools typically focus on currently mapped memory only

• Remains undetected (if not caught while being mapped)

Black Hat | USA 2020

Shared Memory Subversion

Black Hat | USA 2020

Shared Memory Subversion

Black Hat | USA 2020

Shared Memory Subversion

Black Hat | USA 2020

Memory Subversion Evaluation

Black Hat | USA 2020

• The subversion techniques have been implemented as a Proof of Concept for

Windows and Linux.

• Evaluation from a memory and live forensics perspective, on both operating systems:

• Windows 10 Pro Version x64 (1511 Build 10586 and 1909 Build 18363)

• Debian 9.9 4.9.0-11-amd64 (4.9.189-3+deb9u2)

Evaluation

Black Hat | USA 2020

Evaluation – Memory Forensics

Details are included in the Research Paper [4]

Black Hat | USA 2020

Evaluation – Live Forensics

Details are included in the Research Paper [4]

Black Hat | USA 2020

Considerations

Black Hat | USA 2020

• Control code necessary to un/rehide (for PTE and shared memory subversions).

• Locking memory to prevent page swapping mechanisms to interfere with subversion

techniques.

• In order to prevent side effects: Undoing modifications right before exit.

• Counters to consider on Linux:

• The Resident Set Size (RSS) counters (store information about a process’ occupied physical

memory).

• The mm_struct structure’s nr_ptes counter, which specifies the number of page tables.

• The page structure’s _refcount field.

Considerations

Black Hat | USA 2020

Considerations

• “Standard” PFN remapping on Windows reliably

leads to crashes e.g. when yara tries to scan the

process’ memory.

Black Hat | USA 2020

Modified PFN Remapping on Windows

Black Hat | USA 2020

Modified PFN Remapping on Windows

Black Hat | USA 2020

Modified PFN Remapping on Windows

Black Hat | USA 2020

Modified PFN Remapping on Windows

Black Hat | USA 2020

• But still, blue screen on process exit.

• Adjusting Working Set Size, does not fix this issue.

• -> Analysis TBD

Considerations

Black Hat | USA 2020

Memory Subversion Detection

Black Hat | USA 2020

MAS Remapping Detection

Black Hat | USA 2020

MAS Remapping Detection

Black Hat | USA 2020

MAS Remapping Detection

Black Hat | USA 2020

MAS Remapping Detection

Black Hat | USA 2020

PTE Subversion Detection - Windows

Black Hat | USA 2020

PTE Subversion Detection - Windows

Black Hat | USA 2020

PTE Subversion Detection - Windows

Black Hat | USA 2020

PTE Subversion Detection - Windows

Black Hat | USA 2020

PTE Subversion Detection - Windows

Black Hat | USA 2020

PTE Subversion Detection - Windows

Black Hat | USA 2020

PTE Subversion Detection - Linux

Black Hat | USA 2020

PTE Subversion Detection - Linux

Black Hat | USA 2020

PTE Subversion Detection - Linux

Black Hat | USA 2020

PTE Subversion Detection - Linux

Black Hat | USA 2020

PTE Subversion Detection - Linux

Black Hat | USA 2020

PTE Subversion Detection - Linux

Black Hat | USA 2020

PTE Subversion Detection - Linux

Black Hat | USA 2020

PTE Subversion Detection - Linux

Black Hat | USA 2020

PTE Subversion Detection - Linux

Black Hat | USA 2020

Shared Memory Subversion Detection

Black Hat | USA 2020

Memory Subversion Detection Evaluation

Black Hat | USA 2020

• Same VMs as for the memory subversion evaluation.

• Several running applications:

• Browsers (Firefox, Microsoft Edge, Chromium)

• Office applications (Microsoft Word, LibreOffice)

• PDF documents opened in reader application

Test environment

Black Hat | USA 2020

Detection Evaluation - Windows

• “Standard” PFN remapping and PTE erasure

• MAS Remapping

Black Hat | USA 2020

Detection Evaluation - Linux

• PTE remapping and PTE erasure

• Shared memory

Black Hat | USA 2020

• MAS remapping

• There have been false positives with chromium browser in some cases.

• Also, potentially a page frame in each process on Windows XP SP3 and Windows 7 SP1 containing

_KUSER_SHARED_DATA [3], but in our test environments it is part of a VAD.

• PTE subversions

• None known at the moment.

• A lot of PFN DB entries for the System process would show up as suspicious, but we are not investigating kernel

memory at the moment, so we are lucky there ;)

• Shared Memory Subversion

• There can be false positives if shared memory is currently just not mapped, but at least in our test environment

we did encounter none.

• There are, however, hundreds if considering also non-executable memory.

False Positives - Windows

Black Hat | USA 2020

• MAS Remapping

• Not yet implemented

• PTE subversions

• 127 page frames for to 12 mappings for Firefox-ESR (related to shared memory), and systemd-

journal process almost always pops up with its system.journal file (with 1 to 400 page frames).

• Shared Memory Subversion

• In our test case 42: One for the Cron process, 40 for Firefox-ESR and 1 for Chromium

• We are only considering anonymous shared memory. If not -> 1000 more false positives.

False Positives - Linux

Black Hat | USA 2020

Conclusion

Black Hat | USA 2020

Technique Requires
Kernel Access

Requires
Control Code

Advantages Disadvantages

MAS Remapping Yes No • Easy to setup. • Detectable with already
existing approaches.

PTE Subversions Yes Yes • Detection can be problematic. • Not as easy and totally safe
to set up.

Shared Memory
Subversion

No Yes
• Easy and safe to set up.
• Most stealthy approach.

• Easy to detect with our
approach.

Comparison – Attacker’s Point of View

Black Hat | USA 2020

• Three novel techniques, which successfully hide memory from live and memory

forensics, on Linux and Windows.

• Proof-of-concept implementations for both Windows and Linux [5].

• Rekall and Volatility plugins for detection [5] (with limitations).

Conclusion

Black Hat | USA 2020

• Blue Screen with PTE subversions on Windows when process exits.

• Detection approaches for PTE subversions on Windows can be circumvented by

using shared memory.

• False positives with detections on Linux.

• Additional Problem on Linux: page instances without mapping.

• Our PTE subversion detection for Linux takes a sh**load of time (there is an easy fix).

• For the same reason, MAS Remapping detection not yet available. TBD

Limitations

Black Hat | USA 2020

• Mapping just a sub view of the shared memory.

• Evaluation with kernel space.

• MAS remapping detection for Linux.

• Resolve Windows crash with PTE subversions.

• Testing against the Windows 10 Memory combining feature.

• Decreasing the memory footprint of the control code.

• Manipulating everything that we’ve used for detection.

Future Work

Black Hat | USA 2020

I wanted to thank

• The people behind Rekall, Volatility and “The Art Of Memory Forensics” for their amazing work.

• All mentioned (and not explicitly mentioned) researchers, who inspired or helped in doing this

research with their work.

• Enrico Martignetti for his great book on Windows memory management: “What Makes It Page? The

Windows 7 (X64) Virtual Memory Manager”

• My girlfriend for her patience during the last months, while I was primarily sitting on the couch in my

underpants, doing nerd stuff. Promise: I will take care of cooking now (at least for the next weeks ;)

Black Hat | USA 2020

Thank you!

Black Hat | USA 2020

Resources

• The Research paper, memory subversion PoC code and any material to reproduce

our research results:

https://github.com/DFRWS-memory-subversion/DFRWS-USA-2020

• All Rekall/Volatility plugins and a Shared Memory implementation with C&C:

https://github.com/f-block/BlackHat-USA-2020

https://github.com/DFRWS-memory-subversion/DFRWS-USA-2020
https://github.com/f-block/BlackHat-USA-2020

Black Hat | USA 2020

[1] Sparks, S., Butler, J., 2005. Shadow walker: Raising the bar for rootkit detection. Black Hat Japan 11, 504–533.

[2] Lospinoso, J., 2017. Gargoyle - a memory scanning evasion technique. URL: https://github.com/JLospinoso/gargoyle

[3] White, A., Schatz, B., Foo, E., 2012. Surveying the user space through user allocations. Digital Investigation 9, S3–S12. URL:

https://www.dfrws.org/sites/default/files/session-files/paper-surveying_the_user_space_through_user_allocations.pdf

[4] Palutke, R., Block, F., Reichenberger, P., Stripeika, D., 2020. Hiding Process Memory via Anti-Forensic Techniques. Digital Investigation. URL:

https://dfrws.org/presentation/hiding-process-memory-via-anti-forensic-techniques/

[5] Reichenberger, P., Stripeika, D., Block, F., Palutke, R., 2020. The public repository containing the code and binaries used in this work. URL:

https://github.com/DFRWS-memory-subversion/DFRWS-USA-2020

References

https://github.com/JLospinoso/gargoyle
https://www.dfrws.org/sites/default/files/session-files/paper-surveying_the_user_space_through_user_allocations.pdf
https://dfrws.org/presentation/hiding-process-memory-via-anti-forensic-techniques/
https://github.com/DFRWS-memory-subversion/DFRWS-USA-2020

