All you ever wanted to know about the AMD Platform
Security Processor and were afraid to emulate

Alexander Eichner
Technische Universitdt Berlin

Robert Buhren

Technische Universitdt Berlin

Outline

What is the Platform Security Processor (PSP)?
Why emulate it?

How to emulate the PSP

What can we do with the emulator?

Server & Desktops

AMD SECURE PROCESSQ T (Epyc & Ryzen)

A Dedicated Security Subsy5‘

= AMD Secure Processor integrated withi ‘f;-L C
— 32-bit microcontroller (ARM Cortex-AS)

= Runs a secure 0S/kernel |
= Secure off-chip NV storage for firmware and =~ |
data (i.e. SPIROM) RY L ‘] "
Provides cryptographic functionality for R ::o :r(i::gf;fierrr;wa .
secure key generation and key management

= Enables hardware validated boot

f Trust Provides

rdware Root 0 :
e formSecunity __ | ___——---
AMDR

Foundation for Plat

U.S. TIME
2g™ AT 3:00 PM CENTRAL
EMBARGOED UNTIL JUNE
s9 | AMDEPYC |

L Formerly known as Platform Security Processor (i.e. PSP)

Why Emulate?

Proprietary software at the highest privilege level

Static analysis is possible but time consuming (boring ©)
Only good for a single firmware version

Emulation (if done right) enable easy analysis of future
firmware versions

0 Why GitHub? ~~ Enterprise Explore Marketplace Pricing / Signin

PSPReverse / PSPTool ©Watch 18 % Star 285 YFork 20

<> Code Issues 4 Pull requests 0 Projects 0 Security Insights

Display, extract, and manipulate PSP firmware inside UEFI images

{D 76 commits ¥ 3 branches (7 0 packages © 0 releases 42 2 contributors ok GPL-3.0
Branch: master ~ Find file
i cwerling Update README.md Latest commit feflbed 3 days ago
Python-based Com ma nd-l I ne lnte rfa ce bin Finally discard legacy psptool and rename psptool2 to psptool 4 months ago

psptool Show MD5 sums of Entries in verbose mode (-v) 4 months ago

E) .gitignore Finally discard legacy psptool and rename psptool2 to psptool 4 months ago

Pa rSIng Extractlon Manlpulatlon) LICENSE Add GPLv3 license 7 months ago
E) README.md Update README.md 3 days ago

[setup.cfg Update configs to upload to PyPI 2 months ago

=) setup.py Update configs to upload to PyPI 2 months ago

Decompression Signature verification

EE README.md

PSPTool

PEM export of keys Duplicate detection

PSPTool is a Swiss Army knife for dealing with firmware of the AMD Secure Processor (formerly known as Platform
Security Processor or PSP). It locates AMD firmware inside UEFI images as part of BIOS updates targeting AMD
platforms.

Signature update Python API GPLv3

It is based on reverse-engineering efforts of AMD's proprietary filesystem used to pack firmware blobs intc UEFI
Firmware Images. These are usually 16MB in size and can be conveniently parsed by UEFITool. However, all binary blobs
by AMD are located in padding volumes unparsable by UEFITool.

PSPTool favourably works with UEFI images as obtained through BIOS updates.

Installation

You can install PSPTool either through pip,

pip install psptool

https://github.com/PSPReverse/PSPTool

@ media.ccc.de

browse > congress > 2019 > event

Uncover, Understand, Own - Regaining

and

Control Over Your AMD CPU

L)

/ N z =
[RRENE

Uncover, Una@rstand, Own

<

01:37/56:36 @3 o) 1.00x S

2» 6|

EIRR Playlists: 3¢ : /

@ 56 min 4 2019-12-27 X 2019-12-28 @ 4740 @

The AMD Platform Security Processor (PSP) is a dedicated ARM CPU inside your AMD processor and runs undocumented, proprietary firmware provided by AMD.

Itis a processor inside your processor that you don't control. It is essential for system startup. In fact, in runs before the main processor is even started and is responsible for boot-
strapping all other components

This talk presents our efforts investigating the PSP internals and functionality and how you can better understand it.

Our talk is divided into three parts:

https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu

BOOT PROCESS: EPYC

PSP boots before the x86 cores

On-Chip Bootloader loads Off-Chip bootloader from flash
Off-Chip Bootloader loads and executes apps in specific order
System is initialized by different ABL stages

Load UEFI image and release x86 cores from reset

SEV app is loaded during runtime upon the request of the OS

release

x86

!

BOOT PROCESS: RYZEN

PSP boots before the x86 cores

On-Chip Bootloader loads Off-Chip bootloader from flash
Off-Chip Bootloader loads and executes apps in specific order
System is initialized by different ABL stages

Load UEFI image and release x86 cores from reset

X86

BOOT PROCESS: RYZEN
PSP boots before the x86 cores

On-Chip Bootloader loads Off-Chip bootloader from flash
Off-Chip Bootloader loads and executes apps in specific order
System is initialized by different ABL stages

Load UEFI image and release x86 cores from reset

SRAM is overwritten with Secure OS (Kinibi TEE)

10

ARM TrustZone

-— unknown OS / none-Secure Mode

: ; L ’ °)

° ¢ n Y
°

BOOT PROCESS: RYZEN
* PSP boots before the x86 cores

* On-Chip Bootloader loads Off-Chip bootloader from flash

* Off-Chip Bootloader loads and executes apps in specific order
* System is initialized by different ABL stages

* Load UEFI image and release x86 cores from reset

> SRAM is overwritten with Secure OS (Kinibi TEE)
Firmware TPM is one application of this OS

PSP Hardware

PSP MEMORY LAYOUT

256 KB (Zen1) or 384 KB (Zen2) SRAM
- Off-Chip BL and Applications

* On-Chip BL (ROM) at ARM high vectors (OxFFFFO000)

* MMIO: IRQ controller (custom), timer, crypto
accelerator (CCP), X86 and SMN slot controller

* System Management Network Slots

* X86 address space slots

A slot is a “view” into another address space

PSP MMIO

32 Bit/ 4 GB

12

PSP ADDRESS SPACES

PSP System Management Network

S

32 Bit == = 32 Bit

32 Bit

—

PSP ADDRESS SPACES

x86 address space

Documented (partially): Processor Programming Reference (PPR)

|

\
\
\
\
\
\
\
\
\
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
-—
Il

\

= A48 Bit

14

PSP CRYPTO ACCELERATOR (CCP)
PSP contains a Cryptographic Coprocessor V5 (CCP)

Support for: SHA, RSA, AES, ECC, ZLIB, TRNG

Used to verify signatures, decompress firmware files and
as a DMA copy engine

No “official” documentation available, but....

There is a Linux kernel driver:
drivers/crypto/ccp

CCP | psp MMIO

32 Bit/ 4 GB

15

PSPEmu

I |

SUCCESS! (KIND OF)

On Chip BL completes
Off Chip BL starts and executes first two apps

Off Chip BL executes first ABL stage but what
next?

Emulating all devices not feasible

17

[..]

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

INFO

[..]

STS

STS

STS

STS

STS

STS

STS

STS

STS

STS

STS

STS

STS

STS

0x000057c6[0x00001165] [
0x000057c6[0x0000122£] [
0x000057c6[0x000057b£f] [
0x000057c6[0x000057b£f] [
0x000057c6[0x000057b£f] [
0x000057c6[0x000057b£f] [
0x000057c6[0x000057b£f] [
0x000057c6[0x000057b£f] [
0x000057c6[0x000057b£f] [
0x000057c6[0x000057b£f] [
0x000057c6[0x000057b£f] [
0x000057c6[0x000057b£f] [
0x000057c6[0x000057b£f] [

0x000057c6[0x000057b£f] [

svc,
svc,
svc,
svc,
svc,
svc,
svc,
svc,
svc,
svc,
svc,
svc,
svc,

SvC,

I,NF,0x00014000]
I,NF,0x00014000]
I,NF,0x00014000]
I,NF,0x00014000]
I,NF,0x00014000]
I,NF,0x00014000]
I,NF,0x00014000]
I,NF,0x00014000]
I,NF,0x00014000]
I,NF,0x00014000]
I,NF,0x00014000]
I,NF,0x00014000]
I,NF,0x00014000]

I,NF,0x00014000]

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

"POST

"POST

"POST

"POST

"POST

"POST

"POST

"POST

"POST

"POST

"POST

"POST

"POST

"POST

CODE

CODE

CODE

CODE

CODE

CODE

CODE

CODE

CODE

CODE

CODE

CODE

CODE

CODE

(PSP) :
(PSP) :
(PSP) :
(PSP) :
(PSP) :
(PSP) :
(PSP) :
(PSP) :
(PSP) :
(PSP) :
(PSP) :
(PSP) :
(PSP) :

(PSP) :

PSPSTATUS_C2P_MASTER INITIALIZED SLAVE WAITED FOR MASTER"
PSPSTATUS_MASTER GOT_ BOOT MODE_AND SENT TO ALL_ SLAVES"
PSPSTATUS_BOOTLOADER SUCCESSFULLY_ENTERED C_MAIN®
PSPSTATUS_HMAC_KEY DERIVED SUCCESSFULLY"

PSPSTATUS_ SPIROM INITIALIZED SUCCESSFULLY"
PSPSTATUS_BIOS_DIRECTORY READ FROM_ SPI_TO_SRAM"
PSPSTATUS_EARLY UNLOCK_CHECK"

PSPSTATUS_ BOOTLOADER PROGRAMMED MBAT TABLE SUCCESSFULLY™
PSPSTATUS_SECURITY_ GASKET BINARY VALIDATED AND EXECUTED™
PSPSTATUS_BOOTLOADER LOADED SMU_FW_SUCCESSFULLY"
PSPSTATUS MP1_TAKEN OUT OF RESET"

PSPSTATUS_PSP_AND_ SMU_CONFIGURED WAFFLE"

PSPSTATUS FW_VALIDATION COMPLETED"

PSPSTATUS_BOOTLOADER LOADED AGESAO_FROM SPIROM SUCCESSFULLY"

18

PSPEmu

SRS 5

PROXY MODE

Passthrough hardware accesses to real
hardware

Stub running on real PSP

Reads/Writes to devices get captured by
generic proxy component and forwarded to the
real hardware

Which communication channel to use?

(" AMD CPU

il

[

—=]

19

SMN

SPI Ctrl

Read/Write

Parse SPI Trace -

PSP STUB TRILOGY: ITCP
EP 1: A SPI ELASH HOPE

* Use SPI Flash interface and emulator

PSPEmu

* Exchange data using SPI Flash Read and
Page Program requests

* Works reliable but slow (2-3 accesses
per second)

* Requires an expensive flash emulator

https://github.com/PSPReverse/em100/tree/network-mode-v1

SMN

SPI Ctrl

PspSerialStub EM100Pro-G2

SP| Cmd I Ush

k “ HyperTerminal Interface

I TCP

PSPEmu

Found AMD PPR

Explains Low Level SPI register interface

We can execute arbitrary commands now!

Enables use of DediProg EM100 Hyper Terminal
Blazingly fast (don‘t forget to disable Nagle for TCP!)

Still requires an expensive flash emulator ®

lpc-dec

j

SuperlO

Ryzen

EP 3: RETURN OF THE UART

. Explore use of the legacy UART for a low cost
solution

. SuperlO chip attached to the SoC via LPC
. Need correct sequence to enable UART

. Analyze SuperlO accesses over the LPC bus from
logic capture (Ipc-dec)

. Much slower than SPI but very cheap

https://github.com/AlexanderEichner/lpc-dec

o —1 I

o —

INSERTING THE PROXY

1. Setup stack

2. Map SPI flash
3. Load and verify AMD public key

4. Load and verify Off-Chip bootloader

The On-Chip BL needs to validate the size of the off-chip BL! 32Bit/ 4 GB

- BL max. size

< im]

SMN Map 11NNl
SPI Flash

23

FIRMWARE FILE SYSTEM

Directory

r

I
1 Secondary
Directory

vy

Entry

File

optional

optional

24

File

* Offset 0x14:
* Offset Ox64:

Bodysize (0xc640)
Load address (0x100)

9807BC8D
00000000
37000800

18F@9FES
18FQ9FES
3C010000
DC020000
021AC1E3
6B0OOOOEB
74029FES
32FF2FE1
100F13EE
100F11EE
010080E3
38029FES
D7F@21E3
53F@21E3
030090E8
04029FES
0Q0F020E3
FOSF2DE9

00000000
FDB41F40

18F@9FES
00F020E3
CC020000
E8020000
101FQ1EE
700000EB
100F@2EE
303F11EE
5C0O29FES
010A80E3
100FQ1EE
QODOAGEL
0ODOAQGE1
18D29FES5
IEEEZEET
000090ES
0@3F020E3
0050A0QE3

0xC687 out of 0xC840 bytes

60BBAG7E 1A434C6B
00000000 00000000

18FQ9FE5 18F@Q9FES
14FO9FE5 14FQ9FES
70020000 D0020000
00030000 101F11EE
88029FE5 100FOCEE
2200AQE3 S500FO2EE
7OD29FES5 70229FES
©13A83E3 303FQ1EE
100FO3EE 58C29FES5
040080E3 0200COE3
1CFF2FE1 D2F@21E3
D1F@21E3 @ODOAQE1
DBF@21E3 QODOAQGE1
18C29FE5 1CFF2FE1
0CO080E8 1EFFZ2FE1
0000S0E3 0200001A
0Q0OF020E3 1EFF2FE1
155FQ7EE D@OS0QAQE3

N

.......

25

1
) -

INSERTING THE PROXY

Off-Chip BL is copied into SRAM and
then verified (to avoid TOCTOU).

The header is processed before the
signature is checked.

-> Input validation is required.
32 Bit /4 GB

- BL max. size

< im]

SMN Map 11NNl
SPI Flash

26

oy — b abs(0x100) +
Zenl SRAM: abs(0xc640)
-) - 256KB =
TEEEY (0x40000) = 0xc740
|] abs(0x100) +
= 0xc740
INSERTING THE PROXY
void load_off_chip_bl (void) { /Validated size: 0xc640
1f (abs(load_address) + abs(body_size}) > ROM_BL_STACK)
return -1; Used size: 0x8000c640
copy_bl(load_address, spi_src,
return 0O;

}

27

1
) -

copy_bl(..., ..., 0x8000c640)

INSERTING THE PROXY

1. Place PspStub in SPI flash

Appended with return addresses
2. Flip sign-bit of body size

3. Success!

ret ret ret ret ret ret
ret ret ret ret ret ret

PspStub

ret ret ret
ret ret ret
ret ret ret
ret ret ret

32 Bit /4 GB

28

CCP Request 0x0003£900:

u32Dw0 : 0x00500011 (Engine: PASSTHROUGH, ByteSwap: NOOP, Bitwise: NOOP, Reflect: 0)
cbSrc: 2147534400 < .
Copy size: 0x8000c640
u32AddrSrclow: 0x02149500
ul6AddrSrcHigh: 0x00000000
ul6SrcMemType : 0x00000006 (MemType: 2, LsbCtxId: 1, Fixed: 0)

u32AddrDstLow: 0x00000100

*— Load address: 0x100
ul6AddrDstHigh: 0x00000000
ul6DstMemType: 0x00000002 (MemType: 2, Fixed: 0)
u32AddrKeyLow: 0x00000000
ul6AddrKeyHigh: 0x00000000
ul6KeyMemType : 0x00000000

29

Issye Feature summary

Zen and Zen+ CPUs (probably)

Confirmed:
Zen: Ryzen 1700X, Epyc 7281

Zen+: Ryzen PRO 3500U, Ryzen 5
2600

Zen2 is NOT affected

Reported to AMD 26" February 2020

Response: 11t May 2020!

Known bug

“AMD has developed mitigations in
various products where appropriate.”

30

. /PSPEmu

--emulation-mode on-chip-bl
--flash-rom uefi.ROM
--on-chip-bl on-chip-bl.bin
--trace-log /tmp/log
--trace-svcs

--dbg <port>

Sets starting point in boot process

Flash image to use for emulated SPI flash
Sets on chip BL binary

Trace log destination

Configures syscall tracing

GDB stub

31

PSPEMU FEATURES

Trace all I/O accesses (MMIO, SMN, x86)

Intercept and trace all syscalls

GDB stub for debugging (source level debugging for own code) TCP l

Proxy mode for accessing real hardware

Create coverage traces for later analysis

|/O record and replay

Working:

CURRENT STATE

105 Recovery node has been detected,
‘:‘:2:;:‘:;.12 the file "X378PRO.CAP" into HDD or a renovable USB nedia device
t your conputer.
V::dc::e:I;:s?ns::t ASUS Support CD to your CD-ROM lll,ld reset lg’;au: na::;nfr
1f yor e done these, Please wait a nonei and don u

Bootstrap platform when in proxy mode
e DRAM works!
* Ryzen 1700X (Zen)
Stable communication channel with PSP
* Fast but expensive
* Slow but very cheap
Toolchain for writing and debugging your
own code
1/O log record and replay (no access to
real hardware required for first steps)
Basic micropython port for the PSP ©

Full platform boot (with UEFI)

Emulate multiple CCDs/PSPs

Support multiple CCDs/PSPs in the stub
Investigate SecureOS on Ryzen

Test Zen+/Zen2 support

Zen3?

33

- Main emulator

- PSP proxy base library

- Patched unicorn

- Contains the PSP stub

- For the flash emulator transport channel

- Analyze UEFI images

- Generic portable GDB stub library

- Port of micropython to the PSP

34

https://github.com/PSPReverse/PSPEmu
https://github.com/PSPReverse/libpspproxy
https://github.com/PSPReverse/unicorn
https://github.com/PSPReverse/psp-apps
https://github.com/PSPReverse/psp-apps
https://github.com/PSPReverse/psp-apps
https://github.com/PSPReverse/em100
https://github.com/PSPReverse/PSPTool
https://github.com/AlexanderEichner/libgdbstub
https://github.com/AlexanderEichner/micropython

