
All you ever wanted to know about the AMD Platform
Security Processor and were afraid to emulate

INSIDE A DEEPLY EMBEDDED SECURITY PROCESSOR.

?

Robert Buhren
Technische Universität Berlin

Alexander Eichner
Technische Universität Berlin

Outline

• What is the Platform Security Processor (PSP)?

• Why emulate it?

• How to emulate the PSP

• What can we do with the emulator?

3

4 1 Formerly known as Platform Security Processor (i.e. PSP)

Server & Desktops
(Epyc & Ryzen)

undocumented,
proprietary firmware

integrated since 2013

acts as trust anchor

1

Why Emulate?

• Proprietary software at the highest privilege level

• Static analysis is possible but time consuming (boring )
• Only good for a single firmware version

• Emulation (if done right) enable easy analysis of future
firmware versions

5

Signature verification Decompression

PEM export of keys Duplicate detection

Python-based Command-line interface

Python API

Parsing Extraction Manipulation

GPLv3 Signature update

https://github.com/PSPReverse/PSPTool 6

PSPTOOL

7

https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu

https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu
https://media.ccc.de/v/36c3-10942-uncover_understand_own_-_regaining_control_over_your_amd_cpu

BOOT PROCESS: EPYC
• PSP boots before the x86 cores

• On-Chip Bootloader loads Off-Chip bootloader from flash

• Off-Chip Bootloader loads and executes apps in specific order

• System is initialized by different ABL stages

• Load UEFI image and release x86 cores from reset

• SEV app is loaded during runtime upon the request of the OS

Off-Chip Bootloader
(PSP_FW_BOOT_LOADER)

On-Chip
Bootloader

DebugUnlock SecGasket

ABL0

ABL1 ABL2 ABL3 ABL4 ABL6 SEV

x86

re
le

as
e

8

BOOT PROCESS: RYZEN
• PSP boots before the x86 cores

• On-Chip Bootloader loads Off-Chip bootloader from flash

• Off-Chip Bootloader loads and executes apps in specific order

• System is initialized by different ABL stages

• Load UEFI image and release x86 cores from reset

Off-Chip Bootloader
(PSP_FW_BOOT_LOADER)

On-Chip
Bootloader

DebugUnlock SecGasket

ABL0

ABL1 ABL2 ABL3 ABL4 ABL6

x86

re
le

as
e

9

BOOT PROCESS: RYZEN
• PSP boots before the x86 cores

• On-Chip Bootloader loads Off-Chip bootloader from flash

• Off-Chip Bootloader loads and executes apps in specific order

• System is initialized by different ABL stages

• Load UEFI image and release x86 cores from reset

• SRAM is overwritten with Secure OS (Kinibi TEE)

Off-Chip Bootloader
(PSP_FW_BOOT_LOADER)

On-Chip
Bootloader

Secure OS

10

BOOT PROCESS: RYZEN
• PSP boots before the x86 cores

• On-Chip Bootloader loads Off-Chip bootloader from flash

• Off-Chip Bootloader loads and executes apps in specific order

• System is initialized by different ABL stages

• Load UEFI image and release x86 cores from reset

• SRAM is overwritten with Secure OS (Kinibi TEE)
• Firmware TPM is one application of this OS

On-Chip
Bootloader

ABL3 fTPM

Secure OS / Secure Mode unknown OS / none-Secure Mode

ARM TrustZone

11

ROM Bootloader

X86 Slots

PSP MMIO

SMN Slots

12

SRAM
PSP MEMORY LAYOUT

• 256 KB (Zen1) or 384 KB (Zen2) SRAM

• Off-Chip BL and Applications

• On-Chip BL (ROM) at ARM high vectors (0xFFFF0000)

• MMIO: IRQ controller (custom), timer, crypto
accelerator (CCP), X86 and SMN slot controller

• System Management Network Slots

• X86 address space slots

A slot is a “view” into another address space

32 Bit / 4 GB

PSP Hardware

SMN Slots

SPI Flash

Memory controller
(with encryption slots)

Fuses

ROM Bootloader

X86 Slots

PSP MMIO

13

PSP ADDRESS SPACES

SRAM

32 Bit

PSP System Management Network

? ? ?
?

32 Bit
1
0

DRAM

MMIO

Memory mapped IO ports
(0x3f8 …)

PCI

X86 Slots

SMN Slots

ROM Bootloader

PSP MMIO

14

PSP ADDRESS SPACES

32 Bit

PSP x86 address space

48 Bit
1
0

Documented (partially): Processor Programming Reference (PPR)

SRAM

SRAM

ROM Bootloader

X86 Slots

PSP MMIO

SMN Slots

15

PSP CRYPTO ACCELERATOR (CCP)
• PSP contains a Cryptographic Coprocessor V5 (CCP)

• Support for: SHA, RSA, AES, ECC, ZLIB, TRNG

• Used to verify signatures, decompress firmware files and
as a DMA copy engine

• No “official” documentation available, but….

There is a Linux kernel driver:
drivers/crypto/ccp

32 Bit / 4 GB

CCP

WHILE (!SUCCEEDED) {

16

Analyze

Execute

Implement

+337 -2

}

Fail

PSPEmu

SUCCESS! (KIND OF)

17

• On Chip BL completes

• Off Chip BL starts and executes first two apps

• Off Chip BL executes first ABL stage but what
next?

• Emulating all devices not feasible

Off-Chip Bootloader
(PSP_FW_BOOT_LOADER)

On-Chip Bootloader

DebugUnlock SecGasket
ABL0

ABL1

CCP Flash Timer ??? …

18

[…]

INFO STS 0x000057c6[0x00001165][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_C2P_MASTER_INITIALIZED_SLAVE_WAITED_FOR_MASTER"

INFO STS 0x000057c6[0x0000122f][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_MASTER_GOT_BOOT_MODE_AND_SENT_TO_ALL_SLAVES“

INFO STS 0x000057c6[0x000057bf][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_BOOTLOADER_SUCCESSFULLY_ENTERED_C_MAIN“

INFO STS 0x000057c6[0x000057bf][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_HMAC_KEY_DERIVED_SUCCESSFULLY“

INFO STS 0x000057c6[0x000057bf][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_SPIROM_INITIALIZED_SUCCESSFULLY“

INFO STS 0x000057c6[0x000057bf][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_BIOS_DIRECTORY_READ_FROM_SPI_TO_SRAM“

INFO STS 0x000057c6[0x000057bf][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_EARLY_UNLOCK_CHECK“

INFO STS 0x000057c6[0x000057bf][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_BOOTLOADER_PROGRAMMED_MBAT_TABLE_SUCCESSFULLY“

INFO STS 0x000057c6[0x000057bf][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_SECURITY_GASKET_BINARY_VALIDATED_AND_EXECUTED“

INFO STS 0x000057c6[0x000057bf][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_BOOTLOADER_LOADED_SMU_FW_SUCCESSFULLY“

INFO STS 0x000057c6[0x000057bf][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_MP1_TAKEN_OUT_OF_RESET“

INFO STS 0x000057c6[0x000057bf][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_PSP_AND_SMU_CONFIGURED_WAFFLE“

INFO STS 0x000057c6[0x000057bf][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_FW_VALIDATION_COMPLETED“

INFO STS 0x000057c6[0x000057bf][SVC, S, M, I,NF,0x00014000] STRING "POST CODE (PSP): PSPSTATUS_BOOTLOADER_LOADED_AGESA0_FROM_SPIROM_SUCCESSFULLY“

[…]

? Device

AMD CPU PSPEmu

PROXY MODE

19

• Passthrough hardware accesses to real
hardware

• Stub running on real PSP

• Reads/Writes to devices get captured by
generic proxy component and forwarded to the
real hardware

• Which communication channel to use?

Off-Chip Bootloader
(PSP_FW_BOOT_LOADER)

ABL0
ABL1

Proxy

???

Stub

PSP STUB TRILOGY:
EP 1: A SPI FLASH HOPE

• Use SPI Flash interface and emulator

• Exchange data using SPI Flash Read and
Page Program requests

• Works reliable but slow (2-3 accesses
per second)

• Requires an expensive flash emulator

https://github.com/PSPReverse/em100/tree/network-mode-v1

PspSerialStub

SMN

SPI Cmd

PSPEmu

em100

USB

TCP

Parse SPI Trace

Flash EM100Pro-G2

SPI Ctrl

Read/Write

EP 2: THE PPR STRIKES BACK

• Found AMD PPR

• Explains Low Level SPI register interface

• We can execute arbitrary commands now!

• Enables use of DediProg EM100 Hyper Terminal

• Blazingly fast (don‘t forget to disable Nagle for TCP!)

• Still requires an expensive flash emulator 

EM100Pro-G2 PspSerialStub

SMN

Flash

SPI Ctrl

SPI Ctrl Interface

SPI Cmd
SPI Cmd

PSPEmu

em100

USB

TCP

HyperTerminal Interface

EP 3: RETURN OF THE UART
• Explore use of the legacy UART for a low cost

solution

• SuperIO chip attached to the SoC via LPC

• Need correct sequence to enable UART

• Analyze SuperIO accesses over the LPC bus from
logic capture (lpc-dec)

• Much slower than SPI but very cheap

https://github.com/AlexanderEichner/lpc-dec

Logic
Capture

LPC
Trace

lpc-dec

Ryzen

LPC

SuperIO

On-Chip Bootloader

SRAM

ROM BL Stack

SPI Flash

INSERTING THE PROXY

1. Setup stack

2. Map SPI flash

3. Load and verify AMD public key

4. Load and verify Off-Chip bootloader

23

PspStub

On-Chip Bootloader

SPI Flash
Off-Chip BL SMN Map

32 Bit / 4 GB

Off-Chip BL
BL max. size

The On-Chip BL needs to validate the size of the off-chip BL!

File

24

FIRMWARE FILE SYSTEM

Directory

Entry

Secondary
Directory

Header

Body

Signature

optional

optional

Header

Body

Signature

25

File

• Offset 0x14: Bodysize (0xc640)

• Offset 0x64: Load address (0x100)

On-Chip Bootloader

SRAM

ROM BL Stack

SPI Flash

INSERTING THE PROXY

26

PspStub

On-Chip Bootloader

SPI Flash
Off-Chip BL SMN Map

32 Bit / 4 GB

Off-Chip BL
BL max. size

Off-Chip BL is copied into SRAM and
then verified (to avoid TOCTOU).

The header is processed before the
signature is checked.

-> Input validation is required.

SPI Flash

Off-Chip BL

On-Chip Bootloader

ROM BL Stack

SPI Flash

INSERTING THE PROXY

27

PspStub

On-Chip Bootloader

32 Bit / 4 GB

void load_off_chip_bl (void) {
 ...
 if (abs(load_address) + abs(body_size) > ROM_BL_STACK)
 return -1;
 ...
 copy_bl(load_address, spi_src, body_size)
 return 0;
}

abs(0x100) +
abs(0xc640) Zen1 SRAM:

256KB
(0x40000) = 0xc740

abs(0x100) +
abs(0x8000c640)

= 0xc740

Validated size: 0xc640

Used size: 0x8000c640

SRAM

ROM BL Stack

On-Chip Bootloader

SPI Flash

INSERTING THE PROXY

28

PspStub

On-Chip Bootloader

32 Bit / 4 GB

PspStub
ret ret ret
ret ret ret
ret ret ret
ret ret ret

1. Place PspStub in SPI flash

• Appended with return addresses

2. Flip sign-bit of body size

3. Success!

ret ret ret
ret ret ret

ret ret ret
ret ret ret

PspStub

copy_bl(…, …, 0x8000c640)

29

CCP Request 0x0003f900:

 u32Dw0: 0x00500011 (Engine: PASSTHROUGH, ByteSwap: NOOP, Bitwise: NOOP, Reflect: 0)

 cbSrc: 2147534400

 u32AddrSrcLow: 0x02149500

 u16AddrSrcHigh: 0x00000000

 u16SrcMemType: 0x00000006 (MemType: 2, LsbCtxId: 1, Fixed: 0)

 u32AddrDstLow: 0x00000100

 u16AddrDstHigh: 0x00000000

 u16DstMemType: 0x00000002 (MemType: 2, Fixed: 0)

 u32AddrKeyLow: 0x00000000

 u16AddrKeyHigh: 0x00000000

 u16KeyMemType: 0x00000000

Copy size: 0x8000c640

Load address: 0x100

Issue Feature summary

AFFECTED SUPPORTED
SYSTEMS

• Zen and Zen+ CPUs (probably)

• Confirmed:

• Zen: Ryzen 1700X, Epyc 7281

• Zen+: Ryzen PRO 3500U, Ryzen 5
2600

• Zen2 is NOT affected

30

DISCLOSURE TIMELINE

• Reported to AMD 26th February 2020

• …

• Response: 11th May 2020!

• Known bug

• “AMD has developed mitigations in
various products where appropriate.”

PSPEMU BASICS

31

./PSPEmu

 --emulation-mode on-chip-bl

 --flash-rom uefi.ROM

 --on-chip-bl on-chip-bl.bin

 --trace-log /tmp/log

 --trace-svcs

 --dbg <port>

• Sets starting point in boot process

• Flash image to use for emulated SPI flash

• Sets on chip BL binary

• Trace log destination

• Configures syscall tracing

• GDB stub

PSPEMU FEATURES

• Trace all I/O accesses (MMIO, SMN, x86)

• Intercept and trace all syscalls

• GDB stub for debugging (source level debugging for own code)

• Proxy mode for accessing real hardware

• Create coverage traces for later analysis

• I/O record and replay

PSPEmu

PspSerialStub
Homegrown

3rd party

3rd party with
modifcations libpspproxy

psp-proxy

em100
SPI

TCP
UART

psp-core

unicorn

psp-iom psp-ccd psp-dev-ccp-v5

psp-dev-flash

psp-dev-timer

psp-dev-…
psp-dbg

libgdbstub

gdb

TCP

psp-iolog-replay

psp-iolog

I/O
Log

psp-trace

Trace

psp-cov

Coverage

CURRENT STATE

33

Working:
• Bootstrap platform when in proxy mode

• DRAM works!
• Ryzen 1700X (Zen)

• Stable communication channel with PSP
• Fast but expensive
• Slow but very cheap

• Toolchain for writing and debugging your
own code

• I/O log record and replay (no access to
real hardware required for first steps)

• Basic micropython port for the PSP 

Todo:

• Full platform boot (with UEFI)
• Emulate multiple CCDs/PSPs
• Support multiple CCDs/PSPs in the stub
• Investigate SecureOS on Ryzen
• Test Zen+/Zen2 support
• Zen3?

MAY THE CODE BE WITH YOU

• https://github.com/PSPReverse/PSPEmu - Main emulator

• https://github.com/PSPReverse/libpspproxy - PSP proxy base library

• https://github.com/PSPReverse/unicorn - Patched unicorn

• https://github.com/PSPReverse/psp-apps - Contains the PSP stub

• https://github.com/PSPReverse/em100 - For the flash emulator transport channel

• https://github.com/PSPReverse/PSPTool - Analyze UEFI images

• https://github.com/AlexanderEichner/libgdbstub - Generic portable GDB stub library

• https://github.com/AlexanderEichner/micropython - Port of micropython to the PSP

34

https://github.com/PSPReverse/PSPEmu
https://github.com/PSPReverse/libpspproxy
https://github.com/PSPReverse/unicorn
https://github.com/PSPReverse/psp-apps
https://github.com/PSPReverse/psp-apps
https://github.com/PSPReverse/psp-apps
https://github.com/PSPReverse/em100
https://github.com/PSPReverse/PSPTool
https://github.com/AlexanderEichner/libgdbstub
https://github.com/AlexanderEichner/micropython

