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Who Am I?

 18 years old
 Sophomore at the Rochester Institute of Technology
 Windows Internals
Mostly self-taught (with guidance)
 Strong “Game Hacking” background
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What Is This Talk About?

In this talk, we’ll go over…
 Loading a rootkit.
 Communicating with a rootkit.
 Abusing legitimate network communications.
 An example rootkit I wrote and the design choices behind it.
 Executing commands from kernel.
 Tricks to cover up the filesystem trace of your rootkit.
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Introduction to 
Windows Rootkits
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Windows Rootkits: An Overview

Why would you want to use a rootkit?
 Kernel drivers have significant access to the machine.
 Same privilege level as a typical kernel anti-virus.
 Less mitigations and security solutions targeting kernel malware.
 Anti-Virus often have less visibility into operations performed by 

kernel drivers.
 Kernel drivers are often ignored by anti-virus.
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Example: Treatment by Anti-Virus

Anti-virus tends to treat kernel drivers with significant trust compared 
to user-mode applications.
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Excerpt from Carbon Black’s Process/Thread Handle callbacks

Excerpt from Malwarebytes’ Process/Thread Handle callbacks



Loading a Rootkit
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Abuse Legitimate Drivers

There are a lot of “vulnerable” drivers. With some reversing 
knowledge, finding a “0-day” in a driver can be trivial.

Examples include…
 Capcom’s Anti-Cheat driver
 Intel’s NAL Driver
Microsoft themselves!
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Abuse Legitimate Drivers

Using legitimate drivers has quite a few benefits too:

 You only need a few primitives to escalate privilege.
 Finding a “vulnerable” driver is relatively trivial (OEM Drivers ).
Difficult to detect due to compatibility reasons.
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Abuse Legitimate Drivers

Abusing legitimate drivers comes with some strong drawbacks too…

Major issue of compatibility across operating system versions 
depending on the primitives you have.
Much more likely to run into stability issues.
 The last thing you want is your malware to BSOD a victim.
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Just Buy a Certificate!

For some red teamers, buying a legitimate code signing certificate 
might be a good option.

Useful for targeted attacks.
No stability concerns.
But…
 Potentially reveals your identity.
 Can be blacklisted.
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Abuse Leaked Certificates

Instead of buying a certificate yourself, why not just use one from 
someone else?

 There are quite a few public leaked certificates available to download.
 Almost has all the benefits of buying one without deanonymization.
But…
 The leaked certificate you use can be detected in the future.
 If the certificate was issued after July 29th, 2015, it won’t work on 

secure boot machines running certain versions of Windows 10.
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Abuse Leaked Certificates

In most cases, Windows doesn’t care if your driver has a certificate that 
has expired or was revoked.
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Abuse Leaked Certificates

Several leaked certificates are already publicly posted, but it’s not 
impossible to find your own.
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Abuse Leaked Certificates

Oh and the best part…. most of them are undetected by the bulk of AV:
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Communicating with a Rootkit
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Beacon Out to a C2

A tried and true method that comes with some downsides is to “call 
home”.

 Firewalls can block or flag outgoing requests to unknown/suspicious 
IP Addresses or ports.
 Advanced Network Inspection can catch some exfiltration techniques 

that try to “blend in with the noise”.
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Open a Port

Some malware takes the route that the C2 connects to the victim 
directly to control it.

 Relatively simple to setup.
But…
 Could be blocked off by a firewall.
Difficult to “blend in with the noise”.
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Application Specific Hooking

More advanced malware may opt to hook a specific application’s 
communication as a channel of communication.

Difficult to detect, especially if using legitimate protocol.
But…
 It’s not very flexible.
 A machine might not have that service exposed.
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Choosing a Communication Method

What I want…
1. Limited detection vectors.
2. Flexibility for various environments.

My assumptions…
1. Victims machines will have some services exposed.
2. Inbound and outbound access may be monitored.
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Choosing a Communication Method

Application Specific Hooking was perfect for my needs, except for the 
flexibility.

Is there anyway we could change Application Specific Hooking to where 
it isn’t dependent on any single application?
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Abusing Legitimate Communication

What if instead of hooking an application directly, we…

Hook network communication, similar to tools like Wireshark.
 Place a special indicator in “malicious” packets, a “magic” constant.
 Send these “malicious” packets to legitimate ports on the victim 

machine.
 Search packets for this “magic” constant to pass on data to our 

malware.
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Hooking the User-Mode Network Stack
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Hooking the Windows Winsock Driver

 A significant amount of services on Windows can be found in user-
mode, how can we globally intercept this traffic?
Networking relating to WinSock is handled by Afd.sys, otherwise 

known as the “Ancillary Function Driver for WinSock”.
 Reversing a few functions in mswsock.dll revealed that a bulk of 

the communication was done through IOCTLs. If we could intercept 
these requests, we could snoop in on the data being received.
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How Do Irps Know Where to Go?

When you call NtDeviceIoControlFile on a file handle to a device, 
how does the kernel determine what function to call?
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Standard Methods of Intercepting Irps

There are a few ways we can intercept Irps, but let’s look at two 
common methods.

1. Replace the Major Function you’d like to hook in the driver’s object.
2. Perform a code hook directly on the dispatch handler.
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Picking a method

To pick the best method of hooking, here are a few common questions 
you should ask.

How many detection vectors are you potentially exposed to?
How "usable" is the method?
How expensive would it be to detect the method?
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Hook a Driver Object

How many detection vectors are you potentially exposed to?
 Memory artifacts.

How “usable” is the method?
 For stability, by replacing a single function with an interlocked exchange, this 

method should be stable.
 For compatibility, driver objects are well-documented and easy to find.

How expensive would it be to detect the method?
 Inexpensive, all anti-virus would need to do is enumerate loaded drivers and 

check that the major functions are within the bounds of the driver.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 28



Hook a Driver’s Dispatch Function

How many detection vectors are you potentially exposed to?
 Memory artifacts.

How “usable” is the method?
 Unless the function is exported, you will need to find the function yourself.
 Not all drivers are compatible with this method due to PatchGuard.
 HVCI incompatible.

How expensive would it be to detect the method?
 Potentially inexpensive and several methods to detect hooking.
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Hooking File Objects

I wanted a method that was…
Undocumented.
 Stable.
 Relatively expensive to detect.

What if instead of hooking the original driver object, we hooked the file 
object instead?
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How Do Irps Know Where to Go?

typedef struct _FILE_OBJECT {
CSHORT Type;
CSHORT Size;
PDEVICE_OBJECT DeviceObject;
...
} FILE_OBJECT;
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To retrieve the device associated with the Afd driver, the kernel calls 
IoGetRelatedDeviceObject.

What’s stopping us from 
overwriting this pointer?



Hooking File Objects

What we can do is…
1. Create our own device object and driver object.
2. Patch our copy of the driver object.
3. Replace the DeviceObject pointer of our file object with our own 

device.

Let’s talk about how we would go about doing this.
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Hooking File Objects

Let’s start by finding a file object to hook. We’re after handles to 
\Device\Afd, but how can we find these objects?
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typedef enum _SYSTEM_INFORMATION_CLASS
{
...
SystemHandleInformation,
...
} SYSTEM_INFORMATION_CLASS, 
*PSYSTEM_INFORMATION_CLASS;



Hooking File Objects

The SystemHandleInformation class allows us to query all handles 
on the system, including…
 The process ID the handle belongs to.
 The kernel pointer of the object associated with the handle.

If we open the Afd device ourselves, we can easily recognize file objects 
that are for the Afd device.
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Hooking File Objects

Before we can overwrite the DeviceObject member, we need to create 
our fake objects first. Fortunately, the kernel exports the function it 
uses itself to create these objects.

All we need to do is call ObCreateObject passing the 
IoDriverObjectType or IoDeviceObjectType to create our fake 
objects.

We can copy the existing objects over to contain the same member 
values.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 35



Hooking File Objects

With our fake objects created, we’re almost ready to set the 
DeviceObject of the file object. First though, we need to hook our 
driver object.

We can use the standard “Hook a Driver Object” method, except 
instead of performing it on the original driver object, we’ll use it on a 
fake driver object used exclusively for our hooks.
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Hooking File Objects

To prevent race conditions while replacing the device object member, 
the original device object we use inside of our hooked dispatch must be 
set at the same time we the DeviceObject member of the file object.

To do this, simply perform an interlocked exchange of the original 
device object and the device object our hook uses.
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Hooking File Objects

Now that we’ve hooked the file object, there is not much work left.

In our dispatch hook, we need to…
1. Check if we are hooking the MajorFunction being called.

1. If we are, call the hook function passing the original device object and 
original dispatch function for that MajorFunction.

2. Make sure to restore the original DeviceObject when the 
MajorFunction is IRP_MJ_CLEANUP.
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Hooking File Objects

How many detection vectors are you potentially exposed to?
 Memory artifacts.

How “usable” is the method?
 Most of the functions we use are at least semi-documented and unlikely to 

change significantly.

How expensive would it be to detect the method?
 Expensive, an anti-virus would have to replicate our hooking process and 

enumerate file objects to determine if the device/driver object was swapped.
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How the Spectre Rootkit Abuses the 
User-Mode Network Stack
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Abusing the Network

Using the File Object hook, we can now intercept Irps to the Afd driver.

This allows us to…
 Intercept all user-mode networking traffic.
 Send and receive our own data over any socket.
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Abusing the Network

To review, our existing plan is to…
Hook network communication, similar to tools like Wireshark.
 Place a special indicator in “malicious” packets, a “magic” constant.
 Send these “malicious” packets to legitimate ports on the victim 

machine.
 Search packets for this “magic” constant to pass on data to our 

malware.

How can we actually retrieve the content of packets that are received?
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Abusing the Network

For receive operations, an IOCTL with the code IOCTL_AFD_RECV is 
sent to the Afd driver. Here is the structure sent in the input buffer.
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typedef struct _AFD_RECV_INFO {
PAFD_WSABUF BufferArray;
ULONG BufferCount;
ULONG AfdFlags;
ULONG TdiFlags;
} AFD_RECV_INFO, * PAFD_RECV_INFO;

typedef struct _AFD_WSABUF {
UINT len;
PCHAR buf;
} AFD_WSABUF, * PAFD_WSABUF;



Parsing Packets: Design

Let’s talk about how the Spectre Rootkit was designed.
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Spectre Rootkit Packet Structure

Any prepended data

Magic Constant

Base Packet Structure

Optional Custom Structure

Any appended data



Parsing Packets: Pre-Processing

Here is the process used when the Spectre Rootkit receives a packet.
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Parsing Packets: Processing
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Before dispatching a packet, we need to create a complete packet.



Packet Handlers

Before we go any further, let’s talk about the concept of “Packet 
Handlers” in the Spectre Rootkit.
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Packet Handlers

An example of a packet handler included with the Spectre Rootkit is the 
PingPacketHandler. This handler is used to determine if a 
machine/port is infected.

The incoming packet has no actual data, other than indicating its Type
is a Ping. The handler responds to the client with an empty base 
packet with the Type set to Ping.
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Parsing Packets: Dispatching

Once a packet is completely populated, the “packet dispatcher” will…

Here’s why the “packet dispatcher” is awesome: by passing a pointer to 
itself to the relevant packet handler, that packet handler can recursively 
dispatch a new packet!
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Packet Handlers: XorPacketHandler

The best way to explain the recursive nature of the “packet dispatcher” 
is through an example, such as the XorPacketHandler.

The XorPacketHandler takes a XOR_PACKET structure:

This XOR_PACKET does not actually perform a malicious operation. 
Instead, it acts as an encapsulating packet.
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Packet Handlers: XorPacketHandler

When the XorPacketHandler receives a packet, it will…
1. Use the XorKey to deobfuscate the XorContent.
2. Recursively dispatch the XorContent as a new packet.

The model that the Spectre Rootkit uses allows you to create infinite 
layers of encapsulation.
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Executing Commands

Let’s take a look at how we can execute commands from our rootkit, a 
common feature seen in a variety of Windows malware.

Before we get into starting a process from a kernel driver, it’s important 
to understand how we would execute commands from a user-mode 
context.
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Executing Commands: User-mode
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Executing Commands: Kernel-mode

Let’s start by creating the pipes we need to obtain output.
Here is what CreatePipe does in the background…

Demystifying Modern Windows Rootkits – Black Hat USA 2020 54



Executing Commands: Kernel-mode

Now that we have pipes, we need to create the actual process. We’ll 
use ZwCreateUserProcess because that’s what kernelbase.dll
uses itself to create processes.

Let's start with the attribute list for the process.
 The most important attribute we have to set is 
PsAttributeImageName. This will specify the image file name for 
the new process.
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Executing Commands: Kernel-mode

Next, we have to fill out a RTL_USER_PROCESS_PARAMETERS
structure for the process.

In this structure, we need to set…
1. The window flags and the output handles to our pipes.
2. The current directory, the command line arguments, the process 

image path, and the default desktop name.
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Executing Commands: Kernel-mode

From there, all it takes is a call to ZwCreateUserProcess to start the 
process.

Once the process has exited, similar to what we do in user-mode, we 
can call ZwReadFile to read the output from the unnamed pipe.
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Hiding a Rootkit
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Introduction to Mini-Filters

Mini-filter drivers allow you to attach to volumes and intercept certain 
file I/O. This is performed by registering with the Filter Manager driver.
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Introduction to Mini-Filters

Mini-filters can be useful to mask the presence of our rootkit on the 
filesystem.

For example, a mini-filter can direct all file access for a certain file to 
another file. We can use this functionality to redirect access to our 
driver file to another legitimate driver.
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Picking a method

To pick the best method of hooking, here are a few common questions 
you should ask.

How many detection vectors are you potentially exposed to?
How "usable" is the method?
How expensive would it be to detect the method?
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Become a Mini-Filter

The easiest way to abuse the functionality of a mini-filter is to become 
one yourself. Here are the minimum requirements for 
FltRegisterFilter:
1. Create [ServiceKey]\Instances
2. Create [ServiceKey]\Instances\[An instance name]
3. In [ServiceKey]\Instances add a “DefaultInstance” and set it to your 

instance name used in step 2.
4. In [ServiceKey]\Instances\[An instance name], add the “Altitude” 

and “Flags” values.
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Become a Mini-Filter

How many detection vectors are you potentially exposed to?
 Registry and memory artifacts.

How “usable” is the method?
 No concerns from stability or usability, this is how other legitimate drivers 

register as mini-filters.

How expensive would it be to detect the method?
 Inexpensive. Besides the registry artifacts, drivers that are registered as mini-

filters can easily be enumerated through API such as 
FltEnumerateFilters.
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Hook a Mini-Filter

Another method is to simply hook an existing mini-filter. There are a 
couple of routes you could take.

 Code hook the callback for an existing filter.
Overwrite the FLT_REGISTRATION structure before the victim driver 

uses it to have your own callback.
DKOM an existing filter instance and replace the original callback with 

yours.
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Hook a Mini-Filter: Code Hook

One of the easiest way to intercept callbacks to an existing mini-filter is 
to simply perform a code hook.

This can be as simple as a jmp hook, but it comes with quite a few 
drawbacks, similar to those we saw in an earlier section where we 
discussed intercepting Irps.
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Hook a Mini-Filter: Code Hook

How many detection vectors are you potentially exposed to?
 Memory artifacts.

How “usable” is the method?
 Unless the function is exported, you will need to find the function yourself.
 Not all drivers are compatible with this method due to PatchGuard.
 HVCI incompatible.

How expensive would it be to detect the method?
 Potentially inexpensive and several methods to detect hooking.
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Hook a Mini-Filter: DKOM

A semi-documented method of hooking an existing mini-filter is 
through DKOM.

You can enumerate filters and instances through the documented APIs 
FltEnumerateFilters and FltEnumerateInstances.

The function that gets called for a certain operation is specified in the 
CallbackNodes array in the FLT_INSTANCE structure.
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Hook a Mini-Filter: DKOM

 The CallbackNodes array index is associated with the major 
function you’re hooking.
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Hook a Mini-Filter: DKOM

How many detection vectors are you potentially exposed to?
 Memory artifacts.

How “usable” is the method?
 For stability, although obtaining a FLT_INSTANCE structure is documented, 

the FLT_INSTANCE structure itself is undocumented.

How expensive would it be to detect the method?
 Inexpensive, an anti-virus would need to occasionally enumerate registered 

filters and their instances for hooks in the CallbackNodes array.
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Example: Abusing a Mini-Filter

Let’s say you want to protect a certain file, what’s an example of 
redirecting access to it?
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Wrap Up
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Thanks to...

Alex Ionescu (@aionescu)
 Long-time mentor very experienced with Windows Internals.

ReactOS
 A fantastic reference for undocumented functions and structures.

Nemanja Mulasmajic (@0xNemi) and Vlad Ionescu (@ucsenoi)
Helped review this presentation.
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Contact / Questions

Thanks for sticking around! Now is the time for any questions.

Twitter
@BillDemirkapi
Blog
https://billdemirkapi.me
Spectre Rootkit
https://github.com/D4stiny/spectre
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