
Demystifying Modern 
Windows Rootkits

Bill Demirkapi
Independent Security Researcher

1Demystifying Modern Windows Rootkits – Black Hat USA 2020



Who Am I?

 18 years old
 Sophomore at the Rochester Institute of Technology
 Windows Internals
Mostly self-taught (with guidance)
 Strong “Game Hacking” background

2Demystifying Modern Windows Rootkits – Black Hat USA 2020



What Is This Talk About?

In this talk, we’ll go over…
 Loading a rootkit.
 Communicating with a rootkit.
 Abusing legitimate network communications.
 An example rootkit I wrote and the design choices behind it.
 Executing commands from kernel.
 Tricks to cover up the filesystem trace of your rootkit.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 3



Introduction to 
Windows Rootkits

Demystifying Modern Windows Rootkits – Black Hat USA 2020 4



Windows Rootkits: An Overview

Why would you want to use a rootkit?
 Kernel drivers have significant access to the machine.
 Same privilege level as a typical kernel anti-virus.
 Less mitigations and security solutions targeting kernel malware.
 Anti-Virus often have less visibility into operations performed by 

kernel drivers.
 Kernel drivers are often ignored by anti-virus.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 5



Example: Treatment by Anti-Virus

Anti-virus tends to treat kernel drivers with significant trust compared 
to user-mode applications.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 6

Excerpt from Carbon Black’s Process/Thread Handle callbacks

Excerpt from Malwarebytes’ Process/Thread Handle callbacks



Loading a Rootkit

Demystifying Modern Windows Rootkits – Black Hat USA 2020 7



Abuse Legitimate Drivers

There are a lot of “vulnerable” drivers. With some reversing 
knowledge, finding a “0-day” in a driver can be trivial.

Examples include…
 Capcom’s Anti-Cheat driver
 Intel’s NAL Driver
Microsoft themselves!

Demystifying Modern Windows Rootkits – Black Hat USA 2020 8



Abuse Legitimate Drivers

Using legitimate drivers has quite a few benefits too:

 You only need a few primitives to escalate privilege.
 Finding a “vulnerable” driver is relatively trivial (OEM Drivers ).
Difficult to detect due to compatibility reasons.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 9



Abuse Legitimate Drivers

Abusing legitimate drivers comes with some strong drawbacks too…

Major issue of compatibility across operating system versions 
depending on the primitives you have.
Much more likely to run into stability issues.
 The last thing you want is your malware to BSOD a victim.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 10



Just Buy a Certificate!

For some red teamers, buying a legitimate code signing certificate 
might be a good option.

Useful for targeted attacks.
No stability concerns.
But…
 Potentially reveals your identity.
 Can be blacklisted.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 11



Abuse Leaked Certificates

Instead of buying a certificate yourself, why not just use one from 
someone else?

 There are quite a few public leaked certificates available to download.
 Almost has all the benefits of buying one without deanonymization.
But…
 The leaked certificate you use can be detected in the future.
 If the certificate was issued after July 29th, 2015, it won’t work on 

secure boot machines running certain versions of Windows 10.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 12



Abuse Leaked Certificates

In most cases, Windows doesn’t care if your driver has a certificate that 
has expired or was revoked.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 13



Abuse Leaked Certificates

Several leaked certificates are already publicly posted, but it’s not 
impossible to find your own.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 14



Abuse Leaked Certificates

Oh and the best part…. most of them are undetected by the bulk of AV:

Demystifying Modern Windows Rootkits – Black Hat USA 2020 15



Communicating with a Rootkit

Demystifying Modern Windows Rootkits – Black Hat USA 2020 16



Beacon Out to a C2

A tried and true method that comes with some downsides is to “call 
home”.

 Firewalls can block or flag outgoing requests to unknown/suspicious 
IP Addresses or ports.
 Advanced Network Inspection can catch some exfiltration techniques 

that try to “blend in with the noise”.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 17



Open a Port

Some malware takes the route that the C2 connects to the victim 
directly to control it.

 Relatively simple to setup.
But…
 Could be blocked off by a firewall.
Difficult to “blend in with the noise”.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 18



Application Specific Hooking

More advanced malware may opt to hook a specific application’s 
communication as a channel of communication.

Difficult to detect, especially if using legitimate protocol.
But…
 It’s not very flexible.
 A machine might not have that service exposed.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 19



Choosing a Communication Method

What I want…
1. Limited detection vectors.
2. Flexibility for various environments.

My assumptions…
1. Victims machines will have some services exposed.
2. Inbound and outbound access may be monitored.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 20



Choosing a Communication Method

Application Specific Hooking was perfect for my needs, except for the 
flexibility.

Is there anyway we could change Application Specific Hooking to where 
it isn’t dependent on any single application?

Demystifying Modern Windows Rootkits – Black Hat USA 2020 21



Abusing Legitimate Communication

What if instead of hooking an application directly, we…

Hook network communication, similar to tools like Wireshark.
 Place a special indicator in “malicious” packets, a “magic” constant.
 Send these “malicious” packets to legitimate ports on the victim 

machine.
 Search packets for this “magic” constant to pass on data to our 

malware.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 22



Hooking the User-Mode Network Stack

Demystifying Modern Windows Rootkits – Black Hat USA 2020 23



Hooking the Windows Winsock Driver

 A significant amount of services on Windows can be found in user-
mode, how can we globally intercept this traffic?
Networking relating to WinSock is handled by Afd.sys, otherwise 

known as the “Ancillary Function Driver for WinSock”.
 Reversing a few functions in mswsock.dll revealed that a bulk of 

the communication was done through IOCTLs. If we could intercept 
these requests, we could snoop in on the data being received.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 24



How Do Irps Know Where to Go?

When you call NtDeviceIoControlFile on a file handle to a device, 
how does the kernel determine what function to call?

Demystifying Modern Windows Rootkits – Black Hat USA 2020 25



Standard Methods of Intercepting Irps

There are a few ways we can intercept Irps, but let’s look at two 
common methods.

1. Replace the Major Function you’d like to hook in the driver’s object.
2. Perform a code hook directly on the dispatch handler.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 26



Picking a method

To pick the best method of hooking, here are a few common questions 
you should ask.

How many detection vectors are you potentially exposed to?
How "usable" is the method?
How expensive would it be to detect the method?

Demystifying Modern Windows Rootkits – Black Hat USA 2020 27



Hook a Driver Object

How many detection vectors are you potentially exposed to?
 Memory artifacts.

How “usable” is the method?
 For stability, by replacing a single function with an interlocked exchange, this 

method should be stable.
 For compatibility, driver objects are well-documented and easy to find.

How expensive would it be to detect the method?
 Inexpensive, all anti-virus would need to do is enumerate loaded drivers and 

check that the major functions are within the bounds of the driver.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 28



Hook a Driver’s Dispatch Function

How many detection vectors are you potentially exposed to?
 Memory artifacts.

How “usable” is the method?
 Unless the function is exported, you will need to find the function yourself.
 Not all drivers are compatible with this method due to PatchGuard.
 HVCI incompatible.

How expensive would it be to detect the method?
 Potentially inexpensive and several methods to detect hooking.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 29



Hooking File Objects

I wanted a method that was…
Undocumented.
 Stable.
 Relatively expensive to detect.

What if instead of hooking the original driver object, we hooked the file 
object instead?

Demystifying Modern Windows Rootkits – Black Hat USA 2020 30



How Do Irps Know Where to Go?

typedef struct _FILE_OBJECT {
CSHORT Type;
CSHORT Size;
PDEVICE_OBJECT DeviceObject;
...
} FILE_OBJECT;

Demystifying Modern Windows Rootkits – Black Hat USA 2020 31

To retrieve the device associated with the Afd driver, the kernel calls 
IoGetRelatedDeviceObject.

What’s stopping us from 
overwriting this pointer?



Hooking File Objects

What we can do is…
1. Create our own device object and driver object.
2. Patch our copy of the driver object.
3. Replace the DeviceObject pointer of our file object with our own 

device.

Let’s talk about how we would go about doing this.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 32



Hooking File Objects

Let’s start by finding a file object to hook. We’re after handles to 
\Device\Afd, but how can we find these objects?

Demystifying Modern Windows Rootkits – Black Hat USA 2020 33

typedef enum _SYSTEM_INFORMATION_CLASS
{
...
SystemHandleInformation,
...
} SYSTEM_INFORMATION_CLASS, 
*PSYSTEM_INFORMATION_CLASS;



Hooking File Objects

The SystemHandleInformation class allows us to query all handles 
on the system, including…
 The process ID the handle belongs to.
 The kernel pointer of the object associated with the handle.

If we open the Afd device ourselves, we can easily recognize file objects 
that are for the Afd device.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 34



Hooking File Objects

Before we can overwrite the DeviceObject member, we need to create 
our fake objects first. Fortunately, the kernel exports the function it 
uses itself to create these objects.

All we need to do is call ObCreateObject passing the 
IoDriverObjectType or IoDeviceObjectType to create our fake 
objects.

We can copy the existing objects over to contain the same member 
values.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 35



Hooking File Objects

With our fake objects created, we’re almost ready to set the 
DeviceObject of the file object. First though, we need to hook our 
driver object.

We can use the standard “Hook a Driver Object” method, except 
instead of performing it on the original driver object, we’ll use it on a 
fake driver object used exclusively for our hooks.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 36



Hooking File Objects

To prevent race conditions while replacing the device object member, 
the original device object we use inside of our hooked dispatch must be 
set at the same time we the DeviceObject member of the file object.

To do this, simply perform an interlocked exchange of the original 
device object and the device object our hook uses.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 37



Hooking File Objects

Now that we’ve hooked the file object, there is not much work left.

In our dispatch hook, we need to…
1. Check if we are hooking the MajorFunction being called.

1. If we are, call the hook function passing the original device object and 
original dispatch function for that MajorFunction.

2. Make sure to restore the original DeviceObject when the 
MajorFunction is IRP_MJ_CLEANUP.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 38



Hooking File Objects

How many detection vectors are you potentially exposed to?
 Memory artifacts.

How “usable” is the method?
 Most of the functions we use are at least semi-documented and unlikely to 

change significantly.

How expensive would it be to detect the method?
 Expensive, an anti-virus would have to replicate our hooking process and 

enumerate file objects to determine if the device/driver object was swapped.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 39



How the Spectre Rootkit Abuses the 
User-Mode Network Stack

Demystifying Modern Windows Rootkits – Black Hat USA 2020 40



Abusing the Network

Using the File Object hook, we can now intercept Irps to the Afd driver.

This allows us to…
 Intercept all user-mode networking traffic.
 Send and receive our own data over any socket.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 41



Abusing the Network

To review, our existing plan is to…
Hook network communication, similar to tools like Wireshark.
 Place a special indicator in “malicious” packets, a “magic” constant.
 Send these “malicious” packets to legitimate ports on the victim 

machine.
 Search packets for this “magic” constant to pass on data to our 

malware.

How can we actually retrieve the content of packets that are received?

Demystifying Modern Windows Rootkits – Black Hat USA 2020 42



Abusing the Network

For receive operations, an IOCTL with the code IOCTL_AFD_RECV is 
sent to the Afd driver. Here is the structure sent in the input buffer.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 43

typedef struct _AFD_RECV_INFO {
PAFD_WSABUF BufferArray;
ULONG BufferCount;
ULONG AfdFlags;
ULONG TdiFlags;
} AFD_RECV_INFO, * PAFD_RECV_INFO;

typedef struct _AFD_WSABUF {
UINT len;
PCHAR buf;
} AFD_WSABUF, * PAFD_WSABUF;



Parsing Packets: Design

Let’s talk about how the Spectre Rootkit was designed.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 44

Spectre Rootkit Packet Structure

Any prepended data

Magic Constant

Base Packet Structure

Optional Custom Structure

Any appended data



Parsing Packets: Pre-Processing

Here is the process used when the Spectre Rootkit receives a packet.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 45



Parsing Packets: Processing

Demystifying Modern Windows Rootkits – Black Hat USA 2020 46

Before dispatching a packet, we need to create a complete packet.



Packet Handlers

Before we go any further, let’s talk about the concept of “Packet 
Handlers” in the Spectre Rootkit.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 47



Packet Handlers

An example of a packet handler included with the Spectre Rootkit is the 
PingPacketHandler. This handler is used to determine if a 
machine/port is infected.

The incoming packet has no actual data, other than indicating its Type
is a Ping. The handler responds to the client with an empty base 
packet with the Type set to Ping.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 48



Parsing Packets: Dispatching

Once a packet is completely populated, the “packet dispatcher” will…

Here’s why the “packet dispatcher” is awesome: by passing a pointer to 
itself to the relevant packet handler, that packet handler can recursively 
dispatch a new packet!

Demystifying Modern Windows Rootkits – Black Hat USA 2020 49



Packet Handlers: XorPacketHandler

The best way to explain the recursive nature of the “packet dispatcher” 
is through an example, such as the XorPacketHandler.

The XorPacketHandler takes a XOR_PACKET structure:

This XOR_PACKET does not actually perform a malicious operation. 
Instead, it acts as an encapsulating packet.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 50



Packet Handlers: XorPacketHandler

When the XorPacketHandler receives a packet, it will…
1. Use the XorKey to deobfuscate the XorContent.
2. Recursively dispatch the XorContent as a new packet.

The model that the Spectre Rootkit uses allows you to create infinite 
layers of encapsulation.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 51



Executing Commands

Let’s take a look at how we can execute commands from our rootkit, a 
common feature seen in a variety of Windows malware.

Before we get into starting a process from a kernel driver, it’s important 
to understand how we would execute commands from a user-mode 
context.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 52



Executing Commands: User-mode

Demystifying Modern Windows Rootkits – Black Hat USA 2020 53



Executing Commands: Kernel-mode

Let’s start by creating the pipes we need to obtain output.
Here is what CreatePipe does in the background…

Demystifying Modern Windows Rootkits – Black Hat USA 2020 54



Executing Commands: Kernel-mode

Now that we have pipes, we need to create the actual process. We’ll 
use ZwCreateUserProcess because that’s what kernelbase.dll
uses itself to create processes.

Let's start with the attribute list for the process.
 The most important attribute we have to set is 
PsAttributeImageName. This will specify the image file name for 
the new process.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 55



Executing Commands: Kernel-mode

Next, we have to fill out a RTL_USER_PROCESS_PARAMETERS
structure for the process.

In this structure, we need to set…
1. The window flags and the output handles to our pipes.
2. The current directory, the command line arguments, the process 

image path, and the default desktop name.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 56



Executing Commands: Kernel-mode

From there, all it takes is a call to ZwCreateUserProcess to start the 
process.

Once the process has exited, similar to what we do in user-mode, we 
can call ZwReadFile to read the output from the unnamed pipe.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 57



Hiding a Rootkit

Demystifying Modern Windows Rootkits – Black Hat USA 2020 58



Introduction to Mini-Filters

Mini-filter drivers allow you to attach to volumes and intercept certain 
file I/O. This is performed by registering with the Filter Manager driver.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 59

Source: Microsoft Docs



Introduction to Mini-Filters

Mini-filters can be useful to mask the presence of our rootkit on the 
filesystem.

For example, a mini-filter can direct all file access for a certain file to 
another file. We can use this functionality to redirect access to our 
driver file to another legitimate driver.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 60



Picking a method

To pick the best method of hooking, here are a few common questions 
you should ask.

How many detection vectors are you potentially exposed to?
How "usable" is the method?
How expensive would it be to detect the method?

Demystifying Modern Windows Rootkits – Black Hat USA 2020 61



Become a Mini-Filter

The easiest way to abuse the functionality of a mini-filter is to become 
one yourself. Here are the minimum requirements for 
FltRegisterFilter:
1. Create [ServiceKey]\Instances
2. Create [ServiceKey]\Instances\[An instance name]
3. In [ServiceKey]\Instances add a “DefaultInstance” and set it to your 

instance name used in step 2.
4. In [ServiceKey]\Instances\[An instance name], add the “Altitude” 

and “Flags” values.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 62



Become a Mini-Filter

How many detection vectors are you potentially exposed to?
 Registry and memory artifacts.

How “usable” is the method?
 No concerns from stability or usability, this is how other legitimate drivers 

register as mini-filters.

How expensive would it be to detect the method?
 Inexpensive. Besides the registry artifacts, drivers that are registered as mini-

filters can easily be enumerated through API such as 
FltEnumerateFilters.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 63



Hook a Mini-Filter

Another method is to simply hook an existing mini-filter. There are a 
couple of routes you could take.

 Code hook the callback for an existing filter.
Overwrite the FLT_REGISTRATION structure before the victim driver 

uses it to have your own callback.
DKOM an existing filter instance and replace the original callback with 

yours.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 64



Hook a Mini-Filter: Code Hook

One of the easiest way to intercept callbacks to an existing mini-filter is 
to simply perform a code hook.

This can be as simple as a jmp hook, but it comes with quite a few 
drawbacks, similar to those we saw in an earlier section where we 
discussed intercepting Irps.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 65



Hook a Mini-Filter: Code Hook

How many detection vectors are you potentially exposed to?
 Memory artifacts.

How “usable” is the method?
 Unless the function is exported, you will need to find the function yourself.
 Not all drivers are compatible with this method due to PatchGuard.
 HVCI incompatible.

How expensive would it be to detect the method?
 Potentially inexpensive and several methods to detect hooking.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 66



Hook a Mini-Filter: DKOM

A semi-documented method of hooking an existing mini-filter is 
through DKOM.

You can enumerate filters and instances through the documented APIs 
FltEnumerateFilters and FltEnumerateInstances.

The function that gets called for a certain operation is specified in the 
CallbackNodes array in the FLT_INSTANCE structure.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 67



Hook a Mini-Filter: DKOM

 The CallbackNodes array index is associated with the major 
function you’re hooking.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 68



Hook a Mini-Filter: DKOM

How many detection vectors are you potentially exposed to?
 Memory artifacts.

How “usable” is the method?
 For stability, although obtaining a FLT_INSTANCE structure is documented, 

the FLT_INSTANCE structure itself is undocumented.

How expensive would it be to detect the method?
 Inexpensive, an anti-virus would need to occasionally enumerate registered 

filters and their instances for hooks in the CallbackNodes array.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 69



Example: Abusing a Mini-Filter

Let’s say you want to protect a certain file, what’s an example of 
redirecting access to it?

Demystifying Modern Windows Rootkits – Black Hat USA 2020 70



Wrap Up

Demystifying Modern Windows Rootkits – Black Hat USA 2020 71



Thanks to...

Alex Ionescu (@aionescu)
 Long-time mentor very experienced with Windows Internals.

ReactOS
 A fantastic reference for undocumented functions and structures.

Nemanja Mulasmajic (@0xNemi) and Vlad Ionescu (@ucsenoi)
Helped review this presentation.

Demystifying Modern Windows Rootkits – Black Hat USA 2020 72



Contact / Questions

Thanks for sticking around! Now is the time for any questions.

Twitter
@BillDemirkapi
Blog
https://billdemirkapi.me
Spectre Rootkit
https://github.com/D4stiny/spectre

Demystifying Modern Windows Rootkits – Black Hat USA 2020 73


	Demystifying Modern Windows Rootkits
	Who Am I?
	What Is This Talk About?
	Introduction to Windows Rootkits
	Windows Rootkits: An Overview
	Example: Treatment by Anti-Virus
	Loading a Rootkit
	Abuse Legitimate Drivers
	Abuse Legitimate Drivers
	Abuse Legitimate Drivers
	Just Buy a Certificate!
	Abuse Leaked Certificates
	Abuse Leaked Certificates
	Abuse Leaked Certificates
	Abuse Leaked Certificates
	Communicating with a Rootkit
	Beacon Out to a C2
	Open a Port
	Application Specific Hooking
	Choosing a Communication Method
	Choosing a Communication Method
	Abusing Legitimate Communication
	Hooking the User-Mode Network Stack
	Hooking the Windows Winsock Driver
	How Do Irps Know Where to Go?
	Standard Methods of Intercepting Irps
	Picking a method
	Hook a Driver Object
	Hook a Driver’s Dispatch Function
	Hooking File Objects
	How Do Irps Know Where to Go?
	Hooking File Objects
	Hooking File Objects
	Hooking File Objects
	Hooking File Objects
	Hooking File Objects
	Hooking File Objects
	Hooking File Objects
	Hooking File Objects
	How the Spectre Rootkit Abuses the User-Mode Network Stack
	Abusing the Network
	Abusing the Network
	Abusing the Network
	Parsing Packets: Design
	Parsing Packets: Pre-Processing
	Parsing Packets: Processing
	Packet Handlers
	Packet Handlers
	Parsing Packets: Dispatching
	Packet Handlers: XorPacketHandler
	Packet Handlers: XorPacketHandler
	Executing Commands
	Executing Commands: User-mode
	Executing Commands: Kernel-mode
	Executing Commands: Kernel-mode
	Executing Commands: Kernel-mode
	Executing Commands: Kernel-mode
	Hiding a Rootkit
	Introduction to Mini-Filters
	Introduction to Mini-Filters
	Picking a method
	Become a Mini-Filter
	Become a Mini-Filter
	Hook a Mini-Filter
	Hook a Mini-Filter: Code Hook
	Hook a Mini-Filter: Code Hook
	Hook a Mini-Filter: DKOM
	Hook a Mini-Filter: DKOM
	Hook a Mini-Filter: DKOM
	Example: Abusing a Mini-Filter
	Wrap Up
	Thanks to...
	Contact / Questions

