Finding New Bluetooth Low Energy

Exploits via Reverse Engineering
Multiple Vendors' Firmwares

Veronica Kovah
Dark Mentor LLC

Hello World!

* Previously a security engineer for Tesla, NSA, MITRE, and Sourcefire

* Currently founder of Dark Mentor LLC, security consulting and
education

* This talk is about sharing the journey from knowing almost nothing
about Bluetooth to finding remote code execution vulnerabilities

e veronica@darkmentor.com, @VeronicaKovah

Starting from scratch...

Learning mode

e Surveyed existing Bluetooth (BT) security research

* Read the complex, more than 3000 pages, Bluetooth specification

* Not back to back!
* Focus on common developer’s mistake: e.g. length, nested fields

* Looked for if there is any open source implementation below HCI

* BT classic: could not find any
e Bluetooth Low Energy (BLE) : Zephyr and Apache Mynewt NimBLE

 Started with BT classic, then moved onto BLE

BLE stack in dual chip configuration

Host Generic Access Profile (GAP)
Generic Attribute Profile (GATT)
Attribute Protocol (ATT) Security Manager (SM)

Logical Link Control and Adaptation Protocol (L2CAP)

UART, USB, etc.
Controller

THIS TALK Link Layer (LL)

BLE Radio Physical Layer (PHY)

BLE stack in single chip configuration

Controller Generic Access Profile (GAP)
Generic Attribute Profile (GATT)
Attribute Protocol (ATT) Security Manager (SM)

Logical Link Control and Adaptation Protocol (L2CAP)

Implementation-
specific

THIS TALK Link Layer (LL)

BLE Radio Physical Layer (PHY)

Bluetooth (classic and low energy)
vulnerability CVE ID counts when | started

Host

132

Controller
6

Bluetooth (classic and low energy)
vulnerability CVE ID counts now

Host

244

Controller 14
(2/3 BLE RCEs are this talk!)

Why target below the HCI layer?

Controller Controller Controller
1 2 3

Why target below the HCI layer?

Controller
D)
&)

New BLE low layer vulnerabilities!

* Neither pairing nor authentication is required, just need proximity

e Texas Instruments CC256x and WL18xx dual-mode Bluetooth
controller devices

Demd » « RCE #1 (CVE-2019-15948)
* Potential RCE (CVE-2019-15948)

 Silicon Labs BLE EFR32 SoC's and associated modules
Demo » * RCE #2 (CVE-2020-15531)
* DoS (CVE-2020-15532)

Lab Setup

Lab setup: targets

My lab has way more
development boards
but these are the ones
| will talk about today ©

0229 ssa/a';:lM

Lab setup: for basic HW debug 1

USB to serial converters
with CTS and RTS lines

USB to serial converters
without CTS and RTS lines

A 4

Lab setup: for basic HW debug 2

To use OpenOCD,

Olimex ARM-USB-TINY-H

. SEGGER J-Link EDU Mini

Olimex ARM-JTAG-SWD = - JTAG/SWD debugger

10-pin 2x5 socket-
2 T , socket 1.27mm IDC
(used this the most) § ’ (SWD) cable
SEGGER J-Link EDU- £ _ = S
JTAG/SWD debugger
+

SWD adapter

Lab setup: for fuzzer and convenience

USB hub with individual
power switches

SW-controllable (uhubctl)
USB hub for fuzzer

USB power meter

Lab setup: sniffers

e Ubertooth
* Great Scott Gadgets hardware
* Pretty console display

* (SW) does not support extended
advertisement packets

* http://ubertooth.sourceforge.net/

 Sniffle
e TI CC1352/CC26x2 hardware
Supports BT 5 packet formats / PHY modes
Was very useful to build/debug a BLE fuzzer
Less pretty console display for a demo
https://www.nccgroup.com/us/our-research/sniffle-a-sniffer-for-bluetooth-5/

Ubertooth
TI CC1352/CC26x2 hardware

Note: There are many other sniffers, check if your project goal aligns with a sniffer’s features

Lab setup: packet sending HW

e Started with Nordic Semiconductor

NRF52832 dev board

» Selected this first because open source BLE
implementations had more documentation with

this board (obviously B/C it’s older dev board!)
* USB to serial converter is necessary

s -y
60000000 M

* Ended up with nRF52840 dev board
* UART interface through a virtual COM port
* No USB to serial converter is needed

Lab setup: JackBNimBLE, packet sending SW

* Send arbitrary BLE Link Layer packets
e Extracted from my home-made fuzzer

e Controller SW: made modification to Apache Mynewt NimBLE
(https://mynewt.apache.org/)

* Host SW: python scripts via HCl interface

* Current version can be used to share PoC

* Easy to extend, e.g. fuzzer

* https://github.com/darkmentorlic/jackbnimble

Host (e.g. Linux) Host (Victim)

JackBNimBLE Host
(HClI command-
sending python)

UART HCI link

Controller (nRF52840) Controller (Victim)

JackBNimBLE Firmware
(custom nRF NimBLE)

Lab Setup Complete! Let’s attack!

Target #1: Texas Instruments WL1835MOD

* Bluetooth v4.2
* Dual mode (BT classic and BLE)
* No JTAG or SWD readily available

* BLE Link Layer is in ROM
* Host applies a patch

* No firmware image readily available

e WiLink™ Wireless Tools for WL18XX modules
* HCITester: .bts binary patch -> human-readable format
* Logger: UART binary debug messages-> human-readable format

Target #1

BLE stack in dual chip configuration

Generic Access Profile (GAP)

Generic Attribute Profile (GATT)

Attribute Protocol (ATT) Security Manager (SM)

Logical Link Control and Adaptation Protocol (L2CAP)

UART, USB, etc.

Controller
(WL1835M0D)

BLE Radio Physical Layer (PHY)

Target #1

Static analysis

* Memory dumping via Vendor Specific “HCI_VS_ Read _Memory”
command

e Used IDA Pro to analyze the dumped memory

* |dentified log print functions whose arguments are a log string
identifier(s) and the log string’s optional parameters like a format
string

* Made an IDA Python script to add log strings where a log function call
exists
* |dentified some function names
* Inferred a lot of functions’ context

ROM:
ROM:
:0008DOEC
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:

ROM

ROM

ROM
ROM

0008DOEC sub_8DOEC

0008DOEC

0008DOEC
0008DOEC
0008DOEC
0008DOEE
0008DOFO
0008DOF2
0008DOF4

:0008DOF6
ROM:
ROM:
ROM:

0008DOF8
0008DOFA
0008DOFC

:0008DOFE
:0008D100
ROM:
ROM:
ROM:
ROM:
ROM:
:0008D10C

0008D104
0008D104
0008D104
0008D106
0008D10A

paramz2
param3

loc_8D104

{R2-R7, LR}
R5, RO

L

’

RO, =word 20087762

:0008DQEC 1lm2um_perform_command

:0008DE
:0008DOEC param2
:0008DOEC param3
:0008DOEC
:0008DOEC
:0008DOEE
:0008DOFO
:0008DOF2
:0008DOF4
:0008DOF6
:0008DOF8
:0008DOEA
:0008DOE
:0008DOE
:0008DOFE

:0008D100

:0008D104

:0008D104 loc_8D104
:0008D104

:0008D106

:0008D10A

:0008D10C

CODE XREF:

CMP
MOV . W
BHI
TBB.W

sub_8D1D4+184p

Target #1

; CODE XREF: 1lm2um_

&

{R2-R7,LR} ; Push registers
R5, RO ; Rd = Op2

RO, =unk_20087762 Load fr
RO, [RO] ; Load from Memory
R7, R1 Rd = Op2

RO, RO, #2 ; Logical Shift F
loc_8D104 Branch
, R3 Rd = Op2

, #0x35 5' ; Rd = Op2
R2, R1 Rd = Oj

log_level2 param2_ 3580 ; BErg

; CODE XREF: l1lm2um_
R5, #0x12 ; switch 19 cases
R4, #0 Rd = Op2
def_ 8D10C jur :
[PC,R5] ; switch jump

ptable 0008D
A

Dynamic analysis

 Used a home-made fuzzer

* RE’ed the hard fault handler and enabled more
logs to see register, stack, and heap memory
states

e Patched binary for debugging via hooking
* Don’t know how to do JTAG wiring
* Cortex-M3 Flash Patch and Breakpoint Unit (FPB)

e Used HCI_VS_Write_Memory to have an alternate
code for reading memory and/or register values

* Used log() to send values to UART

Target #1

1) how are\welgoing
= ‘m do thls”/ 11!

the @E’D@@@W (D the
hardiwayEiinerieRine
[l

ﬁ log_without_patch.Igr - Logger 5.0 - Not Connected — L T t # 1
File Edit a rge

Bookmarks/Comments View Help

D B X8 E@@ 8 = 8|

1 #| Level Time Port File N... Line | Information A
= 1152 6 15:25:59.... BT Logger1 Msg from lower MAC WB_ADV_IND (0)
“ 1153 6 15:25:59.... BT Logger 1 SCANNER RCV PKT: type 0,clk 40471, pt 291
3 1154 6 15:25:59.... BT Logger 1 SCANNER RCV PKT: type 2,clk 40475, pt 499
4 1155 6 15:25:59.... BT Logger1 Msg from lower MAC WB_NON_CONN_ADV_IND
1156 6 15:25:59.... BT Logger1 SCAN, got invalid packet. type=14, length=33, wb_ac_corr_ind=0xf1
5 1157 6 15:25:59.... BT Logger1 SCANNER RCV PKT: type 0,clk 40487, pt 73!
6 1158 6 15:25:59.... BT Logger1 SCANNER RCV PKT: type 0,clk 40511, pt 36
1159 6 15:25:59.... BT Logger 1 L e
7 1160 6 15:25:59.... BT Logger1 Msg from lower MAC WB_ADV_IND (0)
8 1161 1 15:25:59.... BT Logger1 *** ERROR: Hard Fault Exception in MAIN MCU. Details follows: ™ s
9 1162 1 15:25:59.... BT Logger1 Hard Fault: PC value at time of fault = 0x41414140
1163 1 15:25:59.... BT Logger1 Hard Fault: Configurable Fault Status Register = 0x00000001
10 1164 1 15:25:59.... BT Logger 1 Hard Fault: Hard Fault Status Register = 0x40000000
1165 1 15:25:59.... BT Logger1 *** Hard Fault Information end. Trying recovery at address [PC + 2] ¥ s
1166 1 15:25:59.... BT Logger 1 *** ERROR: Hard Fault Exception in MAIN MCU. Details follows: o
1167 1 15:25:59.... BT Logger 1 Hard Fault: PC value at time of fault = 0x41414142
1168 1 15:25:59.... BT Logger1 Hard Fault: Configurable Fault Status Register = 0x00000001
1169 1 15:25:59.... BT Logger1 Hard Fault: Hard Fault Status Register = 0x40000000
170 1 15:25:59.... BT Logger1 *** Hard Fault Information end. Trying recovery at address [PC + 2] ***** i
TR 1 15:25:59.... BT Logger 1 *** ERROR: Hard Fault Exception in MAIN MCU. Details follows: **** s
W2z: 1 15:25:59.... BT Logger 1 Hard Fault: PC value at time of fault = 0x41414144
1173 1 15:25:59.... BT Logger1 Hard Fault: Configurable Fault Status Register = 0x00000001
1174 1 15:25:59.... BT Logger1 Hard Fault: Hard Fault Status Register = 0x40000000
175 1 15:25:59.... BT Logger1 *** Hard Fault Information end. Trying recovery at address [PC + 2] ¥ oo
1176 1 15:25:59.... BT Logger 1 *** ERROR: Hard Fault Exception in MAIN MCU. Details follows: **** s a s
nmw 1 15:25:59.... BT Logger1 Hard Fault: PC value at time of fault = 0x41414146
178 1 15:25:59.... BT Logger1 Hard Fault: Configurable Fault Status Register = 0x00000001
179 1 15:25:59.... BT Logger1 Hard Fault: Hard Fault Status Register = 0x40000000
1180 1 15:25:59.... BT Logger 1 *** Hard Fault Information end. Trying recovery at address [PC + 2] ****rrmammaiomas o as
1121 1 15.75-5Q RT | naner 1 *** ERRNOR: Hard Fault Fvrention in MAIN MO Netaile fallmuae: 2o o o e ¥
< >

Ready Auto Save ---- |View: <None> Logs: 78749 / 78749

* log_with_patch.lgr - Logger 5.0 - Connected (COM4)

File

Dl @ X6 @@ 8§ = B8

O W0 2 " 5K W -

=

Edit

Bookmarks/Comments View Help

: .
== Hooked just before
2811 calling memcpy
2812 ..
5513 Printing out src and len
2814 : 81 Logger
2815 1 09:03:59.... BT Logger1
2816 2 09:03:59.... BT Logger 1
2817 2 09:03:59.... BT Logger 1
2818 2 09:03:59.... BT Logger1
2819 2 09:03:59... BT Logger 1
2820 2 09:03:59.... BT Logger1

Wrote 1 to 0x2008845c to see
more hardfault state info

2 :03: BT Logger 1

2 09:03:59.... BT Logger1

2 09:03:59.... BT Logger1
283 2 09:03:59.... BT Logger1
2831 2 09:03:59.... BT Logger1
2832 2 09:03:59.... BT Logger1
2833 2 09:03:59.... BT Logger1
2834 2 09:03:59.... BT Logger1
2835 2 09:03:59.... BT Logger1
2836 2 09:03:59.... BT Logger1
2837 2 09:03:59.... BT Logger1

Line

Information

er MACWER ADY IND (0)
I send LMP params - 0x20083b58, Oxfc

*** ERROR: Hard Fault Exception in MAIN MCU. Details follows: *** s s

Hard Fault: PC value at time of fault = 0x41414140
Hard Fault: Configurable Fault Status Register = 0x00000001
Hard Fault: Hard Fault Status Register = 0x40000000

Target #1

CPU Registers Dump follows (at c_hard_fault_handler context)
RO=0x00000001
R1=0x20086514
R2=0x00000200
R3=0x00000200
R4=0x00000004
R5=0x20087758
R6=0x20090D70
R7=0x0000003F
R8=0x00000001
R9=0x200EFO04
R10=0x200882A0
R11=0x40000000
R12=0x200866BB
R13=0x20090D4C
R14=0x00047B91
Stack Dump follows (current SP=0x20090D4C)
Stack content at depth 0 (at address 0x20090D4C) = 0x55AA5500
Stack content at depth 1 (at address 0x20090D50) = Ox1E3BESAA
Stack content at depth 2 (at address 0x20090D54) = 0x4125000C
Stack content at depth 3 (at address 0x20090D58) = 0x41414141
Stack content at depth 4 (at address 0x20090D5C) = 0x20080000

Logger contents
with firmware patch &
memory modification

BT Logger 1 (COM4 |Auto Save ---- |View: <None>

Logs: 3013 / 3013

‘ﬁ log_with_patch.Igr - Logger 5.0 - Connected (COM4)
File Edit Bookmarks/Comments View Help
DEH B X Bes =8

1 # Line Information

Hooked just before

calling memcpy
P *** ERROR: Hard Fault Exception in MAIN MCU. Details follows: ****** s ATERRRY EERARg N
Prmtlng out src and Ie—n Hard Fault: PC value at time of fault = 0x41414140
09:03:39.... BT Logger Hard Fault: Configurable Fault Status Register = 0x00000001
09:03:59.... BT Logger1 Hard Fault: Hard Fault Status Register = 0x40000000
09:03:59.... BT Logger1 CPU Registers Dump follows (at ¢_hard_fault_handler context)

<o
(=]

2
4
2
&
2
7=
2
=
2
&
2
4
2
4

s Qb oot et oot G it §
[= LW I S FE R SN

00 00 o Co o

* log_with_patch.lgr - Logger 5.0 - Connected (COM4)

File

Dl @ X6 @@ 8§ = B8

O W0 2 " 5K W -

=

Edit

Bookmarks/Comments View Help

: .
== Hooked just before
2811 calling memcpy
2812 ..
5513 Printing out src and len
2814 : 81 Logger
2815 1 09:03:59.... BT Logger1
2816 2 09:03:59.... BT Logger 1
2817 2 09:03:59.... BT Logger 1
2818 2 09:03:59.... BT Logger1
2819 2 09:03:59... BT Logger 1
2820 2 09:03:59.... BT Logger1

Wrote 1 to 0x2008845c to see
more hardfault state info

2 :03: BT Logger 1

2 09:03:59.... BT Logger1

2 09:03:59.... BT Logger1
283 2 09:03:59.... BT Logger1
2831 2 09:03:59.... BT Logger1
2832 2 09:03:59.... BT Logger1
2833 2 09:03:59.... BT Logger1
2834 2 09:03:59.... BT Logger1
2835 2 09:03:59.... BT Logger1
2836 2 09:03:59.... BT Logger1
2837 2 09:03:59.... BT Logger1

Line

Information

er MACWER ADY IND (0)
I send LMP params - 0x20083b58, Oxfc

*** ERROR: Hard Fault Exception in MAIN MCU. Details follows: *** s s

Hard Fault: PC value at time of fault = 0x41414140
Hard Fault: Configurable Fault Status Register = 0x00000001
Hard Fault: Hard Fault Status Register = 0x40000000

Target #1

CPU Registers Dump follows (at c_hard_fault_handler context)
RO=0x00000001
R1=0x20086514
R2=0x00000200
R3=0x00000200
R4=0x00000004
R5=0x20087758
R6=0x20090D70
R7=0x0000003F
R8=0x00000001
R9=0x200EFO04
R10=0x200882A0
R11=0x40000000
R12=0x200866BB
R13=0x20090D4C
R14=0x00047B91
Stack Dump follows (current SP=0x20090D4C)
Stack content at depth 0 (at address 0x20090D4C) = 0x55AA5500
Stack content at depth 1 (at address 0x20090D50) = Ox1E3BESAA
Stack content at depth 2 (at address 0x20090D54) = 0x4125000C
Stack content at depth 3 (at address 0x20090D58) = 0x41414141
Stack content at depth 4 (at address 0x20090D5C) = 0x20080000

Logger contents
with firmware patch &
memory modification

BT Logger 1 (COM4 |Auto Save ---- |View: <None>

Logs: 3013 / 3013

NN oo

©
Fad b

O 0 W0 0 0P

(=]

W= 0O W oo ~J

IS
QO Q
OO O OO

Q

D T A T A T T A T o I T O A
0O CO 0O 00 00 0O 00 OO CO CO OO
W Lo Lo o o
NN NN NN NN NN N
e ok Rk Ak Rl o

U U U unon

-~ O un
O 0w w

D

BT Logger 1
BT Logger 1
BT Logger 1
BT Logger 1
BT Logger 1

Wrote 1 to 0x2008845c to see
more hardfault state info

BT Logger 1
BT Logger 1
BT Logger 1
BT Logger 1
BT Logger 1
BT Logger 1
BT Logger 1
BT Logger 1
BT Logger 1
BT Logger 1

CPU Registers Dump follows (at c_hard_fault_handler context)
RO=0x00000001

R1=0x20086514

R2=0x00000200

R3=0x00000200

R4=0x00000004

R5=0x20087758

R6=0x20090D70

R7=0x0000003F

R8=0x00000001

R9=0x200EF004

R10=0x200882A0

R11=0x40000000

R12=0x200866BB

R13=0x20090D4C

R14=0x00047B91

Stack Dump follows (current SP=0x20090D4C)

Stack content at depth O (at address 0x20090D4C) = 0x55AA5500
Stack content at depth 1 (at address 0x20090D50) = Ox1E3BESAA
Stack content at depth 2 (at address 0x20090D54) = 0x4125000C
Stack content at depth 3 (at address 0x20090D58) = 0x41414141
Stack content at depth 4 (at address 0x20090D5C) = 0x20080000

BT Logger 1 (COM4 Auto Save ---- |View: <None>

Logs: 3013 / 3013

Target #1

Remote code execution bugs

e Static reverse engineering revealed integer underflows could cause
stack buffer overflows

e Fuzzing with advertisement packets confirmed with a crash

* Wait... Yes, the “same” problem as BleedingBit but in a different code
base (BleedingBit is heap overflow, mine is stack overflow)

* Reported on 5/22/2019, fixed on 11/12/2019

j ﬁ—
I

C Step 1: Device B is sendlng Adverts, Device A is Passive Scanning)

Host A

LE Set Scan Parameters

(Passive Scanning)

Command Complete

LE Set Scan Enable
(Enable)

Command Complete

Advert Attack Packet 1

LE Advertising Report

Advert

LE Advertising Report

LE Set Scan Enable
Disabie) » From Spec v4.2

Command Complete

Figure 4.1: Passive Scanning

Target #1

Stack buffer overflow 1
CVE-2019-15948

ROM:0005B3A0 PUSH {R4-R7,LR} : LR is stored on stack
ROM:0005B3A2 SUB.W SP, SP, #Ox2C ; stack buffer

: R6 is PDU length
ROM:0005B3CE SUBS R6, R6, #6 : integer underflow
ROM:0005B3D0 UXTB R2, R6 : unsigned byte extension
ROM:0005B3D2 ADD.W R1, R5, #8 ; src, heap buffer address
ROM:0005B3D6 ADD.W RO, SP, #9 : dst, stack buffer address
ROM:0005B3DA STRB.W R2, [SP#8]

ROM:0005B3DE BL memcpy

void *memcpy(void *dest, const void *src, size_t n);

RO R1 R2
33

Target #1
Attack packet example 1

LSB MSB

Header Payload
(16 bits) (as per the Length field in the Header)

From Spec v4.2

Figure 2.2: Advertising channel PDU

PDU Type RFU TxAdd = RxAdd [Length
(4 bits) (2 bits) (1bit) | (1bit) \ (6 bits)

: Advertising channel PDU Header

‘ Exarnple: ADV_IND PDU Tyne

Payload
0x41

PDU Type
bsbobiby | Packet Name From Spec v4.2

0000 | ADV_IND
0001 ADV_DIRECT IND
0010 ADV_NONCONN_IND

Target #1

0011 SCAN_REQ

0100 SCAN_RSP
Payload

AdvA | LLData
0110 ADV_SCAN_IND (6 octets) (22 octets)

0101 CONNECT_REQ

0111-1111 | Reserved
Table 2.1: Advertising channel PDU Header’s PDU Type field encoding

Payload

AdvA AdvData AdvA InitA AdvA AdvData
(6 octets) (0-31 octets) (6 octets) (6 octets) (6 octets) (0-31 octets)

+7ADV IND PDU Payload igure2-5=ADV_DIRECT._IND PDU Payload igure2-6—ADV_NONCONN_IND PDU Payload

AdvData ScanRspData
(6 octets) (0-31 octets) (6 octets) (6 octets) (6 octets) (0-31 octets)

"7: ADV_SCAN_IND PDU Payload T "9~ SCAN_RSP PDU payload

Target #1

One little problem...

» Background BLE traffic affects heap contents, which affects exploit
reliability

“Quiet Place” attack

* Lots of DoS attacks
* One (two?) of mine
* Sweyntooth collection
e Multiple SEEMOOQ’s findings
 Any failed RCE attacks -> DoS ©

* An attacker can selectively DoS nearby
devices to quiet them down, to make
it more reliable to exploit a target

Target #1

EMILY BLUNT JOHN KRASINSKI

IF THEY YOU
THEY YOU

IN CINEMAS APRIL 5 i

BLE Controller Target #1
(Bystander)

BLE Controller

(Bystander)

BLE Controller
(Target Victim)
| BLE Controller
BLE Controller (Bystander)
(Bystander)

BLE Controller Target #1

(Bystander) | §<)-2
\ .

BLE Controller

(Bystander) % %

22 am>
L

(Target Victim)

BLE Controller

BLE Controller (Bystander)

(Bystander) ;()?
@ 2

BLE Controller Target #1
(Bystander)

BLE Controller

(Bystander)

BLE Controller
(Target Victim)
| BLE Controller
BLE Controller (Bystander)
(Bystander)

| has a bucket!

+
Q
V4
O
-
O
qu)
0p)]
qV
-

Target #1

RCE demo

Host (“guidance”)

JackBNimBLE Host
(HClI command-
sending python)

UART HCI link

Controller (nRF52840)

JackBNimBLE Firmware
(custom nRF NimBLE)

Target #1

Host (“darkmentor”)

UART HCI link

Controller
(WL1835MO0D)

Target #1

Stack buffer overflow 2
CVE-2019-15948

ROM:0005B348 PUSH {R4,R5,LR} : LR is stored on stack
ROM:0005B34A SUB.W SP, SP, #Ox2C ; stack buffer

: RO is PDU length
ROM:0005B36E ADD.W R1, R4, #8 ; src, heap buffer address

ROM:0005B372 SUBS RO, RO, #6 : integer underflow
ROM:0005B374 UXTB R2, RO : unsigned byte extension
ROM:0005B376 ADD.W RO, SP, #9 : dst, stack buffer address
ROM:0005B37A STRB.W R2, [SP#8]

ROM:0005B37E BL memcpy

Victim Attacker mmmm | Torget #1

Host A J { LLA \ | LLB J [Host B
l l l l

(Step 1: Device B is sending Adverts, Device A wishes to Active Scan)

LE Set Scan Parameters
(Active Scanning)

Command Complete

LE Set Scan Enable
(Enable)

Command Complete

Advert

SCAN_REQ

SCAN_RSP Attack Packet 2

LE Advertising Report

Advert

SCAN_REQ

LE Advertising Report
From Spec v4.2

LE Set Scan Enable
(Disable)
Command Complete

<

Figure 4.2: Active Scanning

Target #1

Attack packet example 2

LSB MSB

Header Payload
(16 bits) (as per the Length field in the Header)

From Spec v4.2

Figure 2.2: Advertising channel PDU

PDU Type RFU TxAdd = RxAdd [Length
(4 bits) (2 bits) (1bit) | (1bit) \ (6 bits)

: Advertising channel PDU Header

‘ Exarnple: SCAN_RSP PDU Type \

‘ Payload

Target #2

e Silicon Labs EFR32MG21

* Supports BT 5 extended
advertisements

 SWD debug interface is available

* Provides Simplicity Studio
* BT stack comes as a library

e Symbols are available, GOOD

& ... bad ... no novel RE process to
talk about ©

Target #2

BLE stack in single chip configuration

Controller Generic Access Profile (GAP)
(EFR32MG21)
Generic Attribute Profile (GATT)

Attribute Protocol (ATT) Security Manager (SM)

Logical Link Control and Adaptation Protocol (L2CAP)

Link Layer (LL)
BLE Radio Physical Layer (PHY)

Implementation-
specific

Target #2

Fuzzing extended advertisements

* Fuzzer major update: had to move from Zephyr to NimBLE to start
fuzzing extended advertisements

* Found DoS then fuzzed for a while but no crash
* Ubertooth (SW) does not support the extended length advertisement packets
* Sniffle does, thanks!
* NimBLE debugging? modified NimBLE scheduling code to send a large
packet for longer time

e Soon after the NimBLE modification, CRASH!!

Target #2

Not every memory buffer

overflow leads to RCE

Target #2

DoS: heap buffer overflow
CVE-2020-15532

00021800 |drb r6,[r0,#0x6] ; controlled by an attacker

0002180e ldrb r2,[r0,#0x7] ; controlled by an attacker
00021810 sub r2,r2,ré ; integer underflow
; but it’s too large value

0002181a add.w rl,r6,#0xc
0002181e add rl,rO
00021820 sub ro,r5,ré
00021822 add ro,rl
00021824 o] memmove ; memory access violation

void *memmove(void *dest, const void *src, size_t n);

RO R1 R2

Target #2

Difference from the target #1’s RCE bug

ROM:0005B3A0 PUSH {R4-R7,LR} : LR is stored on stack
ROM:0005B3A2 SUB.W SP, SP, #Ox2C ; stack buffer

; R6 is LL packet length
ROM:0005B3CE SUBS R6, R6, #6 ; integer underflow

ROM:0005B3D0 UXTB R2, R6 : unsigned byte extension
ROM:0005B3D2 ADD.W R1, R5, #8 ; src, heap buffer address

ROM:0005B3D6 ADD.W RO, SP, #9 : dst, stack buffer address
ROM:0005B3DA STRB.W R2, [SP#8]

ROM:0005B3DE BL memcpy

Target #2

RCE: heap buffer overflow
CVE-2020-15531

* Neither pairing nor authentication is required

* Found a heap memory corruption via fuzzing, which leads to RCE, in
extended advertisement packet parsing

* Packet data is chopped into a chained buffer, an entry holds max 0x45
bytes

* Length mis-calculation took place

* Manipulated the last byte of a memory chunk pointer
* With a heap spray, overwrote a function pointer

* Reported 2/21/2020, fixed 3/20/2020, Impressive!!

Target #2

Attack packet example

LSB
Header Payload From SpeC V52

(16 bits) (1-255 octets)

physical channel PDU

Payload

Extended Header Length AdvMode Extended Header AdvData
(6 bits) (2 bits) (0 - 63 octets) (0 - 254 octets)

Figure 2.14: Cpmmon Extended Advertising Payload Format

0x3C 4 0x00

Target #2

RCE persistence demo

The successful attack is probabilistic

Host (“guidance”)

JackBNimBLE Host
(HClI command-
sending python)

UART HCI link

Controller (nRF52840)

JackBNimBLE Firmware

(custom nRF NimBLE)

Target #2

Host (“darkmentor”)

GDB over SWD
to display status

Controller (EFR32MG21)

N

"

General BT security challenges:

BT security challenge 1:
Lack of all common exploit mitigations

e Stack Canaries
» Data Execution Prevention (DEP)
* Address Space Layout Randomization (ASLR)

e Return Oriented Programming (ROP) Prevention

BT security challenge 2:
SecureBoot

* Many chip vendors do not support secure boot or secure reset

* An exploit only has to work once for the attacker to have control
forever

* Even if chip vendors support, it’s up to the company who uses the
chips in their end product to enable it
* Silicon Labs’ Gecko Bootloader does support secure boot
* Hope that all Silabs’ customers patched the vulnerability

BT security challenge 3:
Impact assessment

* How to assess the impact of a vulnerability
e Difficult to identify which end products are vulnerable
* Light bulbs vs. medical devices

e Customer information is often secret and it’s up to the chip vendors
to notify their customers

* Or even worse case: chip vendors -> packaging providers -> end
product makers
* Some ways to find end products but it won’t be the complete list
* Googling with “site:fccid.io”
* https://launchstudio.bluetooth.com/Listings/Search

For additional information

https://github.com/darkmentorllc

Thanks for valuable feedback!

Xeno Kovah
Rafal Wojtczuk
Marion Marschalek

for
watching!

