
Finding New Bluetooth Low Energy
Exploits via Reverse Engineering

Multiple Vendors' Firmwares
Veronica Kovah

Dark Mentor LLC

0

Hello World!

• Previously a security engineer for Tesla, NSA, MITRE, and Sourcefire

• Currently founder of Dark Mentor LLC, security consulting and

education

• This talk is about sharing the journey from knowing almost nothing

about Bluetooth to finding remote code execution vulnerabilities

• veronica@darkmentor.com, @VeronicaKovah

1

Starting from scratch…

2

Learning mode

• Surveyed existing Bluetooth (BT) security research

• Read the complex, more than 3000 pages, Bluetooth specification
• Not back to back!
• Focus on common developer’s mistake: e.g. length, nested fields

• Looked for if there is any open source implementation below HCI
• BT classic: could not find any
• Bluetooth Low Energy (BLE) : Zephyr and Apache Mynewt NimBLE

• Started with BT classic, then moved onto BLE

3

BLE stack in dual chip configuration

4

Host

Controller

Generic Access Profile (GAP)

Generic Attribute Profile (GATT)

Attribute Protocol (ATT)

Logical Link Control and Adaptation Protocol (L2CAP)

Host Controller Interface (HCI)

Link Layer (LL)

BLE Radio Physical Layer (PHY)

Security Manager (SM)

UART, USB, etc.

THIS TALK

BLE stack in single chip configuration

5

Controller

Implementation-
specific

Generic Access Profile (GAP)

Generic Attribute Profile (GATT)

Attribute Protocol (ATT)

Logical Link Control and Adaptation Protocol (L2CAP)

Host Controller Interface (HCI)

Link Layer (LL)

BLE Radio Physical Layer (PHY)

Security Manager (SM)

THIS TALK

Bluetooth (classic and low energy)
vulnerability CVE ID counts when I started

6

Host

Controller

0

132

Bluetooth (classic and low energy)
vulnerability CVE ID counts now

7

Host

Controller 14
(2/3 BLE RCEs are this talk!)

244

Why target below the HCI layer?

8

PC OS 1

Controller
1

PC OS 1

Controller
2

PC OS 1

Controller
3

PC OS 2

Controller
4

Why target below the HCI layer?

9

OS 1

Controller
1

OS 2

Controller
1

OS 3

Controller
1

OS 4

Controller
1

New BLE low layer vulnerabilities!

• Neither pairing nor authentication is required, just need proximity
• Texas Instruments CC256x and WL18xx dual-mode Bluetooth

controller devices
• RCE #1 (CVE-2019-15948)
• Potential RCE (CVE-2019-15948)

• Silicon Labs BLE EFR32 SoC's and associated modules
• RCE #2 (CVE-2020-15531)
• DoS (CVE-2020-15532)

10

Demo

Demo

Lab Setup

11

Lab setup: targets

12

My lab has way more
development boards

but these are the ones
I will talk about today J

Lab setup: for basic HW debug 1

13

USB to serial converters
with CTS and RTS lines

USB to serial converters
without CTS and RTS lines

Lab setup: for basic HW debug 2

14

To use OpenOCD,
Olimex ARM-USB-TINY-H

+
Olimex ARM-JTAG-SWD

(used this the most)
SEGGER J-Link EDU -
JTAG/SWD debugger

+
SWD adapter

10-pin 2x5 socket-
socket 1.27mm IDC

(SWD) cable

SEGGER J-Link EDU Mini
- JTAG/SWD debugger

Lab setup: for fuzzer and convenience

15

SW-controllable (uhubctl)
USB hub for fuzzer

USB hub with individual
power switches

USB power meter

Lab setup: sniffers

• Ubertooth
• Great Scott Gadgets hardware
• Pretty console display
• (SW) does not support extended

advertisement packets
• http://ubertooth.sourceforge.net/

• Sniffle
• TI CC1352/CC26x2 hardware
• Supports BT 5 packet formats / PHY modes
• Was very useful to build/debug a BLE fuzzer
• Less pretty console display for a demo
• https://www.nccgroup.com/us/our-research/sniffle-a-sniffer-for-bluetooth-5/

16
Note: There are many other sniffers, check if your project goal aligns with a sniffer’s features

U
be

rt
oo

th

TI
 C

C1
35

2/
CC

26
x2

 h
ar

dw
ar

e

Lab setup: packet sending HW

• Started with Nordic Semiconductor
nRF52832 dev board
• Selected this first because open source BLE

implementations had more documentation with
this board (obviously B/C it’s older dev board!)

• USB to serial converter is necessary

• Ended up with nRF52840 dev board
• UART interface through a virtual COM port
• No USB to serial converter is needed

17

Lab setup: JackBNimBLE, packet sending SW

• Send arbitrary BLE Link Layer packets
• Extracted from my home-made fuzzer
• Controller SW: made modification to Apache Mynewt NimBLE

(https://mynewt.apache.org/)
• Host SW: python scripts via HCI interface
• Current version can be used to share PoC
• Easy to extend, e.g. fuzzer
• https://github.com/darkmentorllc/jackbnimble

18

19

Host (e.g. Linux)

Controller (nRF52840)

JackBNimBLE Firmware
(custom nRF NimBLE)

JackBNimBLE Host
(HCI command-
sending python)

UART HCI link

Host (Victim)

Controller (Victim)

Lab Setup Complete! Let’s attack!

20

Target #1: Texas Instruments WL1835MOD

• Bluetooth v4.2

• Dual mode (BT classic and BLE)

• No JTAG or SWD readily available

• BLE Link Layer is in ROM
• Host applies a patch

• No firmware image readily available

• WiLink™ Wireless Tools for WL18XX modules
• HCITester: .bts binary patch -> human-readable format
• Logger: UART binary debug messages-> human-readable format

21

BLE stack in dual chip configuration

22

Host

Controller
(WL1835MOD)

UART, USB, etc.

Generic Access Profile (GAP)

Generic Attribute Profile (GATT)

Attribute Protocol (ATT)

Logical Link Control and Adaptation Protocol (L2CAP)

Host Controller Interface (HCI)

Link Layer (LL)

BLE Radio Physical Layer (PHY)

Security Manager (SM)

Target #1

Static analysis

• Memory dumping via Vendor Specific “HCI_VS_Read_Memory”
command
• Used IDA Pro to analyze the dumped memory
• Identified log print functions whose arguments are a log string

identifier(s) and the log string’s optional parameters like a format
string
• Made an IDA Python script to add log strings where a log function call

exists
• Identified some function names
• Inferred a lot of functions’ context

23

Target #1

24

Log function

Log string ID

Target #1

Dynamic analysis

• Used a home-made fuzzer

• RE’ed the hard fault handler and enabled more

logs to see register, stack, and heap memory

states

• Patched binary for debugging via hooking

• Don’t know how to do JTAG wiring

• Cortex-M3 Flash Patch and Breakpoint Unit (FPB)

• Used HCI_VS_Write_Memory to have an alternate

code for reading memory and/or register values

• Used log() to send values to UART

25

Target #1

26

Logger contents by default
Target #1

27

Logger contents
with firmware patch &
memory modification

Hooked just before
calling memcpy

Printing out src and len

Wrote 1 to 0x2008845c to see
more hardfault state info

Target #1

28

Hooked just before
calling memcpy

Printing out src and len

29

Logger contents
with firmware patch &
memory modification

Hooked just before
calling memcpy

Printing out src and len

Wrote 1 to 0x2008845c to see
more hardfault state info

Target #1

30

Wrote 1 to 0x2008845c to see
more hardfault state info

Remote code execution bugs

• Static reverse engineering revealed integer underflows could cause
stack buffer overflows
• Fuzzing with advertisement packets confirmed with a crash
• Wait… Yes, the “same” problem as BleedingBit but in a different code

base (BleedingBit is heap overflow, mine is stack overflow)
• Reported on 5/22/2019, fixed on 11/12/2019

31

Target #1

32

From Spec v4.2

Attack Packet 1

Victim Attacker Target #1

Stack buffer overflow 1
CVE-2019-15948
ROM:0005B3A0

ROM:0005B3A2

...

ROM:0005B3CE

ROM:0005B3D0

ROM:0005B3D2

ROM:0005B3D6

ROM:0005B3DA

ROM:0005B3DE

PUSH {R4-R7,LR}

SUB.W SP, SP, #0x2C

SUBS R6, R6, #6

UXTB R2, R6

ADD.W R1, R5, #8

ADD.W R0, SP, #9

STRB.W R2, [SP,#8]

BL memcpy

; LR is stored on stack

; stack buffer

; R6 is PDU length
; integer underflow
; unsigned byte extension
; src, heap buffer address

; dst, stack buffer address

void *memcpy(void *dest, const void *src, size_t n);

R0 R1 R2
33

Target #1

Attack packet example 1

34

From Spec v4.2

Header Payload
0x00 0x02 0x41 0x41

Example: ADV_IND PDU Type

Target #1

35

From Spec v4.2 Target #1

One little problem…

• Background BLE traffic affects heap contents, which affects exploit
reliability

36

Target #1

“Quiet Place” attack

• Lots of DoS attacks

• One (two?) of mine

• Sweyntooth collection

• Multiple SEEMOO’s findings

• Any failed RCE attacks -> DoS J

• An attacker can selectively DoS nearby

devices to quiet them down, to make

it more reliable to exploit a target

37

Target #1

38

Target #1

BLE Controller
(Attacker)

BLE Controller
(Target Victim)

BLE Controller
(Bystander)

BLE Controller
(Bystander)

BLE Controller
(Bystander)BLE Controller

(Bystander)

BLE Controller
(Attacker)

BLE Controller
(Target Victim)

BLE Controller
(Bystander)

BLE Controller
(Bystander)

BLE Controller
(Bystander)BLE Controller

(Bystander)
39

Target #1

!!

!!

"
"

""

BLE Controller
(Attacker)

BLE Controller
(Target Victim)

BLE Controller
(Bystander)

BLE Controller
(Bystander)

BLE Controller
(Bystander)BLE Controller

(Bystander)
40

Target #1

!

I has a bucket!

41

I has a bucket!

42

RCE demo

43

Target #1

44

Host (”guidance”)

Controller (nRF52840)

JackBNimBLE Firmware
(custom nRF NimBLE)

JackBNimBLE Host
(HCI command-
sending python)

UART HCI link

Host (“darkmentor”)

Controller
(WL1835MOD)

UART HCI link

!

Target #1

45

Stack buffer overflow 2
CVE-2019-15948
ROM:0005B348

ROM:0005B34A

…

ROM:0005B36E

ROM:0005B372

ROM:0005B374

ROM:0005B376

ROM:0005B37A

ROM:0005B37E

PUSH {R4,R5,LR}

SUB.W SP, SP, #0x2C

ADD.W R1, R4, #8

SUBS R0, R0, #6
UXTB R2, R0

ADD.W R0, SP, #9

STRB.W R2, [SP,#8]

BL memcpy

; LR is stored on stack

; stack buffer

; R0 is PDU length
; src, heap buffer address

; integer underflow
; unsigned byte extension
; dst, stack buffer address

46

Target #1

47

Attack Packet 2

From Spec v4.2

Victim Attacker Target #1

Attack packet example 2

48

From Spec v4.2

Header Payload
0x04 0x02 0x41 0x41

Example: SCAN_RSP PDU Type

Target #1

Next!

49

Target #2

• Silicon Labs EFR32MG21
• Supports BT 5 extended

advertisements
• SWD debug interface is available
• Provides Simplicity Studio

• BT stack comes as a library
• Symbols are available, GOOD

& … bad … no novel RE process to
talk about J

50

BLE stack in single chip configuration

51

Controller
(EFR32MG21)

Generic Access Profile (GAP)

Generic Attribute Profile (GATT)

Attribute Protocol (ATT)

Logical Link Control and Adaptation Protocol (L2CAP)

Host Controller Interface (HCI)

Link Layer (LL)

BLE Radio Physical Layer (PHY)

Security Manager (SM)

Implementation-
specific

Target #2

Fuzzing extended advertisements

• Fuzzer major update: had to move from Zephyr to NimBLE to start

fuzzing extended advertisements

• Found DoS then fuzzed for a while but no crash

• Ubertooth (SW) does not support the extended length advertisement packets

• Sniffle does, thanks!

• NimBLE debugging? modified NimBLE scheduling code to send a large

packet for longer time

• Soon after the NimBLE modification, CRASH!!

52

Target #2

Not every memory buffer
overflow leads to RCE

53

Target #2

DoS: heap buffer overflow
CVE-2020-15532
00021800
…
0002180e
00021810
…
0002181a
0002181e
00021820
00021822
00021824

ldrb r6,[r0,#0x6]

ldrb r2,[r0,#0x7]
sub r2,r2,r6

add.w r1,r6,#0xc
add r1,r0
sub r0,r5,r6
add r0,r1
bl memmove

; controlled by an attacker

; controlled by an attacker
; integer underflow
; but it’s too large value

; memory access violation
void *memmove(void *dest, const void *src, size_t n);

R0 R1 R2 54

Target #2

Difference from the target #1’s RCE bug

ROM:0005B3A0

ROM:0005B3A2

...

ROM:0005B3CE

ROM:0005B3D0

ROM:0005B3D2

ROM:0005B3D6

ROM:0005B3DA

ROM:0005B3DE

PUSH {R4-R7,LR}

SUB.W SP, SP, #0x2C

SUBS R6, R6, #6

UXTB R2, R6
ADD.W R1, R5, #8

ADD.W R0, SP, #9

STRB.W R2, [SP,#8]

BL memcpy

; LR is stored on stack

; stack buffer

; R6 is LL packet length

; integer underflow

; unsigned byte extension
; src, heap buffer address

; dst, stack buffer address

55

Target #2

RCE: heap buffer overflow
CVE-2020-15531
• Neither pairing nor authentication is required
• Found a heap memory corruption via fuzzing, which leads to RCE, in

extended advertisement packet parsing
• Packet data is chopped into a chained buffer, an entry holds max 0x45

bytes
• Length mis-calculation took place
• Manipulated the last byte of a memory chunk pointer
• With a heap spray, overwrote a function pointer
• Reported 2/21/2020, fixed 3/20/2020, Impressive!!

56

Target #2

Attack packet example

57

Header Payload

0x07 0xFF 0x3C 0x00 0x41 0x41 0x41 0x41 0x41 0x41

Example: ADV_EXT_IND Type, introduced on v5.0

From Spec v5.2

…

Target #2

RCE persistence demo
The successful attack is probabilistic

58

Target #2

59

Host (”guidance”)

Controller (nRF52840)

JackBNimBLE Firmware
(custom nRF NimBLE)

JackBNimBLE Host
(HCI command-
sending python)

UART HCI link

Host (“darkmentor”)

GDB over SWD
to display status

Controller (EFR32MG21)

!

Target #2

"

60

General BT security challenges:

61

BT security challenge 1:
Lack of all common exploit mitigations
• Stack Canaries
• Data Execution Prevention (DEP)
• Address Space Layout Randomization (ASLR)
• Return Oriented Programming (ROP) Prevention
…

62

BT security challenge 2:
SecureBoot
• Many chip vendors do not support secure boot or secure reset
• An exploit only has to work once for the attacker to have control

forever
• Even if chip vendors support, it’s up to the company who uses the

chips in their end product to enable it
• Silicon Labs’ Gecko Bootloader does support secure boot
• Hope that all Silabs’ customers patched the vulnerability

63

BT security challenge 3:
Impact assessment
• How to assess the impact of a vulnerability

• Difficult to identify which end products are vulnerable
• Light bulbs vs. medical devices

• Customer information is often secret and it’s up to the chip vendors
to notify their customers
• Or even worse case: chip vendors -> packaging providers -> end

product makers
• Some ways to find end products but it won’t be the complete list

• Googling with “site:fccid.io”
• https://launchstudio.bluetooth.com/Listings/Search

64

For additional information
https://github.com/darkmentorllc

65

Thanks for valuable feedback!

Xeno Kovah
Rafal Wojtczuk

Marion Marschalek

66

for
watching!

Thank
you…

Root Lily

