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Hello World!

• Previously a security engineer for Tesla, NSA, MITRE, and Sourcefire

• Currently founder of Dark Mentor LLC, security consulting and 

education

• This talk is about sharing the journey from knowing almost nothing 

about Bluetooth to finding remote code execution vulnerabilities

• veronica@darkmentor.com, @VeronicaKovah
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Starting from scratch…
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Learning mode

• Surveyed existing Bluetooth (BT) security research

• Read the complex, more than 3000 pages, Bluetooth specification 
• Not back to back!
• Focus on common developer’s mistake: e.g. length, nested fields

• Looked for if there is any open source implementation below HCI
• BT classic: could not find any
• Bluetooth Low Energy (BLE) : Zephyr and Apache Mynewt NimBLE

• Started with BT classic, then moved onto BLE
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BLE stack in dual chip configuration
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BLE stack in single chip configuration
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Bluetooth (classic and low energy) 
vulnerability CVE ID counts when I started
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Bluetooth (classic and low energy) 
vulnerability CVE ID counts now
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Why target below the HCI layer?
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Why target below the HCI layer?
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New BLE low layer vulnerabilities!

• Neither pairing nor authentication is required, just need proximity
• Texas Instruments CC256x and WL18xx dual-mode Bluetooth 

controller devices
• RCE #1 (CVE-2019-15948)
• Potential RCE (CVE-2019-15948)

• Silicon Labs BLE EFR32 SoC's and associated modules
• RCE #2 (CVE-2020-15531)
• DoS (CVE-2020-15532)
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Lab Setup
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Lab setup: targets
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My lab has way more 
development boards 

but these are the ones 
I will talk about today J



Lab setup: for basic HW debug 1
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USB to serial converters 
with CTS and RTS lines

USB to serial converters 
without CTS and RTS lines



Lab setup: for basic HW debug 2
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To use OpenOCD, 
Olimex ARM-USB-TINY-H

+
Olimex ARM-JTAG-SWD

(used this the most)
SEGGER J-Link EDU -
JTAG/SWD debugger

+
SWD adapter

10-pin 2x5 socket-
socket 1.27mm IDC 

(SWD) cable

SEGGER J-Link EDU Mini 
- JTAG/SWD debugger



Lab setup: for fuzzer and convenience
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SW-controllable (uhubctl)
USB hub for fuzzer

USB hub with individual 
power switches

USB power meter



Lab setup: sniffers

• Ubertooth
• Great Scott Gadgets hardware
• Pretty console display
• (SW) does not support extended

advertisement packets 
• http://ubertooth.sourceforge.net/

• Sniffle
• TI CC1352/CC26x2 hardware
• Supports BT 5 packet formats / PHY modes
• Was very useful to build/debug a BLE fuzzer
• Less pretty console display for a demo
• https://www.nccgroup.com/us/our-research/sniffle-a-sniffer-for-bluetooth-5/
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Note: There are many other sniffers, check if your project goal aligns with a sniffer’s features
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Lab setup: packet sending HW

• Started with Nordic Semiconductor 
nRF52832 dev board
• Selected this first because open source BLE 

implementations had more documentation with 
this board (obviously B/C it’s older dev board!)

• USB to serial converter is necessary

• Ended up with nRF52840 dev board
• UART interface through a virtual COM port 
• No USB to serial converter is needed
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Lab setup: JackBNimBLE, packet sending SW

• Send arbitrary BLE Link Layer packets
• Extracted from my home-made fuzzer
• Controller SW: made modification to Apache Mynewt NimBLE

(https://mynewt.apache.org/)
• Host SW: python scripts via HCI interface
• Current version can be used to share PoC
• Easy to extend, e.g. fuzzer
• https://github.com/darkmentorllc/jackbnimble
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Host (e.g. Linux)

Controller (nRF52840)

JackBNimBLE Firmware
(custom nRF NimBLE)

JackBNimBLE Host
(HCI command-
sending python)

UART HCI link

Host (Victim)

Controller (Victim)



Lab Setup Complete! Let’s attack!
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Target #1: Texas Instruments WL1835MOD

• Bluetooth v4.2

• Dual mode (BT classic and BLE) 

• No JTAG or SWD readily available

• BLE Link Layer is in ROM
• Host applies a patch

• No firmware image readily available

• WiLink™ Wireless Tools for WL18XX modules
• HCITester: .bts binary patch -> human-readable format
• Logger: UART binary debug messages-> human-readable format
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BLE stack in dual chip configuration
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Static analysis

• Memory dumping via Vendor Specific “HCI_VS_Read_Memory” 
command
• Used IDA Pro to analyze the dumped memory
• Identified log print functions whose arguments are a log string 

identifier(s) and the log string’s optional parameters like a format 
string
• Made an IDA Python script to add log strings where a log function call 

exists
• Identified some function names
• Inferred a lot of functions’ context
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Log function

Log string ID

Target #1



Dynamic analysis

• Used a home-made fuzzer

• RE’ed the hard fault handler and enabled more 

logs to see register, stack, and heap memory 

states

• Patched binary for debugging via hooking

• Don’t know how to do JTAG wiring 

• Cortex-M3 Flash Patch and Breakpoint Unit (FPB)

• Used HCI_VS_Write_Memory to have an alternate 

code for reading memory and/or register values

• Used log() to send values to UART
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Logger contents by default
Target #1



27

Logger contents
with firmware patch &
memory modification

Hooked just before 
calling memcpy

Printing out src and len

Wrote 1 to 0x2008845c to see 
more hardfault state info

Target #1
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Hooked just before 
calling memcpy

Printing out src and len
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Logger contents
with firmware patch &
memory modification

Hooked just before 
calling memcpy

Printing out src and len

Wrote 1 to 0x2008845c to see 
more hardfault state info

Target #1
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Wrote 1 to 0x2008845c to see 
more hardfault state info



Remote code execution bugs

• Static reverse engineering revealed integer underflows could cause 
stack buffer overflows 
• Fuzzing with advertisement packets confirmed with a crash
• Wait… Yes, the “same” problem as BleedingBit but in a different code 

base (BleedingBit is heap overflow, mine is stack overflow)
• Reported on 5/22/2019, fixed on 11/12/2019
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From Spec v4.2

Attack Packet 1

Victim Attacker Target #1



Stack buffer overflow 1
CVE-2019-15948
ROM:0005B3A0

ROM:0005B3A2

...

ROM:0005B3CE

ROM:0005B3D0

ROM:0005B3D2

ROM:0005B3D6

ROM:0005B3DA

ROM:0005B3DE

PUSH {R4-R7,LR}

SUB.W SP, SP, #0x2C 

SUBS R6, R6, #6

UXTB R2, R6

ADD.W R1, R5, #8

ADD.W R0, SP, #9

STRB.W R2, [SP,#8]

BL memcpy

; LR is stored on stack

; stack buffer

; R6 is PDU length
; integer underflow
; unsigned byte extension
; src, heap buffer address

; dst, stack buffer address

void *memcpy(void *dest, const void *src, size_t n);

R0 R1 R2
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Attack packet example 1
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From Spec v4.2

Header Payload
0x00 0x02 0x41 0x41

Example: ADV_IND PDU Type

Target #1
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From Spec v4.2 Target #1



One little problem…

• Background BLE traffic affects heap contents, which affects exploit 
reliability
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“Quiet Place” attack

• Lots of DoS attacks

• One (two?) of mine

• Sweyntooth collection

• Multiple SEEMOO’s findings

• Any failed RCE attacks -> DoS J

• An attacker can selectively DoS nearby 

devices to quiet them down, to make 

it more reliable to exploit a target
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Target #1

BLE Controller 
(Attacker)

BLE Controller
(Target Victim)
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BLE Controller 
(Attacker)

BLE Controller
(Target Victim)

BLE Controller 
(Bystander)

BLE Controller 
(Bystander)

BLE Controller 
(Bystander)BLE Controller 

(Bystander)
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BLE Controller 
(Attacker)

BLE Controller
(Target Victim)

BLE Controller 
(Bystander)

BLE Controller 
(Bystander)

BLE Controller 
(Bystander)BLE Controller 

(Bystander)
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Target #1

!



I has a bucket!
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I has a bucket!
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RCE demo
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Host (”guidance”)

Controller (nRF52840)

JackBNimBLE Firmware
(custom nRF NimBLE)

JackBNimBLE Host
(HCI command-
sending python)

UART HCI link

Host (“darkmentor”)

Controller 
(WL1835MOD)

UART HCI link
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Stack buffer overflow 2
CVE-2019-15948
ROM:0005B348

ROM:0005B34A 

…

ROM:0005B36E 

ROM:0005B372

ROM:0005B374 

ROM:0005B376  

ROM:0005B37A 

ROM:0005B37E 

PUSH {R4,R5,LR}

SUB.W SP, SP, #0x2C

ADD.W R1, R4, #8

SUBS R0, R0, #6
UXTB R2, R0

ADD.W R0, SP, #9

STRB.W R2, [SP,#8]

BL memcpy

; LR is stored on stack

; stack buffer

; R0 is PDU length
; src, heap buffer address

; integer underflow
; unsigned byte extension
; dst, stack buffer address
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Attack Packet 2

From Spec v4.2

Victim Attacker Target #1



Attack packet example 2
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From Spec v4.2

Header Payload
0x04 0x02 0x41 0x41

Example: SCAN_RSP PDU Type

Target #1



Next!
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Target #2

• Silicon Labs EFR32MG21
• Supports BT 5 extended 

advertisements
• SWD debug interface is available
• Provides Simplicity Studio

• BT stack comes as a library
• Symbols are available, GOOD 

& … bad … no novel RE process to 
talk about J
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BLE stack in single chip configuration
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(EFR32MG21)

Generic Access Profile (GAP)
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Fuzzing extended advertisements

• Fuzzer major update: had to move from Zephyr to NimBLE to start 

fuzzing extended advertisements

• Found DoS then fuzzed for a while but no crash

• Ubertooth (SW) does not support the extended length advertisement packets

• Sniffle does, thanks!

• NimBLE debugging? modified NimBLE scheduling code to send a large 

packet for longer time

• Soon after the NimBLE modification, CRASH!!
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Not every memory buffer 
overflow leads to RCE
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Target #2



DoS: heap buffer overflow
CVE-2020-15532
00021800
…
0002180e
00021810
…
0002181a
0002181e
00021820
00021822
00021824

ldrb r6,[r0,#0x6]

ldrb r2,[r0,#0x7]
sub r2,r2,r6

add.w r1,r6,#0xc
add r1,r0
sub r0,r5,r6
add r0,r1
bl memmove

; controlled by an attacker

; controlled by an attacker
; integer underflow
; but it’s too large value

; memory access violation
void *memmove(void *dest, const void *src, size_t n);

R0 R1 R2 54

Target #2



Difference from the target #1’s RCE bug

ROM:0005B3A0

ROM:0005B3A2

...

ROM:0005B3CE

ROM:0005B3D0

ROM:0005B3D2

ROM:0005B3D6

ROM:0005B3DA

ROM:0005B3DE

PUSH {R4-R7,LR}

SUB.W SP, SP, #0x2C 

SUBS R6, R6, #6

UXTB R2, R6
ADD.W R1, R5, #8

ADD.W R0, SP, #9

STRB.W R2, [SP,#8]

BL memcpy

; LR is stored on stack

; stack buffer

; R6 is LL packet length

; integer underflow

; unsigned byte extension
; src, heap buffer address

; dst, stack buffer address
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RCE: heap buffer overflow
CVE-2020-15531
• Neither pairing nor authentication is required
• Found a heap memory corruption via fuzzing, which leads to RCE, in 

extended advertisement packet parsing
• Packet data is chopped into a chained buffer, an entry holds max 0x45 

bytes
• Length mis-calculation took place
• Manipulated the last byte of a memory chunk pointer
• With a heap spray, overwrote a function pointer
• Reported 2/21/2020, fixed 3/20/2020, Impressive!!
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Attack packet example
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Header Payload

0x07 0xFF 0x3C 0x00 0x41 0x41 0x41 0x41 0x41 0x41

Example: ADV_EXT_IND Type, introduced on v5.0

From Spec v5.2

…

Target #2



RCE persistence demo
The successful attack is probabilistic
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Host (”guidance”)

Controller (nRF52840)

JackBNimBLE Firmware
(custom nRF NimBLE)

JackBNimBLE Host
(HCI command-
sending python)

UART HCI link

Host (“darkmentor”)

GDB over SWD 
to display status

Controller (EFR32MG21)

!

Target #2
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General BT security challenges:
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BT security challenge 1:
Lack of all common exploit mitigations
• Stack Canaries
• Data Execution Prevention (DEP)
• Address Space Layout Randomization (ASLR)
• Return Oriented Programming (ROP) Prevention
…
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BT security challenge 2:
SecureBoot
• Many chip vendors do not support secure boot or secure reset
• An exploit only has to work once for the attacker to have control 

forever
• Even if chip vendors support, it’s up to the company who uses the 

chips in their end product to enable it
• Silicon Labs’ Gecko Bootloader does support secure boot
• Hope that all Silabs’ customers patched the vulnerability
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BT security challenge 3:
Impact assessment
• How to assess the impact of a vulnerability

• Difficult to identify which end products are vulnerable
• Light bulbs vs. medical devices

• Customer information is often secret and it’s up to the chip vendors 
to notify their customers
• Or even worse case: chip vendors -> packaging providers -> end 

product makers
• Some ways to find end products but it won’t be the complete list

• Googling with “site:fccid.io”
• https://launchstudio.bluetooth.com/Listings/Search

64



For additional information
https://github.com/darkmentorllc
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Thanks for valuable feedback!

Xeno Kovah
Rafal Wojtczuk

Marion Marschalek
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for 
watching!

Thank 
you…

Root Lily


