
Engineering empathy
Adapting software engineering principles and
process to security

@camille_
Camille Mackinnon, Principal Infrastructure Engineer

@cji
Craig Ingram, Principal Security Engineer

Principal Infrastructure engineer Principal Security engineer
Camille Mackinnon Craig Ingram

Who are we?

Everyday principles behind writing
good code

How software engineers plan their
work and processes

Devops culture

Learning from software engineers

https://www.blackhat.com/us-19/briefings/schedule/index.html#every-security-team-is-a-software-team-now-17280

https://www.blackhat.com/us-19/briefings/schedule/index.html#every-security-team-is-a-software-team-now-17280

Everyday principles behind writing
good code

How software engineers plan their
work and processes

Devops culture

Learning from software engineers

KISS (Keep it Small and Simple)

DRY (Don’t Repeat Yourself)

TDD (Test-Driven Development)

Software design principles

KISS (Keep it Small and Simple)

Keep recommandations simple and straightforward

Try giving your engineering partners actionable clarity

https://en.wikipedia.org/wiki/KISS_principle

https://en.wikipedia.org/wiki/KISS_principle

KISS (Keep it Small and Simple)

Not just simple, but also as easy as possible to execute

Keeping things simple for the engineers may mean more work for you in the
short term

Reduce repetition of software patterns

Modification of one element does not require a change in other unrelated
elements

DRY (Don’t Repeat Yourself)

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Similar findings, in multiple places in a code base

The same security findings, again and again - why?

DRY (Don’t Repeat Yourself)

Give engineering teams the correct libraries and abstractions to build with

DRY (Don’t Repeat Yourself)

https://github.com/heroku/x

https://github.com/heroku/x

TDD (Test-Driven Development)

Start with failure

Prevent regressions by putting automated tests in place with patches

Integrate fuzz testing with a project that re-finds your bug(s)

https://twitter.com/brompwnie

https://twitter.com/brompwnie

Everyday principles behind writing
good code

How software engineers plan
their work and processes

Devops culture

Learning from software engineers

Prioritization and planning

Retrospectives

User research

Software engineering processes

Prioritization, work and capacity planning

Engineering teams need to prioritize amid many competing aspects of their
work:

● new features customers need
● performance and scalability
● security!
● long term architectural changes

Prioritization, work and capacity planning

Balance:

● security assessments (audit deadlines, engineering deadline)
● tool development
● deeper research

Prioritization, work and capacity planning

Ruthless prioritization

Clear objectives and key results (OKRs)

https://rework.withgoogle.com/guides/set-goals-with-okrs/steps/introduction/

https://rework.withgoogle.com/guides/set-goals-with-okrs/steps/introduction/

Retrospectives

Engineering teams run retrospectives for:
● their sprints
● major downtime incidents

Blame-free, identify steps forward

https://codeascraft.com/2012/05/22/blameless-postmortems/

https://codeascraft.com/2012/05/22/blameless-postmortems/

Retrospectives

Even without sprints, taking time to identify as a team if we are making the
progress we want is important

Security incidents, major bugs found after release, security flaws in
architecture can all benefit from a retrospective

Customer interviews, user research

Engineering teams rely on product managers, user researches or themselves
to figure out if they are building the right thing. They:

● do customers interviews or user research
● develop user personas to understand their users’ needs

Customer interviews, user research

Listen to your engineers and understand what they are asking

Observe what your engineers are doing and what that can tell you about their
needs

Customer interviews, user research

Metro Centric / CC BY
(https://creativecommons.org/licenses/by/2.0)

Customer interviews, user research

An engineer trying to work around security controls can tell you a lot about
solutions you need to provide them.

Understanding your engineering team’s needs means that recommendations
are more likely to be followed

Everyday principles behind writing
good code

How software engineers plan their
work and processes

Devops culture and
organizational changes

Learning from software engineers

Measures: SLOs, SLIs

Remove toil through automation

Shifting left

Devops culture and Organizational level changes

Measures: SLOs, SLIs

Service level objectives and indicators

Actions are taken when indicators reach certain levels

https://landing.google.com/sre/sre-book/chapters/service-level-objectives/

https://landing.google.com/sre/sre-book/chapters/service-level-objectives/

Measures: SLOs, SLIs

Service level indicators for infosec:

● last time each team has asked for a security review
● last time your threat models have been updated
● pull request failure rates due to automated security tools

Remove toil through automation

Toil: manual, repetitive, automatable, reactive, lacks enduring value, grows at
least as fast as its source

Integrate with engineers’ own efforts to automate: see what tools they are
using and how to leverage them to automate security work as well

https://github.com/koenbuyens
https://twitter.com/kmcquade3

https://github.com/koenbuyens
https://twitter.com/kmcquade3

Shifting left

Be a part of the early planning and design decisions

Adapt to the environment you are in

Build tools and automation that works with what teams are already using

Conclusion

Look at your software engineering teams to improve your security team

Develop empathy by understanding their constraints and competing priorities

Share in their culture to work more closely together and provide better
security solutions

● https://www.blackhat.com/us-19/briefings/schedule/index.html#every-security-team-is
-a-software-team-now-17280

● https://twitter.com/brompwnie
● https://github.com/koenbuyens
● https://twitter.com/kmcquade3
● https://en.wikipedia.org/wiki/KISS_principle
● https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
● https://rework.withgoogle.com/guides/set-goals-with-okrs/steps/introduction/
● https://codeascraft.com/2012/05/22/blameless-postmortems/
● https://landing.google.com/sre/sre-book/chapters/service-level-objectives/

References

https://www.blackhat.com/us-19/briefings/schedule/index.html#every-security-team-is-a-software-team-now-17280
https://www.blackhat.com/us-19/briefings/schedule/index.html#every-security-team-is-a-software-team-now-17280
https://twitter.com/brompwnie
https://github.com/koenbuyens
https://twitter.com/kmcquade3
https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://rework.withgoogle.com/guides/set-goals-with-okrs/steps/introduction/
https://codeascraft.com/2012/05/22/blameless-postmortems/
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/

Thank You

