FASTCash and Associated Intrusion Techniques
By Kevin Perlow

Key Points

e |SO 8583 is a standard that applies to card payments and provides a common set of data fields
and a common format for these fields during these financial transactions.

e Since at least 2018, a DPRK-nexus threat group has used malware that incorporates this
standard to perform large-scale fraudulent cash withdrawals against a small group of victims.

e Public reporting refers to this technique — and the malware used to carry it out — as FASTCash.

Executive Summary

Since at least 2016, a DPRK-nexus threat group® has conducted financially-motived intrusions against
companies within or associated with the banking sector. Traditionally, these attacks have involved
complicated, long-term workflows and culminate in large SWIFT transactions to threat group-owned
accounts held at other banks.

Since 2018 — and possibly as early as 2016 — this threat group has also conducted a novel type of attack
in which it injected malware into a bank’s payment switch, forcing it to approve fraudulent transactions
originating from attacker-controlled Automated Teller Machines (ATM). This technique relies on the
manipulation and fraudulent creation of fields within ISO 8583 messages sent to and from these payment
switches. Public sources refer to this technique and its associated malware as FASTCash.'

This whitepaper supplements a portion of a BlackHat 2020 presentation that details the 1SO8583
standard and the FASTCash malware. It offers two key additions to the presented slides. First, this paper
provides additional technical details regarding each known FASTCash variant. Second, this paper
provides details regarding additional tools from this threat group.2

! Different vendors and government agencies classify this activity using different — and often conflicting —
monikers and clusters. To avoid confusion, this paper does not use any of these designations and
focuses solely on a set of specific tools that share code-level characteristics or can be linked through
information available on public and semi-public platforms such as VirusTotal.

% Due to the sensitive nature of the operational context in which the threat group used (and continues to
use) these tools, this paper limits its data to sourcing available to the general public and broader security
community; however, the author notes that sensitive source information strongly corroborates the
operational relationships shared by these tools. This paper also limits its discussion to tooling used
through 2019 to prevent the adversary from strengthening its own operational security posture.

ISO 8583 and FASTCash

ISO 8583

ISO 8583 is a widely-adopted financial standard that specifies a common set of fields and a common
format for these fields during card transactions. In short:

e Card transactions at ATMs and Point of Sale (PoS) devices generate ISO8583 messages.

e These messages contain key transaction information, such as the user’s account number.

e These messages are sent to a payment switch controlled by the institution that issued the card.

e The payment switch processes these messages and sends them to the card issuer (bank).

e The issuer generates an ISO 8583 response message and sends it to the payment switch.

e The payment switch processes this response and sends it back to the ATM or PoS that originated
the message.

The payment switch is the critical point in this process, as financial institutions and financial software and
hardware developers implement ISO 8583 slightly differently.

IS0 8583 Message

x200 Financial Request Processes and Forwards Message

Generates Message
%210 Financial Response

Forwards ISO 8583 Message
%210 Financial Response

Representative workflow for ISO 8583 transactions

ISO 8583 Message Format

ISO 8583 messages contain information that a bank needs to approve or reject a transaction. There are
over one hundred possible fields that specify information such as a user’s account number, the currency
code used for a balance inquiry, or the amount for a transaction.

ISO 8583 messages contain a:

1) Message Type ldentifier, consisting of:
a. IS0 8583 Version
b. Message Classification (e.g. Authorization, Financial, Chargeback)
c. Message Function (e.g. Request, Response)
d. Message Source

2) Bitmap, which specifies which data fields are present in a message. Because there are over one
hundred possible data fields, messages only contain the fields used. The bitmap (and, if needed,
secondary bitmap) allows the payment switch to understand what to look for.

3) Data Elements, containing the actual data indicated by the bitmap. The data elements make up
the majority of the message.’

* The FASTCash malware contains numerous functions that refer to these as “fields.” Data Element is the “official”
term, but sources often use these terms interchangeably.

The snippet below represents a sample 1ISO 8583 message, with different message parts and data
elements highlighted.

020042000400000000021612345678901234560609173030088456789ABC10001234
56789012345678901234567890123456789012345678901234567890123456789012
345678901234567890123456789

Deconstructed, this message indicates the following:

e MTI-0200
o Version: 0 (1987)
o Classification: 2 (Financial Message),
o Function: 0 (Request)
o Source: 0 (Acquirer)

e Bitmap — 4200040000000002
o Indicates data elements 2, 7, 22, 63

o Data Elements
o DE 2 (PAN) — 2 digits indicating length + PAN
= 16 +161234567890123456

o DE 7 (Transmission Date/Time)
= 0609173030 = 06-09 17:30:30 UTC

o DE 22 (Point of Service Entry Mode)- 2 digits for mode + 1 digit indicating PIN availability
= 011 =01 (Manual Entry) + 1 (PIN entry available at terminal)

o DE 63 - Reserved for private use

The actual process for decoding a bitmap is out of scope for this paper, but an excellent resource
discussing the structure and methodology for doing so is available online," as are several tools that
perform the decoding automatically.”

Different payment switches implement slightly different requirements for each data field; for example, an
older publicly available ISO 8583 document for MasterCard Debit Switch indicated that all 02xx (1987,
Financial) messages require DE 43, the Card Acceptor Name and Location, to “satisfy national regulatory
requirements.”"i This is therefore a custom (and practical) requirement, rather than a part of the standard.

Similarly, different financial institutions use or opt not to use several “private fields.” For example, DE 127
is referenced in the Windows version of the FASTCash malware. MasterCard Debit Switch documentation
defers to proprietary Customer Processing Systems for this field’s use,” Star Northeast expects it to
contain data used for certain types of preauthorization,Viii and RuPay expects it to contain biometric data
in a tag-length-value (TLV) format.* These differences limit visibility into the purpose of the particular
reference within the malware.

FASTCash

FASTCash refers to a malware family and technique that relies on the 1SO 8583 standard to authorize
fraudulent ATM withdrawals. The attackers inject the FASTCash malware into the process on the
payment switch responsible for receiving these transactions. The malware intercepts incoming messages

by hooking the send and recv functions:

e If the transactions meet a certain criteria, they are approved without ever reaching the bank. The
malware can support both a withdrawal request and a balance inquiry request.

e If they do not meet the criteria, they are passed to and from the bank as a regular transaction.

Provides Legitimate Response
For ATM 3

Passes Legitimate Message
From ATM 3

ATM 1 Request Blocked
Fraudulent Response Refurned

ATM 1 Makes Malicious Request

Money Mule
ATM 1

Money Mule
Forwards Legitimate
Response to ATM 3
Legitimate User
ATM 3 Makes ATM 3
Legitimate Request

ATM 2 Request Blocked
Fraudulent Response Returned

ATM 2 Makes Malicious Request

The United States Department of Homeland Security (DHS) first publicly disclosed the FASTCash
malware in 2018 in a Malware Analysis Report (MAR) containing brief descriptions for two variants* of this
malware as well as descriptions of associated tools. This report examines workflows for:

MD5 Hash

Classification

Description

46b318bbb72ee68c9d9183d78e79fb5a

AIX Type 1

A likely earlier version of the malware that
contains IP whitelisting but no card
blacklisting.

d790997dd950bb39229dc5bd3c204 7ff

AIX Type 2

A version of the malware with a placeholder
for a blacklisting function and a consolidated
message generating structure. This version
is likely a “bridge” between the AIX Type 1
and Windows variants.

c4141ee8e9594511f528862519480d36

Windows

A version of the malware from 2019
designed for Windows systems. Appears to
be a “port” and update of AIX type two, with
a fully functional blacklisting feature and
similar message generating logic. This
version was uploaded to VirusTotal in 2019
and first referenced publicly in 2020." °

* DHS actually included three hashes in its disclosure, but this whitepaper considers two of the three FASTCash files

in the DHS report to be the same variant.

> Several aspects of this public report contain technical inaccuracies, but the report correctly lists a hash for the

Windows FASTCash malware.

AIX Type 1

The first FASTCash sample is presumed to be the oldest, and contains several core libraries that are
implemented or replicated within newer versions of the malware. The AIX versions of this malware
contain descriptive function names that indicate ISO 8583 interaction, including the following:

e DL_ISO8583 MSG_GetField_Str
e DL_ISO8583 MSG_SetField_Str
e CopyMsgFieldStr

These functions operate with a consistent pattern. Prior to the function calls, the malware loads an integer
into register 3. This integer indicates the field being copied, retrieved, or set. For the “SetField_Str” call,
the malware also loads a string into register 0. This string represents the data that will be placed in a field.

r8, LC..43 TC # _egb64.rw+0xB68 # (0110, authorization response)
r?, r31, Bx8B@

r3, 0 # Field 8: MTI

r4, r@

r5, r9

.DL_IS08583_MSG_SetField Str

ra, r3
ra, x88{r31)

The Field 0° value being set to the string “0100” indicating an authorization response message

P

addi ¥9, 31, 0z8n8

addi r@, r31, Bz80

1i r3, 2 # Field 2 {Primary Account Mumber)
mnr r4, r@

nr r5, r9

bl .DL_ISD8583_ MSG_GetField Str

nop

nr ra, r3

std ra, Bx78{r31)

Retrieval of the Field 2 (PAN) value

Finally, string references are all contained within a single section of the program. The malware points to
this section and provides an offset. The string begins at this offset and continues until the first null byte.

PIE]

1wz r8, BxBC(r31 _egé6u.ru:| .byte BxnA, 8, 8, 0, 0, @, B, B, Ox25, Bx73, Ox2D,

1rldi 9’ 9 ¢) -easnr] # DATA XREF: .data:_egbh.ri

clrldi r9, ro, 32 # .data:LC..n TCyo

1bz r@, BxC8(r31) .byte 0x20, 6x2D, O8x2D, Bx2D, Bx2D, Ox2D, Ox2D, Ox]

clrldi e, ro, 56 .byte 0x73, 0, 0, 0, Ox25, 0x30, 6x32, Ox78, Ox20,

1d 11 gxCo(r31 .byte ©6x2D, 6x2D, Ox2D, 0x2D, Bx2D, 0x2D, ©Bx2D, Ox|

adi 10’ 31 (B G‘; -byte 6x30, O6x32, Ox58, O, 0, 6, O, 0x30, ©6xz31, Ox c%c02%33C2012d. .356..... dkfiy)1*
add1 rie, rai, 6x .byte 0x31, 0x32, Ox64, 6x25, Bx63, 0x25, Ox63, Ox 290 (y¥29! (péy ! GRURHL ; 2EHESPu~KE (
1d r3, LC..131_TC #|_egb4.ru+0x278 .byte 0238, 0x39, 0x21, Bx28, Bx70, 0x23, Bx79, Ox) PIRHHES . 14, a (Shr 64.0) 00 rrrs.s
nr 4, r9 -byte Bz61, Bx28, Ox73, Ox68, Ox72, Ox5F, Bx36, Bx read - Load Func=$11
e 5. re .byte 6x25, Bx6C, Ox6C, Ox58, OxZC, 0x20, Ox7h, Ox| |y oo i iiecs o Do%8.-- Penemiil

6’ 11 .byte 8x69, Bx74, Bx5F, Bx69, Bx73, Ox6F, Bx5F, Ox) ' TRy ADAE_hashmeR

nr ro, r .byte Bx64, 8, 8, 8, B, Bx55, Bx6E, BxC, Bx6F, Bx| St init_iso_handle succ....
nr r7, ri@ .byte Bx5h, BxSF, Bx53, Bx49, Bxh7, Bx4E, Bx41, x| HF_Inivialize failed....Unload.
bl -out_dump_log =m0 on m e o oa ooon s oac o o [recv] len=%d...3ET_S¥YNC........
nop

1i r@, BxFF

stw ¥8, BXAC(r31) Blocked Message({msq=%04x, tern=%02x, pcode=%06x, panzts)l

,
b loc_18089AEC

Strings within the AIX malware

¢ Although the ISO 8583 standard does not describe a field designated as “0”, FASTCash considers “Field 0” to be
the MTI, likely for practical purposes.

With these core concepts in place, the following graph depicts the general workflow for the AIX Type 1
version of the FASTCash malware. Ovals represent an actual function name defined within the malware,
and rectangles represent an action taken or set of data retrieved.

GetIP
CheckSock @
Check for Flags Check for Valid IP
ReadRecv Field 2 (PAN)
GetMsglInfo GetFieldStr Field 3 (Processing Code)
NewRead CheckPan ResponseTransactionl Field 60 (Advice Reason Code)

Decision Point ResponseTransaction2

Process Responselnquiryl

GetMsglnfo2

Pass or Block Message

The AIX malware begins with an IP address check called from the NewRead workflow, shown in the
image below. The malware expects valid messages to be sent from a specific internal IP address.

L To, TW 1
bl -Check3ock et s,
b1 LBetIP
nop nop
w e, 3
o re, r3 copdi o7, ri, 8
cnpdi cr¥, va, @ veq £F7. 10C_10000318
bne cr?, loc_18089348
ot =
m uz rl, Bx7O{r3)
- . cirlgi re, re, 37
stu rb, B7B(r31)
14 r3, LE..187_IC & _egéh.rus@x708 & 18.9.56.20]
b1 -inet_sadr
i r2, Bxhleouts{ri)
- "o, r3
e 9, rd
1wz Fo, Ex7O(r31)
clrldi r, rd, 32
chple cr7, £, FO
) bre cri, loc 10006318

v =
1z ¥O, mea(rat)
clrldi ro, r8, 52
copul cr7, rd, exiras
bne cr7. loc_19006318
r L -
4 119
a2 o =
11 0. 1
sta ro, axancrst)f [1oc_1o0mna1s:
b Joc_100e8320 [[11 o, 0
:_;m_r—rmmm:n
s =

loc_10008576:

Ld B, BxEB(rI1)

e 3, re

18 F1, BxABesender_sp(ri)
L4 r8, sender_binder_varr1}
nt1r re

14 FH, var_B{r1)

NewRead function (left) calling CheckSock (middle and right) to validate message origination

The malware performs an apparent set of “flag” checks; although their purpose is unconfirmed,
debugging strings suggest that these ensure that a “block” flag isn’t set and that memory was properly
allocated prior to continuing.

If these checks are passed, the malware calls a function named GetMsginfo to retrieve Field 2 (PAN),
Field 3 (Processing Code), Field 60, and the MTI from the message. Field 60 is a “Private/Reserved” field.
Examples of its use include holding the “Advice Reason Code™ or “Additional EMV Information.”™"

.
addi r9, ri1, Bxens
addi r@, ri1, Bx80
1i ra, 2 # Field 2 {(Primary fAccount Humber)
[::] Ly rh, ri
. mw r5, r9
bl .DL_I508583_MSG_GetField_Str
nop
Ly rd, r3
std r, 0x78(rd1)
1 i
n g 9
bl GetHsgInfo loc_10006808:
nop ld re, 0x78(rat)
n 8, ¥3 cnpdi cr?, ro, @
cnpdi cr?, re, o bne cnf.'ln:_1unuoala
beq cr?, loc_100097a8

loc_100068F8 :
1d r, Bx78(rat)
capdi crf, ro, 0

bne crf, loc_10006928

) Ll
- Y
i r9, rii1, Bx8as

r@, ri1, Bx80

ra, 3 # Possible: Field 3 (Processing Code)
rh, ri

r5, r9

.DL_I1S08583_MSG_GetField_Str

rd, r3
r, Bx78{ri)

NewRead function (left) calling GetMsgInfo, which uses GetFieldStr to retrieve message fields

The malware then checks the PAN against a whitelist of cards. If it finds a match, it can take one of three
options:

e GenerateResponseTransactionl
e GenerateResponseTransaction2
e GenerateResponselnquiryl

The first two provide a mechanism for FASTCash to approve a fraudulent withdrawal request from
attacker-controlled cards. Combine with a whitelist, this allows the attackers to ensure that only their
cards cause this behavior. A full-scale cash-out would dispense money to non-attackers and would likely
result in earlier detection.

In each of these two functions, the malware uses CopyMsgFieldStr to copy data from the original
message to construct a portion of a response. The malware sets one of two response codes in Field 39 —
response code 51 (“Insufficient Funds”) in the event of an error, or response code 00 (“Approved”) for

successful construction of a new message. The malware also generates a random withdrawal amount as
part of the message.

T

¥

wgbA.rue BaBd 8 String: ST

B Field 39 (Recpoase code, 51 =

-
o
tnsuifictent Funasy] | i 3
i
s
K

T _eqeN.rus Baid § String: BE

.,
v =
21 B Fleld 39 (Recponie code
»,

. e
L_I3B85E3_MSG_SetFiels_str

w8, r1
8, BPBrIt)

]

s =
addi ¥e, ¥31, 8290
addi re, vi1, BxiB0
1 rl, W5 ® Field 37: Retrieval Reference Number|
n rh, o
n rs, re
b1 .CopyMsaFielastr
nop
o v, 3
sta rd, BeBE(ra)
=
loc_10007E0C
14 rB, BeBS(rI1)
cnpdi o7, re, 8
bne cr’, loc_10087E3C
™
L
]
anai ro, ril, mee
i v, BEBe
1 ra, w29 ® Field 81: Card Acceptor Terminal Idemtification
e rh, @
" 5, ¥
b1 .CopyMsgFieldstr
nop
o i, r3
sta ¥, BEB(rI1)
=]
loc_10007€3C:
1d rd, DxEE(ral)
crpdi o7, re, 0
bne crf, loc_10007E6C
T
1
ol e

addi
addi
1i
n
"
b1
nop
n
std

re, ril, &98
9, ri, Exeen
r3, @I

ri, ra

rE, 9

8 Field 82: Card Acceptor Identification Code

.CopyMsaF ieldstr

ri, ri
r, BxEE(rI1)

Portions of the “GenerateResponseTransaction1” Workflow

The two GenerateResponseTransaction functions are nearly identical, with the primary difference residing
in the fields that each one copies. One possibility for this discrepancy is that the environment in which the
malware operated supported multiple types of ISO 8583 transactions, including some that did not require
the Track 2 data omitted in the second transaction type; unfortunately, without access to the environment
this remains speculation.

Transaction 1

2 - PAN

3 — Processing Code

4 — Amount, Transaction

7 — Transaction Date and Time
11 — System Trace Audit Number
14 — Date, Expiration

19 — Acquiring Country Code

22 — POS Entry Mode

25 — POS Condition Code

32 — Acquiring Identification Code
35 — Track 2 Data

37 — Retrieval Reference Number
41 — Card Acceptor Terminal ID
42 — Card Acceptor ID

44 — Additional Response Data
49 — Currency Code, Transaction
62 — INF Data (binary)

63 — Network Data (binary)

Transaction 2

e 2—-PAN

e 3 —Processing Code

e 4 — Amount, Transaction

e 7 —Transaction Date and Time

e 11— System Trace Audit Number
e 19 — Acquiring Country Code

o 22 POS Entry Mode

e 25— POS Condition Code

e 32— Acquiring ldentification Code
o35 —Track2 Data

e 37 — Retrieval Reference Number
e 41 — Card Acceptor Terminal ID

e 42 — Card Acceptor ID

e 44 — Additional Response Data

e 49 — Currency Code, Transaction
e 62— INF Data (binary)

e 63 — Network Data (binary)

The final possible action, GenerateReponselnquiryl, allows the malware to fraudulently construct a
response to a balance inquiry issued by an attacker. Structurally, this workflow is similar to the workflows
within the ReponseTransaction routines; however, this action clearly serves a specific purpose. While the
attacker’s intent cannot be certain, a likely explanation is that this allows the attacker to test if the
malware is properly intercepting 1ISO 8583 messages without actually performing a cash withdrawal.

From a threat intelligence standpoint, this function contains valuable information: the results of a balance
inquiry are placed in Field 54 (Additional Amounts) using a format string:

cc01356Cdddddddddddd
This format string consists of four key segments:™ *"
e Account Type — Two digits (e.g. 10 for a Savings Account or 20 for a Checking Account)™
¢ Amount Type — The type of balance shown to the user (01, Ledger Balance)
e Currency Code — The currency units for the balance shown (356, Indian Rupee)
e Balance — Type Digit (0, C, D) + Amount (12 digits)

This sample of the malware will always return a Credit Amount in units of the Indian Rupee. From a threat
intelligence standpoint, this information hints that that victim is located in India or a country that would be
expected to use this currency. As with the transactions, the returned value is randomized.

During legitimate behavior, this type of workflow would be expected when a user opts to check their
account balances at an ATM preceding or following a transaction. However, because this malware
intercepts the message before it reaches the bank and randomizes the response, the value has no actual
bearing on anything tied to the account or card.

L T3, 77
1d ri, LC..70_7C & _eqgbh.rueixD0 8 TcIcO1TISCIN120TcTc02335CT0124
n r5, rio
n ré, r8
1d r7, LC..71_TC & _eqgbh.rusOxFo 8 356
n r8, r29
" r9, r28
nr r10, r27
bl .sprintf
1d r2, @x11C0eoutS(r1)
1d ro, ax98(r31)
cnpdi cr?, ro, 0
bne cr7, loc_1000880C
- -
A |
[vt 53
adadi re, r31, ox10F7
addi r9, r31, mxsce
11 r3, 0x36 8 0x36 - S 14 re, 1
n ra, ro std re, x98(r3d1)
~ rS, r9
bl .DL_ISOB583_MSG_SetField Str
nop
n re, r3
stad re, x98(r31)
b loc 100088 8C
L

Format string and currency constant within GenerateResponselnquiryl function

Following these three branches, the malware finalizes the message and logs that it has successfully
blocked it (or, if these workflows were bypassed due a PAN not being on the whitelist, logs that it passed)
before sending the response back to the original source.

AIX Type 2

The second AIX variant contains a similar set of function names and at a high level serves the same
purpose: the malware either fraudulently approves withdrawal requests or responds to attacker-owned
balance inquiry requests. However, this version contains two significant changes:

e Anincomplete “blacklist” function (later completed for the Windows version)
e A more streamlined workflow for responding to balance inquiries and transaction requests

Field 0 (Header)

Field 2 (PAN)
Field 3 (Processing Code)

Check for 90 and 200

@ [Field 22 (Point of Service Entry Mode) Get ficlds 0 (Header) and 3 (Processing code)

Set Field 0 to x210

SevCopy/Remove Fields

Set Response Code to 00

Set Additional Fields

As the workflow graph shows, this AIX variant foregoes the three separate response functions and
consolidates them into a single function call. This creates several efficiencies for the malware developers:
rather than writing nearly identical code for three slightly different functions, this version applies one set of
logic to all three possible response options.

As part of this function, the malware checks that the message type is an x200 (Financial Request)
message and sets the response to x210 (Financial Response).

o |f the Processing Code starts with 3, the malware will return a balance inquiry response using the
same currency code (356, Indian Rupee) as the AIX Type 1 variant.

o |f the Processing Code does not start with 3, the malware will fraudulently approve the transaction
request.

e There is a third workflow available that open source reporting’“’i suggests is affiliated with a
blacklist function, although this is unconfirmed given that the blacklist function is incomplete in
this version.

This logic aligns with high level details provided in a Symantec report in November 2018,
researchers did not list an analyzed hash to verify that this was the file examined.

although the

10

TE 4 _egbir s beian § 210
)
IR setriend_Str 8 Sexs fieh

210 lcsune Responsn to Financial Request)

o, munan

i v = Processing Code Check
% |

-
T e
o7y lad s

Transaction
Workflow

4 Flola 5h: duthorlzatia TasntiFication Rasponss|

Balance Inquiry
Workflow

et st

8 Field 3: Response Gode

Cirncr
2, Bt eutsir 1y

a0
1o tmaczee

ERTT—T

GO
i Vaiics B 55 e

5wy
oot
o, et

5. wansn

o
o LB APIE 4 _ogshrstuitn 8 80
e

strnern
L

o
o7 S tunssace o

33333

hents
B0t sten)
Te: Sasmree

:
z :
Consolidated response logic in AIX Type 2 variant
- re, r9
b1 LEetMsgFields
e
1d rT, BeCO{r3t)
1d rB, BRCB(r31)
1d r18, Bx0{rat}
addi 9, ril, fxaB
1d rd, LC..32_TC & _egfib.ru_s@x00 B Message(nsg=%d, ct=%d, pc=%d, pan=is)
it ra,
- ¥s, ré
- ré, rid
- ¥, v
b1 Lout_dunp_log
froe
14 9, BxCO(rat)
capldi cr?, r9, z0B
LA £r7, loc_10eesksc
- |
] bt B
1d r9, BXCE(F31)
cnpldi erf, r9, o0
e cr?, loc_18088E2C
s 1
|addi r9, ril, Ao
nr ra, ro
bl -CheckPan
s
| e, rd
cnpdi er?, 19,
[req cri, loc 18888E20C
] bt 1
10 ¥3, LC..34_TC 0 _Pg&N.ru_sDxDE B Process Hessage
b1 ol
e
addi ¥e, r31, OeAl
4
b1 .BlacklistCheck
- re, ra
stu F9, Ex9C(r31)
1wz ¥, BxiR(ra1)
entsw rE, 9
1wz re, ExVR{ra1)
Eextsw i, r
1wz re, Ex9C(rat)
et sw e, ro
- r3, rs
1d rh, BxO8(r31)
e e, ria
- ré, ry
b1 JFracess
s
10 ¥, g_block_IC & __@so_hanole+@xzy
1i .,
sty 10, 8{r9)
i+
g_block_TC & _ dso_handle+@x2
a{re)
r9
cri, r9, 2
cri, loc_ 10808675

Overhead workflow for performing 0x200, 90, and blacklist checks

11

Windows

The Windows variant of FASTCash closely resembles the AIX Type 2 version, with the following changes:

e A completed blacklist function

e Additional checks prior to generating a response message

e Stripped function names (due to the programming language change)

e Support for Field 127, a Private/Reserved field likely specific to the target environment

Despite the function name stripping, many functions within this variant are nearly identical to their AIX
counterparts. The graph below therefore uses the same or similar names where appropriate.

@ Check Hardcoded IPs

Field 2 (PAN)

Field 3 (Processing Code)
w @ Field 7 (Transmission Date and Time)
Field 22 (POS Entry Mode)
Field 35 (Track 2 Data)
@ Verify X100 or x200
Check Digits 3 and 4
w of MT1 are 00

Response 00 (Authorize)
Return Balance
Processing Code Currency Code 949
Starts With 3 Turkish Lira

Check Digit 1 Processing Code Response 00 (Authorize)
of POS Entry is 9 Starts With 0 Authorize Random Amount

Processing Code
Starts With Anything Else

Response 55 (Incorrect PIN)

w Get and Copy Fields

Remove Unnecessary Fields

The malware performs an IP address check to determine if the message originates from one of two
hardcoded IP addresses. It then retrieves an initial set of fields, including the MTI and verifies that the
message is either an x100 (Authorization) or x200 (Financial) request. After validating the PAN against
both a whitelist and a blacklist, the malware proceeds to a “Process” function similar to AlIX Type 2.

The Process function calls a parent function that performs three additional actions:

1) The parent function calls GetField_Str to retrieve Field 0 (MTI) and Field 22 (POS Entry Mode)

2) The parent function checks that digits 3 and 4 in the MTI are “00” (ensuring it is a “request”)

3) The parent function checks if the POS Entry Mode begins with a “9” (indicating a card
transaction)

Following these checks, the malware calls the function responsible for generating the response message.

12

Within the response message function, the malware once again validates several fields. The malware
retrieves Fields 3, 4, 11, and 49 plus the MTI — if it cannot retrieve one of these fields, the malicious
workflow exits.

push esi
push 3

call GetField Str
lea ecx, [ebpsuar_i8)

push ecx

push esi

push 1 ; Field 4: Amount, Transaction

call GetField Str

lea edx, [ebpsuar_id]

push edx

push esi

push 1 ; Field 11: System Trace Audit Number
call GetField Str

lea eax, [ebpsvar_9C]

push eax

push esi

push 49 3 Fleld 49: Currency Code, Transaction
call Getrield str

mov eax, [ebpsvar_aC]

add esp, 48h

cmp eax, ebx

iz loc 1808281A

; Field 3: Processing Code

e |
cmp [ebp+var_98], ebx
jz loc_1088281A

FI™E] |
cmp [ebpivar_ag], ebx
§z loc_10082B1A

e |
cmp [ebpivar_A4], ebx
iz loc_10862B1A

FFE |
cmp [ebp#var_9C], ebx
§z loc_109@@2B1A

Validation of field data within MakeResponse_Msg function
If these checks pass, the malware follows a workflow similar to the AIX Type 2 version. It will:

e Generate a balance response inquiry if the first digit in the processing code is a 3
o Generate a fraudulent withdrawal if the first digit in the processing code is a 0
e Generate an “Invalid PIN” response if the first digit of the processing code is neither 0 nor 3

<:| | Processing Code First Digit= “3" ? I

} <:| | Processing Code First Digit = “0" ?

Decision workflow

The malware once again uses a format string for the balance inquiry; however, this time the currency
code is set to 949, the Turkish Lira. As with the previous two variants, the malware uses randomized
amounts for these workflows.

Following this routine, the malware finalizes the response message and transmits it back to the
originating device, using functions similar to the previous two variants.

13

Tooling Clusters
Timeline

FASTCash can be associated with other tools from the same threat group based on shared code
characteristics and inferred operational relationships through VirusTotal submissions. Discussing
individual operations is outside of the scope of this paper; however, sensitive sourcing corroborates these
relationships at an operational level.

During its FASTCash and SWIFT operations, the threat group also uses:

e A keylogger

e PowerShell-based backdoors
e PowerShell-based installers
e Process injectors

The graph below demonstrates how these tools are related at a code and operational level. This graph
(and the subsequent tool descriptions) omits a select set of tools that the attacker continues to use as of
July 2020 that have not been publicly described. Hashes for the listed files are included at the end of the

paper.

April 2018 Keylogger
Vietnam

May 2018
June 2018
July 2018
Same India Event
August 2018 FASTCash Injector (FASTCash)
India India
AlX1&2 AlX
September 2018 Keylogger
India
October 2018
5ame Pakistan Event/Submitter
Movember 2018 Keylogger | Fake Resume Application] DLL Installer PowerShell Backdoor
Pakistan Pakistan Pakistan Pakistan
Chile Thailand
December 2018
January 2019
February 2019
March 2019
Same Submitter
April 2019 Keylogger Injector (Non-FASTCash)
Submitted Alongside Injector| Submitted Alongside Keylogger
May 2019 Injector (Non-FASTCash) Fake Resume Application
Signed in May Signed in May
Compiled in April IMlddIe East
June 2019 FASTCash Injector (FASTCash)
Windows Windows
Compiled in 2018
Digitally Signed in 2019]

14

Fake Resume Generator and Secondary Payload

The Fake Resume Generator likely represents the one of the group’s entry-stage tools to gain a foothold
on a victim’s network. This tool typically purports to belong to a legitimate company, often in the payment
processing or interbank network sectors.

There are multiple versions of this tool, but in general this program performs the following steps:

1) Downloads or runs a PowerShell-based backdoor
2) Opens a window for the user to enter resume-related information
3) Generates a PDF with this information

The malicious actions occur regardless of whether or not the victim actually generates the PDF. One
second-stage payload, likely related to a late-2018 attack based on relationship information available on
VirusTotal,™" supported C2-initiated command-line execution, secure file deletion, and file writing/running
of additional payloads. This tool also installed itself as either a scheduled task or a service for
persistence.

PSLogger Keylogger/Screenshot Grabber

The keylogger and screen grabber is delivered via PowerShell and executable injectors, likely on targets
identified as being both higher priority and highly-used. There are DLL and EXE versions of this tool.

The screenshot functionality of PSLogger likely derives from open source code examples: the code
strongly resembles example content available online®™ for generating multi-monitor image files. This
content is zipped using code resembling the publicly available XZip library or a similar code set.™

vaid CaptureDesktop(CDCGuard &desktopGuard // handle to moniter OC
, €DCGuard &captureGuard /
, CBitMapGuard & bmpGuard //
, HGDIOB) & originalBmp
, int * width

, int * height L2
, int left FIE]
. o 2 =) Loc_180002ca4: ; he
o x, [rbx]
unsigned int nScreeniidth=GetDeviceCaps(desktopGuard.get(},HORZRES); cp rex, rax
unsigned int nScreenHeight=GetDeviceCaps(desktopGuard.get(), VERTRES); 5z short loc_1809€2C54

*height = nscreenHeight;
*width = nscreenwidth;

// Creating a memory device context (DC) compatible with the specified device 5 -
HDC hCaptureDC = CreateCompatibleDC(desktopGuard.get()); ine 5 Trap to Debugger
if (!hCapturenc)

throw std: :runtime_error("CaptureDesktop: CreateCompatibleDC failed");

¥
captureuard.reset (hCaptureDC) ;

// Creating a bitmap compatible with the device
// that is associated with th ified DC
HBITMAP hCaptureEmp = CreateCompatibleBitmap
(desktopGuard.get(), nScreenliidth, nScreenHeight);
f(!hCaptureBmp)

throw std: :runtime_error("CaptureDesktop: CreateCompatiblesitmap failed”);

bmpGuard. reset(hCaptureBmp);

[

// Selecting an object for the specified DC
originalsmp = selectObject(hCaptureDC, hcaptureBmp)s 1oc_180002c52: 5 nde
if (loriginalBmp || (originalBmp == (HBITMAP)GDI_ERROR)) lmov™ rcx, [rbpso

- [mov réd, ridd ioey
mov edx, rizd ;o
throw std::runtime_error("CaptureDesktop: SelectObject failed™); Al cortreatec

mov rx, rax

test

inz

ax, rax
// Blitting the contents of the Desktop DC into the created compatible DC short loc 109002081

if (!BitBlt(hCaptureDC, 8, @, nScreeniidth, nScreenHeight,
desktopGuard.get(), left, top, SRCCOPY|CAPTUREBLT))

throw std: :runtime_error("CaptureDesktop: BitBlt failed”

¥
}

Open-source screenshot code (left) resembling threat group keylogger code (right)

The filenames and locations for zipped screenshots and logged keystrokes have typically changed from
version to version, but are usually stored in the victim’s AppData\Local\Temp directory or a subdirectory
of this folder. The screenshot filename will typically contain a timestamp (e.g. tmp_userA_0121_142748).

15

PowerShell Backdoor

For a roughly one-year period, the threat group deployed a PowerShell backdoor at victim sites alongside
several of the other tools discussed in this report. A VNCERT reportXXi was among the first to publicly
disclose hashes for this malware, some of which had been uploaded to VirusTotal with other tools from
an event in Pakistan. The attackers have likely largely phased out this tool following its public disclosure
and replaced it.

The samples initially disclosed to the public were likely “incomplete,” as they contained several empty
functions. Based on the decoded function names present within the backdoor, a completed version would
be expected to support:

e File Transfer

e Screen Grabbing (through Base64-encoded script supplied by the C2)
e File Compression

e Command Execution

o Keylogging

e Registry Modification

e Collecting and Sending System Information

The attackers went through significant efforts to obfuscate the text: nearly every function named has been
replaced with an MD5 hash, which significantly slows down analysis. However, the contents of certain
command variables are only Base64-encoded, which facilitates identifying these functions’ intent.

PowerShell DLL Installer

The DLL installer was also uploaded alongside several tools in Pakistan in late 2018 and early 2019.*"
This script has a configuration that accepts five input variables: a .dll, .dat, and .cfg file alongside a
service name and a delete setting. This installer:

1) Moves the input .dll file (e.g. AppChk.dll) from the current working directory to the System32
directory and names it using the service hame variable (e.g. appchk.dll)

2) Moves the input .cfg file (e.g. AppChk.cfg) from the current working directory to the System32
directory and names it using the service name variable and a .mui extension (e.g. appchk.dIl.mui)

3) Moves the input .dat file (e.g. AppChk.dat) from the current directory to c:\programdata\microsoft\
using the service name variable, a generated number, and a .Idx extension (e.g. appchk6.ldx)

4) Creates and starts a service pointing to the DLL file

If the deletion switch is set to “1” when the script is run, the malware terminates the service, deletes the
service, overwrites the bytes in all three written files, and then removes all three files from the disk. This
deletion function shares code with at least one other PowerShell tool not listed in this report and shares
principles with a secure delete function included in the “non-FASTCash Injector” tool.

16

Injector (Non-FASTCash)

The threat group uses at least two types of injectors (in addition to PowerShell loaders that run payloads
in memory). One of these is specifically for the FASTCash malware and the other injects arbitrary
payloads into memory. One possibility is that this injector is used specifically for the keylogger payload,
as one sample was uploaded to VirusTotal directly alongside it; however, this remains speculation.

The non-FASTCash injector accepts four possible parameters:

File path (required, points to payload to be injected)

-S (causes the malware to sleep before injection, also causes secure deletion of payload)
-D (causes the malware to securely delete the payload)

-E (skips the deletion step)

The injector writes the specified payload into the process memory of explorer.exe and then executes it.

Injector (FASTCash)

The FASTCash injector is likely designed specifically to inject the FASTCash payload into the memory of
a payment switch application. The Windows version of this tool expects several command line arguments:

The path to the injector (under normal circumstances, automatically included at runtime)
An integer value (1 or 2) that specifies the operational mode (inject or eject)

A PID that specifies the target process for injection

A path to the DLL to be injected into the target process

Cycling through modules mmie-

Resolve FreeLibrary

e]

Depending on the specified operational mode, the malware will either write the specified DLL into the
target process and create a threat or resolve and call the FreeLibrary API to remove it from the process.

17

Conclusions

The FASTCash techniqgue and malware represents a novel way for its operators to conduct large-scale
cash-outs against financial institutions, but several complexities inherent in this approach limit the
frequency that these attacks can be carried out:

e Each network will have a slightly different implementation of the ISO 8583 standard
e Each network will have different security controls on critical applications
e This attack requires a network of money mules to perform the cash withdrawals

These three factors are likely significant drivers for the apparent relative rarity of successful cash-outs
through this technique. Still, the technique is a proven one and makes use of the fact that the ATMs
targeted are largely operating “as expected” and without being manipulated directly; put more simply, the
attackers can conduct an ATM cash-out without installing malware on these devices (either remotely or
via physical access).

The threat group’s supplemental toolset is effective, but largely relies on TTPs that are significantly less
distinct: the group often uses PowerShell-based tools, scheduled tasks, and malicious services to gain
access to and maintain a foothold on target networks. When the attackers combine these techniques with
their intricate knowledge of financial networks, however, the threat created is significantly larger.

File Hashes Referenced

d13c15016b5ea2a88434d427bb47110d (India)
d45931632ed9e11476325189ccb6b530 (api)

Keylogger
34404a3fb9804977c6ab86cb991fh130 (Pakistan)
3122h0130f5135h6f76fca99609d5che (Vietnam)
Injector (FASTCash) 89081f2e14e9266de8c042629b764926 (Windows)

b3efec620885e6cf5b60f72e66d908a9 (AIX)
b9ad0cc2a2e0f513ce716cdf037da907 (signed)
a042e53edd734b6a96ef9ab82bec8193 (unsigned)
d1d779314250fab284fd348888c2f955 (Middle East)

Injector (Non-FASTCash)

Fake Resume Application b484b0dff093f358897486058266d069 (Chile)
4c26b2d0e5cd3bfe0a3d07c4b85909a4 (Pakistan)
DLL Installer a827d598b4d13005526839473f38a01b (Pakistan)

b12325a1e6379b213d35def383da2986 (Thailand)
7¢651d115109fd8f35fddfc44fd24518 (Pakistan)
c4141ee8e9594511528862519480d36 (Windows)
FASTCash 46b318bbb72e€68c9d9183d78e79fb5a (AIX Type 1)
d790997dd950bb39229dc5bd3c2047ff (AIX Type 2)

PowerShell Backdoor

18

' “HIDDEN COBRA — FASTCash Campaign” United States Department of Homeland Security, 2 October 2018.
https://us-cert.cisa.gov/ncas/alerts/TA18-275A

" “1S08583 financial transaction message format” ADM Factory, https://www.admfactory.com/iso8583-financial-
transaction-message-format/

" “Financial Transaction Message Tools - 1ISO 8583 (1987) Data Fields” http://www.fintrnmsgtool.com/encode-
iso87-bitmap.html

V41508583 — A layman’s guide to understanding the ISO8583 Financial Transaction Message”
http://www.lytsing.org/downloads/iso8583.pdf

¥ “Financial Transaction Message Tools” http://www.fintrnmsgtool.com/decode-iso87-bitmap.html

1 “1SO 8583-1987 Data Element Definitions”, MasterCard, 2002. Retrieved from
http://read.pudn.com/downloads305/doc/1357633/1S08583_1987DE_Def.pdf

Y|S0 8583-1987 Data Element Definitions”, MasterCard, 2002. Retrieved from
http://read.pudn.com/downloads305/doc/1357633/1S08583_1987DE_Def.pdf

Vi “STAR 1SO 8583 MessageFormat Guide” FirstData, February 2011.
https://www.scribd.com/document/119326455/STAR-ISO-8583-Message-Format-Guide-02-11

X “RuPay — Online Switching Interface Specification” National Payments Corporation of India, 2013. Retrieved from
https://www.scribd.com/document/254420544/RuPay-Online-Switching-Interface-Specification

““APT38 Threat Analysis Report” ADEO, April 2020. https://adeo.com.tr/wp-content/uploads/2020/05/ADEO-
Lazarus-APT38.pdf

X “1S0 8583-1987 Data Element Definitions”, MasterCard, 2002. Retrieved from
http://read.pudn.com/downloads305/doc/1357633/1SO8583_1987DE_Def.pdf

g LINK Message Format and Data Element Definitions.” 1Link, 2018. Retrieved from
https://www.scribd.com/document/418059282/1LINK-Technical-Document-Data-Element-Definitions-and-
Message-Format-v5-7

M “What is the structure of Field No. 54 (P54) in the the ISO 8583 Standard” StackOverflow, March 2015.
https://stackoverflow.com/questions/26119041/what-is-the-structure-of-field-no-54-p54-in-the-the-iso-8583-
standard

™ «1SO 8583 Field Aciklamalari (F54)” Arif Unal, 9 October 2018. http://unalarif.com/yazi/iso-8583-field-
aciklamalari-f54/

¥ “iPOS Common Message Format” jPOS.org. http://jpos.org/doc/jPOS-CMF.pdf

™ “EASTCash: How the Lazarus Group is Emptying Millions from ATMs” Symantec, 8 November 2018.
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/fastcash-lazarus-atm-
malware?om_ext_cid=biz_social_NAM_facebook_Asset%20Type%20%20-%20Blog,Threat%20Intelligence

I “EASTCash: How the Lazarus Group is Emptying Millions from ATMs” Symantec, 8 November 2018.
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/fastcash-lazarus-atm-
m“aIware?om_ext_cid=biz_sociaI_NAM_facebook_Asset%ZOType%ZO%ZO-%ZOBIog,Threat%ZOIntelligence

Xvii
https://www.virustotal.com/gui/file/a38cle24eaf34c944c11d9968427c74b3412a2c1e82e31551cabd7d3e213bf31
/details

X «Creation of Multi-monitor Screenshots Using WinAPI” Code Project, 12 August 2010.
https://www.codeproject.com/Articles/101272/Creation-of-Multi-monitor-Screenshots-Using-WinAPI

 “XZip Demo” Code Project. https://www.codeproject.com/KB/cpp/xzipunzip/XZip_demo.zip

i "cANH BAO MA DOC APT TAN CONG CO CHU DIiCH” VNCert, 31 January 2019.
http://www.vncert.gov.vn/baiviet.php?id=109

i “New Lazarus DPRK installer” Twitter, 24 January 2019.
https://twitter.com/KevinPerlow/status/1088501115245727744

19

