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§ Background
– Synthetic Media, Generative Models, Transfer Learning

§ See No Evil
– Synthetic Image Generation with StyleGAN2

§ Hear No Evil
– Synthetic Audio Generation with SV2TTS

§ Speak No Evil
– Synthetic Text Generation with GPT-2

§ Case Study
– Social Media Information Operations

§ Implications and Takeaways
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A Brief History of Synthetic Media
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Modern Threat Environment
§ Anonymity, low risk
§ Immediate global reach
§ Viral amplification
§ Rife data disclosure 
§ Incentive misalignment
§ Cheap content creation



©2020 FireEye

Generative Models for Offensive ML
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Seymour and Tully, Black Hat USA 2016
Seymour and Tully, NeurIPS 2017 Workshop on Machine Deception
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https://www.blackhat.com/us-16/briefings/schedule/index.html
https://arxiv.org/abs/1802.05196
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§ Data Science for Good
– Multi-lingual advertising
– Speech/Language Disorders
– Arts & Humanities Education
– Shielding Activist Identities

Generative Impersonation - Use and Misuse Cases

8
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§ Data Science for Good
– Multi-lingual advertising
– Speech/Language Disorders
– Arts & Humanities Education
– Shielding Identity of Activists

§ Adversary Adoption
– Vishing and fraud
– News fabrication
– Defamation, libel
– Revenge porn
– Extremist propaganda
– Harassment, trolling, fake reviews
– Espionage
– Authentication subversion

Generative Impersonation - Use and Misuse Cases
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Transfer Learning
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Transfer Learning = less data, time, money, FLOPs, and energy

Task 1 Task 2Task 2
Fine-tuning strategies:
• Lower or freeze learning rates
• Architectural modifications
• Update specific weights/layers

Early layers
Generic Attributes

Later layers
Task-Specific Attributes
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The Open Source Model Ecosystem

Well-resourced industry researchers 
train neural networks to attain state 

of the art results on various tasks

SOTA!

They release large, pre-trained 
model checkpoints via open source 
code repositories for reproducibility

Other researchers, students, anyone 
anonymously downloads off-the-shelf 

weights for their own custom tasks

11
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Releasing Pre-Trained Models Lowers the Barrier to Entry
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§ Adversaries use open source tools

§ Cloud GPU Services/Notebooks
– Authors, follow-on contributors 

release more code and tutorials

§ Fine Tuning is not brain surgery
– Figuratively, at least

RESOURCE GPT-2 STYLEGAN2* SV2TTS

Time 1+ weeks 51 yrs / 
9 days ~25 days

Cost $43k ? ?

Data Size 40 GB 2.56 TB ~500 GB

Compute 32 TPUv3s 8 v100 GPUs 4 GTX 1080 
Ti GPUs

Energy ? 131.61 MWh 
/ 0.68 MWh ?

Released 2019 2019 2019



See No Evil
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§ Synthesize indistinguishably fake images

§ GAN task and architecture 
– Mapper: embed inputs as visual features
– Generator: synthesize images from scratch
– Discriminator: predict whether real images 

and generated images are real or fake

§ Flickr-Faces HQ (FFHQ) human faces
– 70k 1024x1024 images, ~2.56 TB 
– diverse (age, ethnicity, image background)

Generative Adversarial Neural Networks
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Analyzing and Improving the Image Quality of StyleGAN, Karras et al., 2019
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Pre-Trained StyleGAN2

e.g. https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/
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Fine-Tuning for Custom Portraits



Hear No Evil
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§ Real-time text-to-speech on arbitrary 
voices from captured reference speech

§ Sequential, 3-stage pipeline 
– Encoder – embeds a speaker’s utterance, 

trained on the speaker verification task
– Synthesizer – Tacotron2 generates 

spectrogram from text conditioned on 
Encoder’s embedding

– Vocoder – WaveRNN infers audio 
waveform from Synthesizer’s spectrograms

§ LibriSpeech, VoxCeleb1 & 2, VCTK
– 2,500+ hours of audio from 8,500+ speakers

Neural Voice Cloning

Transfer Learning from Speaker Verification to MultiSpeaker Text-to-Speech Synthesis, Jia et al., 2018

Encoder Synthesizer Vocoder

Dataset 1 Dataset 2

Automatic Multispeaker Voice Cloning, Jemine, 2019
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Pre-Trained SV2TTS
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Fine-Tuning for Speaker Adaptation
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“It demonstrates that we have a common enemy but I would not count on this relationship to 
go beyond that. This regime has shown it will not hesitate to burn good relations for its own 

financial gain.”
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Fine-Tuning for Speaker Adaptation
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“The leaked documents clearly show that the foreign minister is corrupt and that he has 
misdirected funds.”
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Fine-Tuning for Speaker Adaptation
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“The intelligence services have indicated that these anti government protests have been 
organized by foreign entities. They are bent on stirring up trouble and causing harm to the 

people of our country.”



Speak No Evil
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§ The quick brown fox jumps over the lazy ___ 
– Successively sample from candidate word distributions

§ Transformer Architecture
– Autoregressive: stacked decoder blocks
– Attention mechanism: masks future tokens 

§ Web scrape of 3+ karma Reddit URLs
– Byte-pair encoded input words
– > 8 million documents, ~40 GB English text

Neural Language Models
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Input
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Language Models are Unsupervised Multi-task Learners, Radford et al., 2019



©2020 FireEye25

Pre-Trained GPT-2

https://www.fireeye.com/blog/threat-research/2019/11/combatting-
social-media-information-operations-neural-language-models.html

https://www.fireeye.com/blog/threat-research/2019/11/combatting-social-media-information-operations-neural-language-models.html
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Fine-Tuning for Information Operations

https://www.fireeye.com/blog/threat-research/2019/11/combatting-
social-media-information-operations-neural-language-models.html

https://www.fireeye.com/blog/threat-research/2019/11/combatting-social-media-information-operations-neural-language-models.html


Case Study
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§ Solicitation and dissemination of audio/video interviews with 
real experts (e.g. "Distinguished Impersonator")

§ Well-developed, cross-platform personas designed to infiltrate online 
communities and/or disseminate fabricated content (e.g. "Ghostwriter")

Some Recent IO Tactics
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https://www.fireeye.com/blog/threat-research/2020/02/information-operations-
fabricated-personas-to-promote-iranian-interests.html

https://www.fireeye.com/blog/threat-research/2020/02/information-operations-fabricated-personas-to-promote-iranian-interests.html
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§ Networks of inauthentic SM accounts amplify political narratives 
(e.g. Pro-China networks targeting Hong Kong protestors, 
pushing COVID-19 narratives)

§ Personas and accounts often leverage appropriated photos of 
real individuals, recycle text/content 

Some Recent IO Tactics
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https://www.youtube.com/watch?v=O87AYlIPSyI&t=1029s

https://www.youtube.com/watch?v=O87AYlIPSyI&t=1029s
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§ Synthetically generated persona photos (already happening!)
– Create convincing personas corresponding to a particular minority 

group to instigate political conflict, incite animosity or violence 
(trained on images of real people from target group or geography)

§ Synthetically generated or altered audio interviews would 
lower actor burden, make attribution more difficult

§ Synthetic text lowers barriers to creating diverse content at 
scale

These applications materially help threat actors scale 
campaigns AND evade detection

How Could Synthetic Media Exacerbate

30
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Generative Fine-Tuning for Detection Evasion
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§ Diversity at Scale is Problematic
– Fine-tuning advantages attacker, who 

benefits from internet data availability
– It shifts positive class probabilities towards 

chance, decreasing detection accuracy

§ Training Data Availability Correlates w/ 
Target Value
– Politicians, candidates, staffers, gov officials
– Journalists, media personalities
– Academics, influencers, celebrities

fine-tuning

fine-tuning
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Synthetic Media In the Wild
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Synthetic media being repurposed for profile pics on social media platforms 
for several IO campaigns
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Synthetic Media In the Wild
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Synthetic media being repurposed for profile pics on social media platforms 
for several IO campaigns
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Synthentic Generation for Fun and Profit!
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§ Hobbyism

§ An open research ethos

§ Synthetic Media as-a-Service
– Micro-Targeting
– Personalized Advertisements and General Marketing
– Corporate Communications and Internal Learning and 

Development Materials
– Assets for Consumable Media (e.g. video game 

characters)
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§ Multiple avenues of deployment mask 
attribution, reduce direct ties back to 
sponsors

§ Increased diversity and/or specialization of 
assets and content

§ Lower in-house expertise and operational 
investment required

§ Plausible deniability and anonymity

Actor Benefits of Commercial Outsourcing Sponsor

PR Firm

Synthetic Generation as-a-Service



Implications and Takeaways
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Technical Mitigations
§ Forgery Detection
– Statistical/ML-based
– Fingerprint/Forensics (hard to scale)

§ Poor spelling, grammar, punctuation
§ Eye alignment, teeth abnormalities, ear 

asymmetry, no blinking, hairline artifacts

§ Content Authentication
– Verification/other reputation signals
– Watermarking, cryptographic signing
– Controlled capture, Provenance, audit 

trails

§ Platform Integrity, metadata context
– Content moderation, acct creation 

bottlenecks, fact-checking, policies
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§ Community Efforts
– Detection Challenges, Workshops
– Coordination across disciplines
– Threat modeling, red teaming
– Acknowledgement of social Impact or 

Ethics Statements

§ End-user Education and Awareness
– Beware of risk hyperbole, disinformation 

about disinformation. Be vigilant

§ Legal/Regulations (e.g. AB 730)
– Software licensing
– Terms of Service/Codes of Conduct

Patching Human Perception

Service/Application Type

Ethics Statement?

Marketed Use Cases

Image or Video

Voice

None/user Defined

Marketing/Advertising

Multiple

Video Game 
Development

Corporate Comms/ 
Training

Ethics 
Statement

No Ethics 
Statement
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§ Synthetic Media tech will become cheaper, 
easier, more pervasive, and more credible

§ New Trends Risk Further Escalation:
– Few/One-shot learning
– Controllability and Steerability
– Distillation, pruning, sparsification, etc.
– Multi-modality (text, images, and audio)
– Video (deepfakes, face swap), Full body
– Low code/no-code platforms

§ User susceptibility - see what you want to see
– Short, authoritative social media text
– Cell-phone quality audio and video
– Does not require high bar of credibility, only 

needs to be "good enough"

The Calm Before the Storm

39
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Black Hat Sound Bytes
§ Fine tuning for generative impersonation in the text, 

image, and audio domains can be performed by 
nonexperts, can be weaponized for offensive 
social media-driven information operations

§ Detection, attribution, and response is challenging 
in scenarios where actors can anonymously 
generate and distribute credible fake content 
using proprietary training datasets

§ We as a community can and should help AI 
researchers, policy makers, and other stakeholders 
mitigate the harmful use of open source models



Thank you for your attention.

Sam Riddell (FireEye)
Ryan Serabian (FireEye)
Sajidur Rahman (University of Florida)
ML Visuals/dair.ai/@omarsar0/@srvmshr
Black Hat organizers and staff


