Process injection

AppDelegate

() : (NSNotification *)aNotification {

() : (NSNotification *)aNotification {

O 0 N (

(BOOL)applicationSupportsSecureRestorableState: (NSApplication *x)app {
return YES;

Full Pa

tes

Text Encodil

Line Endin:

Indent Usil

Widt

Hello!

Thijs Alkemade (@xnyhps)
Security researcher at Computest
Computest research lab: Sector 7

Other recent work includes:

- Oclick Zoom RCE at Pwn20wn
Vancouver 2021

-Winning Pwn20wn Miami 2022 with 5
ICS vulnerabilities

PLAY IS THE HIGHEST Computest l‘
FORM OF RESEARCH always on,

macOS security model
CVE-2021-30873: process injection using saved states

Using process injection for:
-Sandbox escape

- Privilege escalation

-SIP bypass

macOS security model

Users are security boundaries,
processes are not

File permissions: POSIX flags

Attach debugger: target must run —rw-r-—r—— 1 talkemade wheel 0 Aug 11 12:57 file
as same user

root has full access

System Integrity Protection new)

Security policy applying to every process, including privileged code running
unsandboxed

Extends additional protections to system components on disk and at runtime

System binaries can only be modified by Apple Installer and Software Update, and no
longer permit runtime attachment or code injection

“Dangerous” operations now require the application to have an
entitlement

-Loading a kernel extension
- Modifying system files
- Debugging system processes
More and more restrictions in each macOS release

- Debugging any app is now restricted
-“Data vaults” with restricted file access

$ ls ~/Library/Mail/

ls: /Users/talkemade/Library/Mail/: Operation not permitted
$ sudo ls ~/Library/Mail/

ls: /Users/talkemade/Library/Mail/: Operation not permitted

$ i

$ codesign —-dvvv ——entitlements - /System/Applications/Mail.app/
Executable=/System/Applications/Mail.app/Contents/Mac0S/Mail
Identifier=com.apple.mail

Format=app bundle with Mach-0 universal (x86_64 arm64e)
[...]

[Key] com.apple.rootless.storage.Mail
[Value]

[Bool] true

Process A executing code “as”
process B

Many techniques are restricted by
SIP

Hardened runtime prevents itin
apps:

-No DYLD_* environment variables
- Library validation

But macOS is old, and large...

Platform Policy
Restricted processes

task_for_pid() / processor_set_tasks() fail with EPERM
Mach special ports are reset on exec(2)
dyld environment variables are ignored

dtrace probes unavailable

$> sudo lldb —-n Finder
(1ldb) process attach --na
error: attach failed: attagh failed: lost connection

Common in third-party app
Abuse TCC permissions: access webcam, microphone, etc.
Downgrade attacks often work

What's better than process injection in one app? Process injection
everywhere!

CVE-2021-30873

Re-opening the windows of an app
when relaunched

Are you sure you want to shut down your
computer now?

Re StO res u n saved d Ocu m e nts If you do nothing, the computer will shut down

automatically in 55 seconds.

Works automatically, can be €2 Reopen windows when logging back in
extended by developers cancel | (T

Stored in:
-~/Library/Saved Application
State/<ID>.savedState
windows.plist

-array of all windows, each with an
encryption key

data.data

- custom format, AES-CBC encrypted
serialized object per record

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000020
000000b0
000000cO
000000d0
000000e0
00000070
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000120

|G=0.v:.4y.?]1hW}.
| To.N[=S*m5..1._.
|+«LaQ...).%H+jt.
| .

|[MxZ.y..h?Q
|e..@...bUY.)F.1.

Insecure deserialization can lead

to RCE
-Well known in C#, Java, Python, Ruby...

Apple’s serialization isNSCoding

Added NSSecureCoding in 10.8
(201 2) AR E T) - R
F

0SX
Mountain Lion

// Insecure
id obj = [decoder decodeObjectForKey:@"myKey"];

if (![obj isKindOfClass: [MyClass classl]) { /%
I3

// Secure

...fail...

id obj = [decoder decodeObjectOfClass: [MyClass class]

forKey:@"myKey"1;

Create a saved state using a malicious serialized object
Write it to the saved state directory of the other app
Launch other app

App automatically deserializes our object

Execute code in the other app!

ysoserial-objective-c?
Google Project Zero writeups?

Insecure deserialization with NSCoding

Disassemble —initWithCoder: methods
Surprisingly, many classes do not support secure coding!
...but in most cases it only recursively decodes instance variables

NSRuleEditor creates a binding to a keypath also from the archive:

ID NSRuleEditor::initWithCoder: (ID param_1,SEL param_2,ID unarchiver)
{

id arrayOwner = [unarchiver decodeObjectForKey:@"NSRuleEditorBoundArrayOwner"];
if (arrayOwner) {

keyPath = [unarchiver decodeObjectForKey:@"NSRuleEditorBoundArrayKeyPath"];
[self bind:@"rows" toObject:arrayOwner withKeyPath:keyPath options:nil];

Result: call any zero-argument method on a deserialized object

NSCustomlimageRep obtains an object and selector from the archive:

ID NSCustomImageRep::initWithCoder: (ID param_1,SEL param_2,ID unarchiver)
{

self.drawObject = [unarchiver decodeObjectForKey:@"NSDrawObject"];
id drawMethod = [unarchiver decodeObjectForKey:@"NSDrawMethod"];
self.drawMethod = NSSelectorFromString(drawMethod);

NSCustomlmageRep in —draw then calls the selector on the object:

void ___ 24-[NSCustomImageRep_draw] _block_invoke(long param_1)
{

[self.drawObject performSelector:self.drawMethod withObject:self];

Result: call any method on a deserialized object (limited control over arguments)

Call zero-argument methods on deserialized objects

Call any method on deserialized objects

Create objects not implementing NSCoder

Call zero-argument methods on arbitrary objects

Call any method on arbitrary objects

Evaluate AppleScript

Evaluate AppleScript with the AppleScript-Objective-C bridge
Evaluate Python

Import ctypes

Execute code equivalent to native code

Exploitation

=+ | &= ¥ nothingtoseehere) | Q search

Favorites Name ~ Date Modified size ' Kind

15} talkemade = somefile.jpg Today at 16:38 Zero bytes

0 Desktop
) Documents
0 Downloads

A\ Applications

iCloud
¢ iCloud Drive

Locations
[1PC90

@ Network
Tags

@ Orange

© Yellow

@ Green

® Gray

@ Red

Cancel |

=t - [nothingtoseehere 24 Q_ Search

Favorites Name ~ Date Modified Size

12} talkemade = somefile.jpg Today at 16:38 Zero bytes

.| Desktop

) Documents
© pownloads
A\ Applications

iCloud
¢ iCloud Drive

Locations

Window: the app | meceo Contents: openAndSavePanelService

@ Network

Tags
@ Orange
© Yellow
@ Green
® Gray
@ Red

Open/save panel loaded its saved
state from the same files as the
app!
-Write new object in the app’s own
saved state directory

-Open a panel
-Sandbox escaped!

Fixed in 11.3: no long shares
directory

CoreFoundation
Available for: macOS Big Sur
Impact: A malicious application may be able to leak sensitive user information
Description: A validation issue was addressed with improved logic.

CVE-2021-30659: Thijs Alkemade of Computest

Exploitation

Privelege escalation

>Use the same technique as
“Unauthd - Logic bugs FTW" by
llias Morad

>First, find an app with
entitlement:

com.apple.private.AuthorizationServices
containing:

system.install.apple-software

(AFEEEEERRRBE N

/ - = 7
(|

Install Command Line Developer Tools.app

https://a2nkf.github.io/unauthd_Logic_bugs_FTW/

Privilege escalation

>Then, install this package to a
RAM disk

>t runs a post-install script from
the target disk as root
- Target disk may not even have macQOS!

-Mounting a RAM disk does not require
root

macOSPublicBetaAccessUtility.pkg
Installer package - 84 KB

Exploitation

App from the macOS Big Sur beta
installation dmg

Has the entitlement:

-com.apple.rootless.install.her
itable

Very powerful entitlement: access
all SIP protected files!

- Heritable as a bonus, so can spawn a
reverse shell

macOS Update Assistant.app

\pplication o200 AD
M

Read mail, messages, Safari
history, etc. of all users

Grant ourselves permission for
webcam, microphone, etc.

Powerful persistence (SIP
protected locations, delete MRT)

Load a kernel extension without
user approval

System Extension Blocked

A program tried to load new system
extension(s) signed by “Parallels International
GmbH?". If you want to enable these
extensions, open Security & Privacy System
Preferences.

Open Security Preferences

" Activity Monitor File Edit View Window Help Q & Wed20 Jul 20:18

O O fCt_tvvnvy,M?mtor CPU Memory E Disk MNetwork b '_{ sandboxl o
Process Mame Sandbox % CPU CPU Time Threads Idle Wake-Ups % GPU
Sandbox Yes 33 0,88 G 0

: :‘
userfusers—Mac Downloads % nc -lv 1339‘

System: 23,79% GRLLLOAE Threads: 1.064

User: Processes: 3156

Idle: 52,63%

'
o

lI‘:]

JDLsUTE: Ooefe @/@ |

The fixes

In Monterey, apps can indicate if it accepts only secure serialized objects in
its saved state

- Already enabled for Apple’s apps
- Existing apps may want to store objects that do not implement secure deserialization
-Unclear if exploitable when apps don't use custom serialized objects

Reported December 4, 2020
Sandbox escape fixed (CVE-2021-30659) in 11.3 (April 26, 2021)

Fix introduced in macOS Monterey 12.0.1 (October 25, 2021)
-Not backported to Big Sur or Catalina!

Conclusion

macOS has a security boundary between processes

Process injection vulnerabilities can be used to break those boundaries
CVE-2021-30873 was a process injection vulnerability affecting AppKit apps
We used it to escape the sandbox, privilege escalation, bypassing SIP

Fixed by Apple in Monterey (only!)

macOS security keeps adding more and more defensive layers

Adding new layers to an established system is hard
- Code written 10+ years ago without security requirements is today’s attack surface

Effort of attackers may not increase with more layers
- Use the same bug for multiple layers or skip layers

References

> https://wojciechregula.blog/post/abusing-electron-apps-to-bypass-macos-security-
controls/

> https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html

> https://googleprojectzero.blogspot.com/2022/03/forcedentry-sandbox-escape.html
> https://a2nkf.github.io/unauthd Logic bugs FTW/
> https://mjtsai.com/blog/2015/11/08/the-java-deserialization-bug-and-nssecurecoding/

> https://developer.apple.com/documentation/foundation/nssecurecoding?language=obijc

> https://github.com/frohoff/ysoserial
> https.//github.com/pwntester/ysoserial.net

https://wojciechregula.blog/post/abusing-electron-apps-to-bypass-macos-security-controls/
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
https://googleprojectzero.blogspot.com/2022/03/forcedentry-sandbox-escape.html
https://a2nkf.github.io/unauthd_Logic_bugs_FTW/
https://mjtsai.com/blog/2015/11/08/the-java-deserialization-bug-and-nssecurecoding/
https://developer.apple.com/documentation/foundation/nssecurecoding?language=objc
https://github.com/frohoff/ysoserial
https://github.com/pwntester/ysoserial.net

