2 Microsoft

CastGuard

Joe Bialek — Microsoft Offensive Research &
Security Engineering (MORSE)

Twitter: @JosephBialek

=
Q@a

Problem Space

Killing Bugs vs. Killing Exploit Techniques
Mitigating exploit techniques has ambiguous long-term value.

Mitigations are typically far enough away from actual bug that bugs
are still exploitable using different techniques.

Tradeoffs between performance, compatibility, and mitigation
durability are becoming increasingly difficult.

Unclear how many more practical opportunities there are for building
meaningful exploit mitigations.

Killing Bugs vs. Killing Exploit Techniques

Microsoft increasingly focused on eliminating vulnerability classes,
removing attack surface, and sandboxing code.

Hyper-V vPCl component refactored from a C kernel component to C++ (w/ GSL) user
component.

Microsoft investigation of Rust and other safer systems languages, and use of managed
languages.

CLFS blocked from sandboxes, Redirection Guard, etc.

Path Forward for C/C++ Code

Four high-level bug classes responsible for majority of memory safety
vulnerabilities.

Buffer Overflow & Out-of-Bounds Accesses (i.e. attacker controls array index)
Uninitialized Memory
Type Confusion

Use-After-Free

Root Cause of Memory Safety CVEs by Patch Year

2017 2018 2020

m Heap Corruption = Heap OOB Read = Other Stack Corruption = Uninitialized Use m Use After Free

Path Forward for C/C++ Code

Four high-level bug classes responsible for majority of memory safety
vulnerabilities.

Buffer overflow / out-of-bounds accesses (spatial safety) EERVINoteIaVAETolo[llekay A€ 5]21k:

Uninitialized memory InitAll / Zeroing Allocators

Type confusion 22?

e Memory Tagging? / CHERI? / Application
Specific Solutions (MemGQC)

Not necessarily things Microsoft is committed to using, just illustrating solution space.

Type Confusion

Come in many flavors..
lllegal static downcast (down-casting to the wrong derived type in a class hierarchy).

Improper union use.

lllegal reinterpret_cast (i.e. cast an object of some type to totally different type).

Generic logic issues (i.e. using fields incorrectly).

Offer extremely powerful primitives to attackers and can often lead to
breaking mitigations such as Memory Tagging.

Many forms of type confusion are not possible to generically solve ®.

struct Animal {

lllegal Static
Downcasts y.

virtual void WhoAmI() {cout << “Animal”;}

struct Dog : public Animal {
virtual void WhoAmI() {cout << “Dog”;}

s

struct Cat : public Animal {
virtual void WhoAmI() {cout << “Cat”;}

s

Animal* myAnimal = new Dog();

static_cast<Cat>(myAnimal) - >WhoAmI(); // Illegal down-cast

dynamic_cast?

Code creating the object and code casting object must enable
Runtime Type Information (RTTI).

Makes it difficult to automatically convert existing static_cast’'s to dynamic_cast. Need to control
all code to ensure RTTI settings are uniform. We cannot enforce this (3@ party DLL's, etc.).

RTTI causes binary size bloat (may be possible to optimize).
Windows.Ul.Xaml.Controls.dll grows 86.5% from RTTI (no dynamic_cast).

dynamic_cast checks have overhead (may be possible to optimize).

Code executed in the success path of a dynamic_cast down-cast

test3!FindSITargetTypeInstance:

[[) [J [] [J
- 0000717 567bd1lc 488bc4 mov rax, rsp
0000717 567bd11f 48895808 mov. qword ptr [rax+8], rbx
0000717 567bd123 48896810 mov. qword ptr [rax+1@h], rbp

0000717 567bd127 48897018 mov. qword ptr [rax+18h], rsi
0000717 567bd12b 48897820 mov. qword ptr [rax+20h], rdi

0000717 567bd12f 4156 push ri4
0000717 567bd131 48634110 movsxd rax, dword ptr [rcx+10h]
00007117 567bd135 498bd8 mov rbx, r8
0000717 567bd138 33c9 xor ecx, ecx
00007ff7 567bd13a 4c8bf2 mov ri4, rdx
00007ff7 567bd13d 4e635c080c movsxd ril, dword ptr [rax+r9+ecCh]
00007ff7 56771472 c744242000000000 mov dword ptr [rsp+20h], @ ss:0000001f baeff890=567bf330 00007ff7" 567bd142 468b540808 mov r1ed, dword ptr [rax+r9+8]
00007ff7°5677147a 4c8deddfe70600 lea r9, [test3!MyChildl "RTTI Type Descriptor' (00@07ff7 567d1c6@)] 00007117 567bd147 4d@3d9 add ril, r9
00007117 56771481 4c8d0590080600 lea r8, [test3!MyBase "RTTI Type Descriptor' (0@007ff7 567d1d18)] 000071 17" 567bd14a 4585d2 test ried, ried
00007ff7 56771488 33d2 xor edx, edx
00007ff7°5677148a 488bcb mov rcx, rbx 000071 17" 567bd14f 4d8bc3 mov rg, ril
00007ff7 567bd152 496310 movsxd rdx, dword ptr [r8]
00007117 567bd155 4903d1 add rdx, r9
000071 17" 567bd158 ffcl inc ecx
00007ff7 567bd15a 486302 movsxd rax, dword ptr [rdx]
test3!__RTDynamicCast: 00007ff7 567bd15d 4903cl add rax, r9
00007ff7 567bd5b0@ 48895c2410 mov gqword ptr [rsp+10h], rbx ss:0000001f baeff878-0000000000000001 000071 17" 567bd160 483bc3 cm) rax, rbx
0000777 567bd5bS 4889742418 mov quord ptr [rsp+1s8h], rsi 00007FF7S67bd163 7467 Je test3IFindSiTangetTypelnstanceroxbd (600Q7FF7 SE7bdlcc) [brel] <= take this
00007ff7 567bdSba 57 push rdi
00007ff7 567bd5bb 4154 push ri2
00007ff7 567bd5bd 4155 push ri3 000071 17" 567bd1lcc 413bca cm) ecx, ried
00007ff7" 567bd5bf 4156 push ri4
00007ff7 567bd5c1 4157 push ris 0000717 567bd1d1 4d8de4sb lea r8, [rill+rcx*4]
00007ff7 567bd5c3 4883ec50 sub rsp, 56h 00007117 567bd1d5 496300 movsxd rax, dword ptr [r8]
00007ff7 567bd5c7 4d8bf9o mov ri5, r9 000071 17" 567bd1d8 42644081404 test byte ptr [rax+r9+14h], 4
0000717 567bd5ca 4d8bed mov ri2, r8
00007ff7 567bd5cd 4c63ea movsxd ri3, edx 00007ff7" 567bd1e@ 42630408 movsxd rax, dword ptr [rax+r9]
000077 567bd5d0 488bf9 mov rdi, rcx 00007ff7 567bdled4 4903cl add rax, r9

00007ff7 567bd5d3 33db xor ebx, ebx 00007ff7 567bd1le7 493bc6 cm) rax, ri4
00007F7° 567bd5d5_4885¢9 test rex, rox 0800757 s67bdlea 7400 Je test3IFindSTargetTypelnstancesoxdd (8000777 S670d1f9) [br-1]

0000717 567bd1f9 488bc2 mov rax, rdx
00007ff7" 567bd5f6 488b01 mov rax, qword ptr [rcx] ds:000001a4’ f0889610={test3!MyChildl:: vftable' (00007ff7 567c9270)}
000077 567bd5f9 488b70f8 mov rsi, qword ptr [rax-8] 00007f7° 567bd1b5 488b5c2410 mov rbx, qword ptr [rsp+leh] ss: £ baeff7fi
00007117 567bd5fd 8b4604 mov eax, dword ptr [rsi+4] 00007ff7" 567bd1lba 488b6c2418 mov rbp, qword ptr [rsp+18h]
00007117 567bd600 4c8bf7 mov rl4, rdi 00007ff7" 567bd1bf 488b742420 mov rsi, qword ptr [rsp+2eh]
00007ff7" 567bd603 4c2bfo sub ri4, rax 000077 567bdlc4 488b7c2428 mov rdi, qword ptr [rsp+28h]
00007117 567bd606 8b5608 mov edx, dword ptr [rsi+8] 00007ff7" 567bd1c9 415e pop ri4
0000717 567bd609 482bca sub rcx, rdx 00007ff7 567bdlcb c3 ret
000O7ff7 567bd60c f7da neg edx
000O7ff7 567bd60e 1bco sbb eax, eax ; back to test3!_ RTDynamicCast
00007ff7 567bd610 2301 and eax, dword ptr [rcx]
00007F7° 567bd612 4863C8 movsxd rex, eax ©00007F7°567bd666 eb2d jmp test3!_RTDynamicCast+exdf (6@007ff7'567bd68f) <-- jump
0000717 567bd615 4c2bfl sub rld4, rcx
00007ff7 567bd618 391e cmp dword ptr [rsi], ebx <-- take this jump
0000717 567bd68f 4c8bc8 mov r9, rax
0000717 567bd692 4885c0 test rax, rax
00007ff7 567bd63a 48634614 movsxd rax, dword ptr [rsi+l4h] ds:00007ff7 567c9b8c=00059b78
0000717 567bd63e 4c8bce mov r9, rsi
000077 567bd641 4c2bc8 sub r9, rax
00007ff7 567bd644 48634610 movsxd rax, dword ptr [rsi+l@h] 0000717 567bd6a7 4139590C cm| dword ptr [r9+0Ch], ebx
00007ff7 567bd648 428b4c0804 mov ecx, dword ptr [rax+r9+4]
00007ff7 567bd64d f6clel test cl, 1
00007ff7" 567bd652 4d8bc7 mov r8, ris 0000717 567bd6c0O 49634108 movsxd rax, dword ptr [r9+8] ds:00007ff7 567c9bd0=00000000
00007ff7 567bd655 498bd4 mov rdx, ri2 00007117 567bd6c4 4803c3 add rax, rbx
00007ff7 567bd658 488bce mov rcx, rsi 00007117 567bd6c7 49036 add rax, ri4
Stores: 12
.
00007117 567bd5dc 4c8d5c2450 lea rll, [rsp+56h]
Lo a d S: 3@ 000077 567bd5e1 498b5b38 mov rbx, qword ptr [r11+38h]
. 000071 f7" 567bd5e5 498b7340 mov rsi, qword ptr [ri1+4eh]
00007ff7 567bd5e9 498be3 mov rsp, ril
000071 f7 567bd5ec 415f pop ris
00007ff7 567bd5ee 415e pop ri4
00007117 567bd5f0 415d pop ri3
00007117 567bd5f2 415c pop ri2
000077 567bd5f4 5 pop rdi
00007117 567bd5f5 c3 ret

5 dynamic cast check over!

CastGuard
Inspired by Clang’s -fsanitize=cfi-derived-cast °

https://clang.llvm.org/docs/ControlFlowIntegrity.html#cfi-strictness

Concept

To protect against illegal downcast,
object needs a type identified that can
be checked.

We cannot change object layout or we
break the world.

Objects with a vftable already have an
identifier, the vftable.

Automatically convert all static_cast on
classes with vftables in to CastGuard
protected casts.

Terminology

void Foo (Animal* animal) {
static cast<Cat*>(animal);

¥

LHS Type: Left-hand side type being cast to (Cat*).
RHS Type: The statically declared right-hand side type (Animal*).

Underlying Type: The actual type of the RHS object (unknown at
compile time).

Threat Model / Requirements

Code must be compiled using Link Time Code Generation (LTCG).

Code creating the object in the same LTCG module as code casting the object.

LHS type and RHS type have at least 1 vftable.

Object is valid (i.e. if RHS type is Animal*, it is a valid Animal*).

If some other component already illegally casted the object, we will not provide protection.

First-order memory safety vulnerability is the type confusion (i.e.
attacker doesn't already have memory corruption).

Single Inheritance
Example

What The Compiler Knows

void Foo (Animal* animal) {
static cast<Cat*>(animal);

¥

This is a static downcast from Animal* to Cat*.
The offset into Cat* and Animal* that the vftable pointer is located.

The location (RVA into binary) of the vftables for every type in this
hierarchy (i.e. where the vftables are laid out in the binary).

Object Layout

Object A layout Object B layout Object Clayout Object D layout

“A" vftable “B" vftable “C" vftable “D" vftable
“A" members “A" members “A" members “A" members

“B” members “B” members “B” members

“C" members “D" members

Vfuncs defined by A Vfuncs defined by A Vfuncs defined by A

Vfuncs defined by B Vfuncs defined by B

Vfuncs defined by C

Derived types begin with their base types layout and append their own member variables after the base type.

The Vftable View of the World

A::$vftable@

) ot Svitablen

C::$vftable@ D::$vftable@

N S B

It is helpful to think about class hierarchies in terms of the vftables as that is the unique identifier

Legal Underlying Vftables

2121202 2|
< | < | < | < | <|<| <|c<
4 [| H| H|H|H|] H]| S
+ + + + + + + +
S SIS E|E|E 8|88
A::$vftable@ = I = I T = = = =
+ ® | ® | ® ||| ® |
©
O
o))
=
B::$vftable@ 3
S
> B v v v v Vv v V
() C
g v v/
— D
C::$vftable@ D::$vftable@ A v Vv
= - v
F v
E::$vftable@ F::$vftable@ G::$vftable@ H::$vftable@
H v

This table shows the vftables are that legal for a pointer of some specific type to have

For example, if you cast to an “E” the only legal vftable would be E::$vftable@

Naive Check (To Understand Concepts)

User Code: Compiler Inserts:
void MyFunction (B* b) // Ensure the vftable is one of the legal
{ : .
static cast<C*>(b); // vftables, if not, fast-fail
}
if (b != NULL)
{
if (b->vftable != C::$vftable@ &&
b->vftable != E::$vftable@ &&
b->vftable != F::$vftable@)
{
fast-fail
}
}

static_cast on a NULL pointer is always allowed.

Naive Check (To Understand Concepts)

void MyFunction (B* b) Compiler Inserts CodeGen:

{

static_cast<C*>(b); // Ensure the vftable is one of the legal

// vftables, if not, fast-fail
if (b != NULL)

{
if (b->vftable != C::$vftable@ &&
b->vftable != E::$vftable@ &&
b->vftable != F::$vftable@)
{
fast-fail
}
}

This check would scale terribly with large amounts of vftables

Optimization Step 1: Lay Out Vftables Together in Binary

CastGuard Vftable Region

To make the example simple, assume 64-bit architecture, m_

each vftable has a single virtual function, and no RTT! Ox00 _CastGuardvftableStart
information. Total size per vftable is 8 bytes. Ox08 A::$vftable@

. B::$vftable@
We'll talk about the global variables 0x10

_ CastGuardVftableStart and __CastGuardVftableEnd later. Ox18 C::$vftable@
0x20 D::$vftable@

ox28 E::$vftable@
Ox30 F::$vftable@
Ox38 G::$vftable@
o0x40 H::$vftable@

. . . ox48 ___CastGuardVftableEnd
Vftables CastGuard cares about are laid out in their own

contiguous region.

Optimization Step 2 Legal Underlying Vftables

' > w (@] m T o () T
Create Bitmaps AEBEEREREE
S S - e -
= S |la|s|2|8|8| 8|8
- <A = A A = < =
1} 1) 1) ® 1) o))
Offset [Name : SRR
O
Ox00 __CastGuardVftableStart g
ox08 A::$vftable@ 'ng
..)
Ox10 B::$vftable@ g . VANAVAWANAREY
ox18 C::$vftable@ \é : B
D::$vftable
0x20 @ . ——
ox28 E::$vftable@ Lé) : y
0x30 F::$vftable@
" /
0x38 G::$vftable@
° v
0x40 H::$vftable@
" J

ox48 __CastGuardVftableEnd

Create a bitmap per LHS Type being cast to which indicates which vftables are legal for that cast

Optimization Step 2: Create

Bitmaps

__CastGuardVftableStart

0x00
Ox08
0x10
Ox18
0x20
Ox28
0x30
Ox38
0x40
Ox48

A:
B:

C:

G:
H:

___CastGuardVftableEnd

:$vftable@
:$vftable@
:$vftable@
::$vftable@
::$vftable@
::$vftable@
:$vftable@
:$vftable@

How to Create Bitmap:
Each type being downcast to gets its own bitmap (i.e. B, C, D, etc.).

For each bitmap:

1. Choose a “base vftable”. This is the vftable you will compare the
underlying types vftable against. It should be the first vftable
(lowest RVA) in the binary that is legal for the cast.

2. Compute the offset between this vftable and all other vftables

that are legal for the cast.

3. Each legal vftable is “1” in the bitmap. lllegal vftables are “0".

Optimization Step 2: Create

Bitmaps

0x00
Ox08
0x10
0x18
0x20
Ox28
0x30
Ox38
0x40
0x48

For cast to “C", "base vftable” is C::$vftable@

__CastGuardVftableStart

A:

G:

H:

:$vftable@
::$vftable@
::$vftable@
::$vftable@
::$vftable@
::$vftable@
:$vftable@
:$vftable@

How To Use Bitmap:

Offset from 0x0 0x8 0x10 0x18
C::$vftable@

delta = Object->Vftable - C::$vftable@

ordinal = delta ROR 3

___CastGuardVftableEnd

C_Bitmap[ordinal]

// shift out low 3 bits

1 if cast allowed

Optimization Step 2: Create

Bitmaps

__CastGuardVftableStart

0x00

Ox08 A:
0x10 B:
Ox18 C:
0x20 D:
Ox28 E:
Ox30 F:
Ox38 G:
ox40 H:
Ox48

:$vftable@
:$vftable@
:$vftable@
:$vftable@
:$vftable@
:$vftable@
:$vftable@
:$vftable@

___CastGuardVftableEnd

Offset of underlying type vftable from “base vftable”

B 7 (o3 N O e e T e

B _Bitmap
C_Bitmap
D Bitmap
E Bitmap
F_Bitmap

G_Bitmap

Bitmap for LHS Type

H_Bitmap

1
1
1
1
1
1
1

0 1 T
0O O 1 1

Only create bitmap for types that are down-cast to. Minimizes

binary size.

Bitmap alignment can change to reduce binary size. This example
uses 8-byte alignment (the minimum on 64-bit) but we may
increase the alignment of vftables to reduce the size of the bitmap.

Better Check

Compiler Inserts CodeGen:

if (b !'= null) {

void MyFunCtion (B* b) // read the vftable from the object
{ uinte4 ptr = b->vftable;
static_cast<C*>(b);
} // get offset from the first valid vftable for this cast
uint64 delta = ptr - &C::$vftable@

// vftables are 8 byte aligned
// if any low 3 bits are set, ROR will shift them to high bits
uint64 ordinal = delta ROR 3;

// test the bitmap to see if this is valid
if (ordinal >= sizeof_in_bits(C_Bitmap))

Ibittest(C_Bitmap, ordinal))

fast-fail

More Optimization

- With a few realizations, we can do much better than this.

- Bitmaps are not ideal because:

- It takes a memory load to consult them.
- They take up space in the binary.

Order the Vftables Depth First

CastGuard Vftable Region

OXx00 __CastGuardVftableStart

A::$vftable@

ox08 A::$vftable@

B::$vftable@ ox10 B::$vftable@
ox18 C::$vftable@

Ox20 E::$vftable@
ox28 F::$vftable@

C::$vftable@ D::$vftable@

Ox30 D::$vftable@
Ox38 G::$vftable@

o0x40 H::$vftable@
E::$vftable@ F::$vftable@ G::$vftable@ H::$vftable@

ox48 ___CastGuardVftableEnd

Offset of underlying type vftable from LHS Type vftable

Create Bitmaps B 7 (o3 N O e e T e

B_Bitmap 1
e
C_Bitma
> G p 1 1 T
¥ D_Bitmap 1 1 1
—
« E_Bit
Offset [Name ____________[ENCEEE LI
Ox00 __CastGuardVftableStart o F_Bitmap 1
©
Ox08 A::$vftable@ E, G_Bitmap 1
aa)
9x10 B::$vftable@ H_Bitmap 1

o0x18 C::$vftable@
0x20 E::$vftable@
o0x28 F::$vftable@

Property: When ordered with a DFS, legal vftables are always laid out

D::$vftable@ : . .
0x30 contiguously (thus you never see 0's in the bitmap)

0x38 G::$vftable@

o0x40 H::$vftable@
ox48 __CastGuardvftableEnd

Range Check

» |If bitmap is all ones, no need to check the bitmap. As long

m_ as the ordinal is in bounds of the bitmap you succeed.

CastGuardvftableStart L ey :
] « Taking it further: Rather than shifting the pointer to

Ox08 A::jvftable@ calculate the ordinal, just do a range check.
9x10 B::$vftable@

o0x18 C::$vftable@

Ox20 E::jvftable@ If vftable base address is within 0x10 bytes of
Ox28 F::$vftable@ C::$vftable&, this object is a valid “C"

O9x30 D::$vftable@
0x38 G::$vftable@

o0x40 H::$vftable@
ox48 __CastGuardvftableEnd

Range Check

Compiler Inserts CodeGen:

if (b != null) {

void MyFunction (B* b)
{ // read the vftable from the object
) uinte4 ptr = b->vftable;

static_cast<C*>(b);

¥ // get offset from the first valid vftable for this cast
uinté64 offset = ptr - &C::’vftable’
// can be C, E, or F
// vftable expected to be 0x0, 0x8, or 0x10 bytes

// offset from C::$vftable@

if (offset > 0x10) {
fast-fail

Concerns?

What if the vftable is offset 0x9? That
would pass the check but is illegal!

Not a concern due to threat model, there is no
way a legitimate object could be created with
that vftable pointer. We are assuming the first
order vulnerability is this static_cast so the
object must be well formed.

Compiler Inserts CodeGen:
if (b != null) {

// read the vftable from the object
uinte4 ptr = b->vftable;

// get offset from the first valid vftable for this cast
uinté64 offset = ptr - &C::’vftable’

// can be C, E, or F

// vftable expected to be 0x0, 0x8, or 0x10 bytes

// offset from C::$vftable@

if (offset > 0x10) {
fast-fail

Compatibility

What if the object was created in a different DLL?

The LTCG compiler pass will not know about these vftables. The cast
might be legitimate but because the vftable comes from a different
DLL it isn't laid out where CastGuard expects.

What if the object was created in a static library?
Mostly similar concern, with caveats. See appendix for more details.

Modified Check for Compatibility

if (ptr != null) {

// get offset from the first valid vftable for
// this cast

uint64 offset = ptr - &C::$vftable@

// can be C, E, or F
// vftable expected to be 0x0, 0x8, or 0x10 bytes
// offset from C::$vftable@

if (offset > 0x10 &&
ptr > _ CastGuardVftableStart &&
ptr < _ CastGuardVftableEnd) {
fast-fail

Only fast-fail if the underlying vftable is being tracked by

CastGuard, otherwise “fail open” for compatibility

AMDG64 Assembly

; rcx == The right-hand side object pointer.
; First do the nullptr check. This could be optimized away but is not today.
; N.B. If the static _cast has to adjust the pointer base, this nullptr check

; already exists.

4885c9 test rcx, rcx
7416 je codegentest!DoCast+0x26

; Next load the RHS vftable and the comparison vftable.

488b11 mov rdx, gword ptr [rcx]
4c8d05ce810500 lea r8, [codegentest!C:: vftable']

; Now do the range check. Jump to the AppCompat check if the range check fails.

492bco sub rdx, r8

48831820 cmp rdx, 20h
7715 ja codegentest!DoCast+0x3b ; Jump to app-compat check

Multiple
Inheritance

Vftable View

A::$vftable@ Z::$vftable@

B::$vftable@ B::$vftable@z

C::$vftable@ D::$vftable@ C::$vftable@z D::$vftable@z

E::$vftable@ F::$vftable@ G::$vftable@ H::$vftable@ E::$vftable@z F::$vftable@z G::$vftable@z H::$vftable@z

Object Layout

Object A layout Object Z layout Object B layout Object C layout

A::$vftable@ Z::$vftable@ B::$vftable@

C::$vftable@

“A” members

C::$vftable@z

“A” members “Z” members “A” members
B::$vftable@z

“Z” members “Z” members

“B” members “B” members

Vfuncs defined by A Vfuncs defined by Z
* # Vfuncs defined by A Vfuncs defined by Z

—m -
==

Vfuncs defined by B

Which Vftable to Use

Depends on what the current RHS type is.

If RHS == "A", need to use vftable that “A” introduced.
If RHS == "Z" need to use vftable that “Z" introduced.

Otherwise, can use either. Prefer the vftable that is closest to the base

address of the object to reduce code size.
If vftable is at offset 0 in object, the “this” pointer doesn’t need to be adjusted.

Notes

Once you realize there are multiple vftable hierarchies, multiple
Inheritance becomes identical to single inheritance.

Choose the vftable hierarchy to do checks against based on the RHS type.
Lay out vftable hierarchy using depth-first layout.

Do a simple range check on the vftable.

Virtual Base
Hierarchies

Virtual Base

See appendix for full information (not enough time).

A nasty and rarely used C++ feature that allows “more efficiently”

doing multiple inheritance when both parent classes inherit from the
same base class.

Can make range checks impossible for a vftable hierarchy, need to use
bitmap checks.

Interesting Notes

Misc.

ldentical Comdat Folding (ICF) must be disabled for vftables in the

“CastGuard region”.

ICF will eliminate duplicate copies of data (i.e. vftables that are identical) but CastGuard requires
all vftables are unique since they are used as identifiers.

OptRef (remove unreferenced symbols) linker optimization also
disabled for CastGuard vftables.

If the linker deletes an unreferenced vftable in the CastGuard region, it changes the layout of
the region but we already generated code based on the expected layout.

Luckily LTCG does a pretty good job up-front at determining if a symbol is unreferenced and we
won't lay out the symbol in the first place.

Curiously
Recurring Template
Pattern (CRTP)

struct A

{
A::AQ0){}

virtual void Entry()

{

return;

| An object of type “B” is never created.

Only derived types are created.

template <class T»>
struct B : A

{
virtual void Entry()
{
static_cast<T*>(this)->WhoAmI();
}
void DoStuff() . .o .
{ Derived type specifies itself as a
DoOtherStuff(static_cast<T*>(this)); . . e
) templated parameter when inheriting
}; upn
from "B" class.
struct C : B<C> <« struct D : B<D>
{ {
void WhoAmI() void WhoAmI()
{ {
PrintWhoIAm(); PrintWhoIAm();

} }

static void PrintWhoIAm() static void PrintWhoIAm()

{ {

printf(“C"); printf(“D");
} }

}s }s
Because "B” is specialized based on the type inheriting from it, any given “B” type (such as B<C>)

only has a single derived type.

Class Hierarchy Vftable Hierarchy

A::$vftable@

B<C>::$vftable@ B<D>::$vftable@

C::$vftable@ D::$vftable@

Each specialized version of “B” is its own unique class and has a unique vftable.

struct A

{
A A}
virtual void Entry()
{
return;
¥
s

template <class T»>
struct B : A

{
virtual void Entry()
{ 17 17}
static_cast<T*>(this)->WhoAmI(); DOSthf for B<C> and B<D> are
) identical. Linker will de-duplicate them.
void DoStuff() <«
{
DoOtherStuff(static_cast<T*>(this));
}
};
Vftable for C & B<C>, D & B<D> are
g C e Frruce 0 B identical. Linker will de-duplicate.
void WhoAmI() void WhoAmI()
{ {
PrintWhoIAm(); PrintWhoIAm();
} }
static void PrintWhoIAm() static void PrintWhoIAm()
{ {
printf(“Cc"); printf(“D");
} }
¥ }s

CastGuard checks make “DoStuff” implementations different (type specific cast checks) and reference

vftables so they can no longer be de-duplicated. Some WinRT binaries got ~20% bigger.

These types are never created, so a valid object will

NEVER have their vftables.

Class Hierarchy Vftable Hierarchy

A A::$vftable@

Y/

B<C>::$vftable@ B<D>::$vftable@

C::$vftable@ D::$vftable@

No reason to include these vftables in checks since an
object can never have them.

void Demo(B<C>* MyPtr) {
static_cast<C*>(MyPtr);

¥

Class Hierarchy Vftable Hierarchy

A::$vftable@

C::$vftable@ D::$vftable@

ﬁ x<c>: :$vftable@ x3<D>: :$vftable@

A "B<C>*" either points to a "B<C>" or a "C". We know “B<C>" was never created, must be “C".

The only vftable a "B<C>*" pointer could have is “"C::$vftable@"” which is legal when casting to “C"
no point in doing a cast check.

Optimizing for CRTP
Optimization can also help non-CRTP related casts.

We were able to statically prove away EVERY cast check in
Windows.Ul.Xaml.Controls.dll, going from 20% binary size regression to 0%.

Similar CRTP optimization issues exist for other technologies.

XFG (Extended Flow Guard) — Caused a 43% binary size regression on
“Windows.Ul.Xaml.Controls.dll” due to fine-grain indirect call signature checks. We got this fixed

by making function signature ignore template specializations.

Clang CFI — Breaks CRTP code sharing due to fine-grain indirect call signature checks and cast
checks (when derived-cast checks enabled). Likely a similar regression to CastGuard and XFG.

Performance

Near-zero runtime overhead

- Spec 2006 showed no regression.
- No overhead detected in Windows components.

Binary size impact under 1%

-+ Components without downcasting have no overhead.

- CRTP optimization can statically prove safety of many
casts.

Future Strict Mode

Possibilities - Mark hierarchies as “strict” indicating they should never
have an app compat check, all failures are fatal.

- Could force full bitmap checks (defend against type
confusions caused by memory corruption).

Acceleration for dynamic_cast

- Dynamic_cast hot path uses CastGuard style check,
only does the full check in the app compat check path.

Just ideas — nothing committed.

Conclusion

It is possible to provide performant cast
checks to prevent certain types of type
confusion. May even be possible to use
CastGuard tech in the hot-path of
dynamic_cast.

CastGuard is flighting in Hyper-V code in
Windows Insider Preview builds.

Additional Windows components will use
CastGuard in the future.

Acknowledgements CastGuard would not be possible without:

- Inspiration from Clang/LLVM —fsanitize=cfi-derived-
cast.

- Many folks across Windows, Visual Studio, and MSRC.

Appendix

Virtual Base
Inheritance

Overview

Inheritance works efficiently because offsets can be computed

statically.

A pointer to an object can be upcast or downcast using simple pointer arithmetic based on
where the type being casted to is “laid out” in the object's memory.

The same is generally true for multiple inheritance.

Object layout is known at compile time and any static_cast can be statically computed at
compile time.

Things get complicated when the same base class is inherited from
multiple times (i.e. diamond pattern).

Non-Virtual Base Diamond Pattern

Object “F” layout:

Ox0 vftable of A

Ox8 <members of A>
ox? <members of B>
ox? <members of D>
ox? vftable of A

ox? <members of A>
ox? <members of C>
ox? <members of E>
ox? <members of F>

The object “A" is inherited from twice and so
there are two copies of it in “F”. This may not be
desirable.

Note: Cast checks for this pattern are identical to
single inheritance / multiple inheritance

Diamond Pattern Issues

An object of type “F" contains two copies of the type “A".
"A" is inherited from by both “B" and “C". Which means “B” and “C" have their own copy of "A".

C++ does not automatically determine “you are using multiple inheritance and inheriting from
the same base class twice so | will de-duplicate the object”. Sometimes having multiple copies of
the same base object is actually desired.

Can lead to bizarre behavior.

You cannot directly static_cast a pointer of type “A” to a pointer of type “F". “F" has two copies of
"A" so you need to first static_cast to either “B” or “C" and then cast to “F" so the compiler knows
which copy of "A” you are trying to access.

Virtual Base Inheritance Offers a Solution

Allows the compiler to de-duplicate the base class “A".

Anything that inherits from "A" cannot trivially cast to it since the
location of "A” depends on the layout of the underlying type that was

created.
l.e. an object of type "B” and type “F" may have "A’ laid out at different positions.

A virtual base table is created in each object that contains the offset of

"A" from the current “this” pointer.

Casting to "A” requires looking up how to adjust the current “this” pointer by reading from the
virtual base table.

Virtual Base Diamond Pattern

Object “F” layout:

0x0 <vbase table of B>

ox? <members of B>

ox? <members of D>

ox? vftable of A

ox? <members of A>

ox? <vbase table of C>
ox? <members of C>

ox? <members of E>

ox? <members of F>

There is a single copy of “A” in the object “F"

The object has a “virtual base table” to identify
where “A" is relative to the object base.

Virtual Base Diamond Pattern

Virtual base inheritance allows for a single copy of the A.

Virtual base table contains the offset from the “this” pointer of the
current object to the base of “Object A" inside the object.

Object “F” layout:

Ox0
ox?
ox?
ox?
ox?
ox?
ox?
ox?
ox?

<vbase table of B>
<members of B>
<members of D>
<vbase table of C>
<members of C>
<members of E>
<members of F>
vftable of A
<members of A>

Object “B” layout:

Ox0
ox?
ox?
ox?

<vbase table of B>
<members of B>
vftable of A
<members of A>

Virtual Base Vftable View

A:$vftable@

0x00 __CastGuardVftableStart

0x08 A::$vftable@
0x10 B::$vftable@

B::$vftable@ C::$vftable@

0x18 D::$vftable@

D::$vftable@ E::$vftable@

0x20 C::$vftable@
E::$vftable@

B
0x30 F::$vftable@

0x38 ___CastGuardvftableEnd

Cast Validity

Legal Underlying Vftables

A:$vftable@

Pl@®|12|o|mm
< | < | < | < | < |<
SR F] R R R
+ + + + + +
) Q Q Q Q Q Q
B::$vftable@ C:$vftable@ RS AN = T B =V I
+ S|l &S| S| S |&|&

©

O

D::$vftable@ E:$vftable@ g’

Ko)
‘33 A v v Vv Vv v Y
F:$vftable@ S J J

I_

C

Cé): v v
— D \/ \/

)
= v
F v

Legal Underlying Vftables

Bitmap Creation

::$vftable@

::$vftable@ S S S S S
::$vftable@ N NS NS
::$vftable@ N ~
::$vftable@ NS >

~>

~>

::$vftable@

< om @) () LU L

(o1 1seD buteg adA|) adAl SH1

1
1

— O —
-
(@)
(7]
i — © — O
(o]
r_m — — — O
-
-
.m ™ Y Y Y —
("]
(o]
d
(]
2
d
S
[7]
-
(7]
5=
02 O o a9 9 o o
> EE
I = S = = £ E
= B_B_B_B_B.nm
Qa < o U 0O o o

(o1 1seD buieg adA]) adAl SH1

Notes

- Bitmap has zeros in it, cannot be optimized to a range check.

- With complicated virtual base hierarchies, there may be no way to

order the vftables that results in bitmaps of all 1's.

- We don't even attempt to brute force alternate vftable orderings since very little code uses
virtual base, just pay the overhead.

;3 Start of CastGuard check
; rcx == the right-hand side object pointer.

; First do the nullptr check. This could be optimized away but is not today.
; N.B. If the static_cast has to adjust the pointer base, this nullptr check

; already exists.
4885c9 test rcx, rcx
7433 je CodeGenTest!DoCast+0x3e

; Load the virtual base table
488b01 mov rax, gqword ptr [rcx]

; Right-hand side pointer adjustment (not part of CastGuard)
488d59e8 lea rbx, [rcx-18h]

; Read from virtual-base table
8b5004 mov edx, dword ptr [rax+4]

; Load vftable to compare against
488d057c6c0500 lea rax, [CodeGenTest!MyGrandChildl:: vftable']

; Add the offset read from the virtual-base table to the object pointer

4803ca add rcx, rdx

; Read the vftable

488b11 mov rdx, gqword ptr [rcx]

; Do the ordinal check using an ROL instruction to force alignment
5 Low bits below the alignment get shifted to high bits making the
5 value huge.

482bdo sub rdx, rax
48cl1c240 rol rdx, 3dh ; shift out low 3 bits
4883fa01l cmp rdx, 3 ; ordinal range check

5 Jump to app compat check if the range check fails
7336 jae CodeGenTest!DoCast+0x65

; Load the bit vector and do a bit test against it using the ordinal

computed
488d059a120500 lea rax, [CodeGenTest!CastGuardBitVector]
480fa3le bt gword ptr [rax], rdx

5 Jump to a failure stub if the bitmap test fails
7330 jae CodeGenTest!DoCast+0x6c
ebo2 jmp CodeGenTest!DoCast+0x40

;5 End of CastGuard check

Optimizations

Bitmaps that are all 1's can be turned in to range checks

Bitmap bits relative to start of object

A_Bitmap 1 1 1 1
B_Bitmap O 0 1

C_Bitmap 1
0

D_Bitmap

1
1
1
0 1
1

E_Bitmap

LHS Type (Type Being Cast To)

— e e e))

F_Bitmap

Optimizations

Bitmaps where all 1's are at fixed offsets from each other don't need a
bitmap (but do need to enforce alignment)

1. Find pointer delta (current_vftable —
Bitmap bits relative to start of object address_of D_vftable)

2. Compute the ordinal by shifting the delta
1 1 3. Do arange check on the ordinal

A_Bitmap

B_Bitmap
C_Bitmap
D_Bitmap

LHS Type (Type Being Cast To)

_ O =) A

E_Bitmap

—_— o) e A

F_Bitmap

Optimizations
Prefer to not use vftables that have virtual base inheritance.

Example:

RHS type and LHS type each have 2 vftable’s

1 vftable is part of a virtual-base class hierarchy
1 vftable is part of a normal inheritance class hierarchy

Do the CastGuard check on the vftable from the normal inheritance
hierarchy so that no virtual base overhead is needed

One Definition Rule (ODR) Violations

Sometimes can be detected at compile time (i.e. ODR violation occurs
In LTCG code)

To ease adoption, CastGuard will not protect these hierarchies but won't error.

If detected at link time (i.e. static lib introduces ODR violation):

If static lib introduces a smaller or identically sized vftable, we keep the vftable already placed in
CastGuard region by the compiler.

If static lib introduces a bigger vftable, linker must select this vftable (documented behavior).
This would break CastGuard, so we throw a linker error.

