blgc’zk hat

B e

Another Way to Talk with Browser :
Exploiting Chrome at Network Layer

Rong Jian, Guang Gong

360 Vulnerablility Research Institute

BBBBBBBBBBBBBBBBBBBBB

O

black hat

= ==

Whoami

Rong Jian (@__ROng)

e Security Research for 360 Vulnerability Research Institute | o O)
e Mainly focus on browser security | & y

e Winner of Chrome category in Tianfu Cup contest 2020 / 2021 A F TR

Information Classification: General

O

black hat

= ==

Agenda

Introduction

¢ Browser Networking

¢ Resource Loading
Code Caching in Chrome

¢ How code caching works

¢ The design flaws of code caching
¢ Renderer REC

QUIC Transport
¢ Overview of QUIC
o UAF bug caused by unexpected server responding
¢ Sandbox Escape

Conclusions

Information Classification: General

O

black hat

= ==

Browser Networking

¢ Play a critical role for resource loading
¢ Range from high-level JavaScript APIs to management of every sockets

¢ Hard to parsing and processing complex and untrustworthy inputs

correctly and safety

Information Classification: General

O

black hat

= ==

URLRequest : A simple example

Render Process

& IPC

CreateLoaderAndStart

Fetch() H Check memory cache

- Network Service

Receive data via Mojo pipe

OnReceiveResponse

OnComplete

Information Classification: General

1. Create the URLLoader and start a URLRequest
2. Check cache, request an HTTPStream

3. Send the request via network and

read the response

O

black hat

= ==

Caches Everywhere

¢ Multiple caches differ in how they acquire, store and retain content

¢ Different requests can get matched by resources in different caches

Wrong cache hit?

cached img actual img

How about Code Cache ?

Information Classification: General

Code Caching in Chrome

O

black hat

= ==

WebAssembly Code Caching

Cold Run

| want to fetch a .wasm resource Here it is, | download it from remote server
Compile it! Done

Information Classification: Genera 1

O

black hat

= ==

WebAssembly Code Caching

Hot Run

| want to fetch and compile that .wasm

resource again ! Cache hit ! No need to download and compile

J /

Name Status Type Initiator Size Time
¢ Fetch wasm resource ‘ Resou rce Cache | example.wasm 200 fetch poc.html:11 65.8 kB 42 ms
| example.wasm 200 fetch poc.html:11 (disk cache) 1ms
|| example.wasm 200 fetch poc.html:11 (disk cache) 2ms
Y 3 Comp”e the wasm f||e ‘ COde Cache | example.wasm 200 fetch poc.html:11 (disk cache) ams
| example.wasm 200 fetch poc.html:11 (disk cache) 1ms

Information Classification: General

O

black hat

= ==

WebAssembly Code Caching

Key Questions
a. When will the code cache be generated?
b. What content is being cached?

c. How a cache hit occurs?

Information Classification: General

blgc’:k hat

= ==

When

WasmStreamingClient::OnModuleCompiled

Platform: :Current()->CacheMetadata(

mojom: :CodeCacheType: :kiebAssembly,
KURL(response_url),

response_time ,
serialized_data.data(),| serialized_data.size());

¢ Send data to the CodeCacheHost (in browser process)

o Data will also be stored as <Key, Value> pair in a map (in render process)

Information Classification: General

blgc’:k hat

= ==

What

Information Classification: General

NativeModuleSerializer::Write

bool NativeModuleSerializer::Write(Writer* writer) {
DCHECK(!'write called);
write called = true;
WriteHeader(writer);
for (WasmCode* code : code_table_) {
if (!WriteCode(code, writer)) return false;

}

return true;

o Not all data in WasmModule is serialized

WasmModule

Meta Data

Wasm Code

O

black hat

= ==

How
ResourceFetcher::CachedResource

Resource* ResourceFetcher::CachedResource(const KURL& resource url) const {
if (resource_url.IsEmpty())
return nullptr;
KURL url = MemoryCache: :RemoveFragmentIdentifierIfNeeded(resource url);
const WeakMember<Resource>& resource = cached resources map .at(url);
return resource.Get();

¥

url CachedResource GetCachedMetadata
Response == URL ===b Resource Cache ==========p WASM Code Cache

¢ Code Cache is associated with Resource Cache
¢ Happens when compiling the .wasm resource

¢ Simply do a map lookup by key

Information Classification: General

O

black hat

= ==

Code Cache Confusion (CVE-2020-16015)

Step 1. Fetch the wasm resource but do not compile it

f fetch(url) _E

< T
Step 2. Fetch again and compile

¢ No code cache

resource a —0—

fetch(url)
j ¢ Map url to cache of
resource b —0— resource b

Information Classification: Genera 1

O

black hat

= ==

Code Cache Confusion (CVE-2020-16015)

Step 3. Compile resource a

Because resource a has the same url with resource b ...

Information Classification: General

O

black hat

= ==

Fix (https://crrev.com/c/2534570)
¢ Changed the timing of determining code cache hit
e Before: Happens when compiling the .wasm resource
o After: Happens when responding resource request

¢ Changed the way to store code cache

e Before: Can be retrieved from resource cache
o After: Stored in the Response object if cache hits
BodyBuffer GetCachedMetadata

Response ==—=b BodyStreamBuffer ========== » WASM Code Cache

Information Classification: General

O

black hat

= ==

¢ Record the response time when code cache was first generated

¢ Check times match to ensure the code cache data is for this response

void Resourceloader: :CodeCacheRequest: :MaybeSendCachedCode(
mojo base::BigBuffer data,
ResourcelLoader* resource_loader) {
// skip...
} else {
if (cached code_response_time .is null() ||
resource_response time_.is null() ||
resource _response_time_!= cached code response time) {
ClearCachedCodeIfPresent();
return;

}
}

if (data.size() > 0) {
resource_loader->SendCachedCodeToResource(std: :move(data));

}

¥

Information Classification: General

O

black hat

= ==

GOAL: Different Responses with the same response time

Response time (as a unique identifier)
& microseconds since the Windows epoch (January 1, 1601)
& Initialized when a Response object is created

& Wwe can create Response object using JS API

status message (status_message),

header list (MakeGarbageCollected<FetchHeaderList>()),
response_time (base::Time::Now()),

connection _info (net::HttpResponseInfo::CONNECTION INFO UNKNOWN),

Information Classification: General

O

black hat

= ==

GOAL: Different Responses with the same response time

& two service workers continually produce Response with different data

& expect two response_time to be generated within the same microsecond

4)

Thread 1:

-_ fetch(url) Service while(true) {

Page </> R Worker new Response(body a)
}
Thread 2:

- fetch(url) Service while(true) {

Page </> I Worker new Response(body b)
}

- /

Information Classification: General

O

black hat

= ==

Code Cache Confusion again (CVE-2021-4056)

BodyBuffer GetCachedMetadata
Response === BodyStreamBuffer =========- » WASM Code Cache

BodyBuffer ‘,f”
Response === BodyStreamBuffer =

¢ Responses with the same response_time will have the same cache,

even the response body is different

¢ Compile the Responses would cause cache confusion again

Fix (https://crrev.com/c/3282643)

Information Classification: General

O

black hat

= ==

Exploitation

What happens next

¢ The actual running code does not match
the metadata (function signature, global

variable declaration, etc.)

deserialized to
Code Cache

WasmModule
(resource a)

Meta Data

(resource b)

Information Classification: General

Wasm Code

O

black hat

= ==

Exploitation

Global Variable in WASM

declaration in metadata

(global $first (mut i32)) :
(global $second (mut i32)) -

¢ Bouno

memory allocation

ArrayBuffer(sizeof(int) * 2)

wasm code execution

global get / set 0
global get / set 1

global value O <

A

global value 1

s check is performed at compile phase

¢ No bounds check at runtime

Information Classification: General

O

black hat

= ==

declaration in metadata memory allocation wasm code execution
, , ArrayBuffer(sizeof(int) * 2)
(global $first (mut i32)) . t global get / set 0
(global $second (mut i32)) global value 0) global get / set 1
A — global get / set 2
A >
global value 1 A
/A
OOB access <
WasmModule
(resource a)
| Meta Data

Code Cache Wasm Code |
(resource b)

Information Classification: General

O

black hat

= ==

Classic free list corruption

Released Arraybuffer's backing store in the free list (PartitionAlloc)

& overwrite next_ to do arbitrary allocation

next_ P next, =~ - > null

\ 4

[freelist_head }

inverted next_ inverted next_ Oxffff...ff

\ 4
~NJ

Information Classification: General

O

black hat

= ==

Freelist corruption detection

¢ if next_is non-nullptr, check if ~next_ == inverted_next_

¢ if next_is nullptr,

move on

[freelist_head J

Information Classification: General

\ 4

next_

\ 4

inverted next_

next — -—-—---- >

inverted next_

0x37¢60060ctcO:

OXdOCf6OO?C637OOOO

v
0x37c¢60060cfd0:
0x37¢60060cfe0:

0x37¢60060ctf0:

0xe0cf6000c6370000

0xf0cf6000c6370000

0x0000000000000000

0x2£3091T 1398 T

Ox1f3091T 1398 T

0x0f3091 398 T

Ox i fffreeeee

null

Oxffff...ff

O

black hat

= ==

iIf next_ is nullptr, move on

E freelist_head } next_ — next. - > null

inverted next_ inverted next_ Oxffff...ff

2. find somewhere above with null data
[

0x00

) 4

3. the actual allocated arraybuffer data
(for WASM global values)

1. memory we want to read / write
R

4. do not forget we have OOB
access primitive

Information Classification: General

O

black hat

= ==

With OOB on heap and arbitrary allocation

¢ Leak useful data on the heap to defeat ASLR
¢ Enable MojolS for further sandbox escape

¢ Run shellcode in render process, etc.

Information Classification: General

QUIC Transport

O

black hat

= ==

QUIC Protocol

¢ Quick UDP Internet Connections (QUIC)

& base on top of UDP
& to improve transport performance for HTTPS traffic

¢ has been globally deployed at Google products

HTTP/2 QUICTransport | HTTP/3
TLS QUIC
TCP UDP
NETWORK (IP)

Information Classification: General

O

black hat

= ==

QUIC Transport

& web platform API (application level)

+ allows exchanging data with remote peers using QUIC protocol

new WebTransport("quic-transport://example.com:4433")

HTTP/2 QUICTransport | HTTP/3
TLS QUIC
TCP UDP
NETWORK (IP)

Information Classification: General

O

black hat

= ==

Establish the Connection

Remote Peer

Render process Network Service

N Connect N TLS Handshake (with its own framing format)

Return
quicHandshakeClient

A

onConnectionEstablished Connection established

|
A

A

Open unidirectional stream

A
- — 1+ —

P_____

acceptUnidirectionalStream

\ 4

Send data

A

Return
readable data pipe

Information Classification: General

O

black hat

= ==

Open Stream on the Connection

Remote Peer

Network Service

Render process

N Connect N TLS Handshake (with its own framing format)

Return
quicHandshakeClient

A

onConnectionEstablished Connection established

|
A

A

A
- — | —

| Open unidirectional stream
| acceptUnidirectionalStream
s >
Send data
< T
Return |
T readable data pipe |
) T

Information Classification: General

O

black hat

= ==

Render process Network Service

A

Remote Peer

Open unidirectional stream |

acceptUnidirectionalStream

\4

Send data

|
|
|
|
H Return)
readable data pipe

& contains streams that has been received by
the session but have not been processed

by the renderer

& raw pointers point to QuicTransportStream

Information Classification: General

o

// A client session for the QuicTransport protocol.

class QUIC EXPORT_PRIVATE QuicTransportClientSession

{
quiche: :QuicheCircularDeque<QuicTransportStream*>
incoming unidirectional streams_;

s

\

/

O

black hat

= ==

Can we free the QuicTransportStream before AcceptUnidirectionalStream ?

Render process Network Service Remote Peer

Open unidirectional stream |

< -

some magic to free QuicTransportStream
<
acceptUnidirectionalStream
1. >
Send data
<
Return H

readable data pipe

Information Classification: General

O

black hat

= ==

Free the QuicTransportStream from the server side
¢ send |[EFT RST STREAM frame

¢ free the stream immediately

#0 quic::QuicSession: :0OnStreamClosed

#1 quic::QuicStream::CloseReadSide

#2 quic::QuicStream: :OnStreamReset

#3 quic::QuicSession: :0OnRstStream

#4 quic::QuicConnection: :OnRstStreamFrame
#5 quic::QuicFramer: :ProcessletfFrameData
#6 quic::QuicFramer: :ProcessletfDataPacket
#7 quic::QuicFramer: :ProcessPacketInternal

#8 quic::QuicFramer: :ProcessPacket

Information Classification: General

O

black hat

= ==

Use-After-Free in Network Service (CVE-2021-38002)

AcceptUnidirectionalStream >>> OnlncomingUnidirectionalStreamAuvailable

void WebTransport::0nIncomingUnidirectionalStreamAvailable() {
while (lunidirectional stream acceptances_ .empty()) {
quic: :WebTransportStream* const stream =
transport _->session()->AcceptIncomingUnidirectionalStream();

// skip
streams_.insert(
std::make pair(jstream->GetStreamId(), — | |Se-after-free

std: :make unique<Stream>(
this, stream, std::move(writable for_incoming))));
std::move(acceptance)
.Run(stream->GetStreamId(), std::move(readable for _incoming));

Information Classification: General

O

black hat

= ==

Exploitation

Environment: Chrome version 94.0.4606.81 on Windows 10

¢ Unlimited attempts at exploitation

e Network Service would restart automatically after crash

Information Classification: General

O

black hat

= ==

Faking Virtual Table of the Freed Object

¢ Trigger UAF for leaking a heap address
¢ Build a ROP chain at a known heap address
¢ Trigger it again for executing the gadgets

QuicTransportStream vTable
stream->GetStreamId() vptr »H— vtable[0]
member 1
vtable[n]
member N

controlled heap memory

) 4

ROP Gadget 0

ROP Gadget 1

Information Classification: General

O

black hat

= ==

Manipulate Heap in Network Service

WebSockets Interface
¢ can control the allocated chunk size
¢ can control the data in the chunk

interface WebSocket {
SendMessage (WebSocketMessageType type, |uint64 data length);

I

interface WebSocketHandshakeClient {
OnConnectionEstablished (pending remote<WebSocket> socket,
pending receiver<WebSocketClient> client receiver,
WebSocketHandshakeResponse response,
handle<data pipe consumer> readable,
handle<data pipe producer> writable):

Information Classification: General

blgc’:k hat

B e

Conclusions

BBBBBBBBBBBBBBBBBBBBB

O

black hat

= ==

¢ Modern browsers support many protocols and provide corresponding JavaScript APIs.

One can control both ends of the protocol connection in some degree

+ Network service that handles untrustworthy inputs at high privilege makes it a good

target for security researchers to investigate

¢ Logic flaws in high-level network stack can cause memory safety bugs which are easier

to be exploited

Information Classification: General

blgc’:k hat

= ==

https.//vul.360.net

Information Classification: Genera 1

