New Memory Forensics Techniques to Defeat
Device Monitoring Malware

Andrew Case, Gustavo Moreira, Austin Sellers,
Golden G. Richard III

andrew@dfir.org, gmoreira@volexity.com, asellers@volexity.com,
golden@cct.lsu.edu

April 4, 2022

1 Introduction

Malware that is capable of monitoring hardware devices poses a significant threat
to the privacy and security of users and organizations. Common capabilities
of such malware include keystroke logging, clipboard monitoring, sampling of
microphone audio, and recording of web camera footage. All modern operating
systems implement APIs that provide this hardware access and all of them have
been abused by numerous malware samples to monitor the activity of journalists
and dissidents, conduct espionage operations against corporate and government
targets, and gather data that allows for blackmail of individuals.

Existing methods for detecting these malware techniques are largely confined
to malware that operates within kernel space, commonly referred to as kernel
rootkits. The use of such rootkits has waned in recent years as operating system
vendors have sharply locked down access to kernel memory. This includes
enforcement of driver signing, limiting which organizations can receive signing
certificates, and adding proactive monitoring systems within the operating system
that detect common rootkit tampering techniques. These limitations placed
upon kernel rootkits as well as the easy-to-use APIs in userland that allow for
access to hardware devices has led to a significant number of device monitoring
malware samples that operate solely within process memory. Such malware is
comparatively much simpler to write and is also much easier to make portable
across a wide variety of operating system versions.

Unfortunately, current methods for direct detection of such userland malware
are severely outdated or completely lacking. These include attempts at live
forensics, which relies on system APIs to enumerate artifacts, but these APIs are
often hooked by malware to hide their activity. Partial existing memory forensics
techniques for Windows exist, but are outdated, and there are monitoring
methods used across the major operating systems that have no memory forensic

detection support at all. Given the significant recent emphasis on memory
analysis during incident response, such as in CISA directives released after the
detection of ProxyLogon [1] as well the SolarWindows supply chain compromise
[2], it is imperative that memory forensic techniques are able to properly detect
modern threats.

In this paper, we present our effort to research and develop memory forensic
algorithms capable of direct detection of userland device monitoring malware
across all three major operating systems. To accomplish this goal, we first
undertook a significant effort to understand and document the APIs that provide
device access to userland components. This effort included binary analysis of
closed source components (Windows, Mac) as well as study of open source
components (Linux, Mac). These efforts in turn led to the update of existing and
creation of new Volatility plugins that are capable of automatically locating and
extracting all relevant information about processes that are monitoring hardware
devices. These plugins quickly inform analysts of the presence of such malware
as well as key in information such as the addresses of callback functions. We
plan to contribute our Volatility plugins and additions to the community upon
publication of this paper.

2 Research and Experimental Setup

2.1 Operating Systems and Versions Tested

During our research effort, we aimed to develop capabilities that covered all
supported versions of target operating systems as well as bleeding edge ones,
where possible. Given that the layout of operating system data structures often
changes between versions and that many of the components we analyzed were
closed source, we fully documented all of our developed plugins with the steps
needed to find the correct offsets and associated information in future versions
of each operating system.

The following table lists the starting and ending version tested and supported
added for each operating system:

Operating System | Earliest Version | Latest Version
Windows 10 10563 22000.556
macOS Catalina Monterey

Linux 2.6.18 5.14

This wide range of versions covers Windows 10 starting from build 10586,
released in 2015, to the latest release at the time this paper is written. We also
cover Linux kernel versions going back to 2008. All versions of macOS supported
by Apple at the time of writing were also covered in our research. We choose to
test and include such as a wide of range of kernel versions to ensure that our
effort is as widely useful to the community as possible.

2.2 Memory Sample Creation

When developing new memory forensic capabilities, it is imperative to develop
proof-of-concept applications that perform the same actions as malware, but
in a controlled and logged manner. By developing these POC applications, the
researcher can be certain that artifacts recovered from a memory sample with a
POC application active match precisely with the values recorded by the POC
as it ran. As an example, a POC that places an API hook would record the
process ID of its victim along with the address that was hooked and the address
of the malicious handler. The memory analysis researcher can then run newly
developed plugins against these memory samples and confirm that the recovered
values match. These samples can also be saved to perform regression testing of
future software releases.

Given the severity of the malware types discussed in this paper, our team
wanted to ensure that our research process and results could be repeated and
verified well into the future. To meet this need, we developed POC applications
that performed each action hunted for by our plugin set. When then generated
memory samples with our developed POCs active and ensured that our plugin
output matched. Snippets of these POCs will be shown and discussed where
relevant throughout the paper.

To create stable and valid memory samples, two methods for acquisition
were used. The first was the use of Surge Collect Pro from Volexity [3]. This
commercial software supports stable acquisition across Windows, Linux, and
macOS systems. Besides capturing physical memory, Surge also records a
significant amount of system state and metadata to json files. This extra
metadata allowed us to automate a significant amount of the testing. The second
approach we used for acquisition was snapshotting and suspending the VMware
virtual machines that we used for testing. The system state files (.vmem, .vmss,
.vinsn) created when snapshotting and/or suspending a guest VM contain a copy
of all physical memory as well the metadata needed to fully perform memory
analysis. The main downside to this approach is that the system state files do
not contain the wide range of metadata that Surge produces.

2.3 Analysis Tools and Resources

IDA Pro was used for all binary analysis performed during our research. Source
code studying of Linux kernel versions was largely performed using the excellent
Exlixir cross reference website [4] and macOS source code study was performed
using a self-hosted OpenGrok instance that contained source code from Apple’s
open source code website [5].

3 Windows Analysis - SetWindowsHookEx

There are two APIs provided by Windows systems that userland malware abuses
to monitor devices. In this section, we discuss the internals of SetWindow-
sHookEz along with our updates and creation of new Volatility capabilities that

provide automated detection of abuse of this API. Before our effort, Volatil-
ity only supported detection of SetWindowsHookEzx abuse through Windows 7
and did not recover all needed information. In the following section, we give
RegisterRawInputDevices the same, complete treatment.

3.1 Background

The SetWindowsHookEx API provides the ability for applications to install hooks
that activate when specific device or window (GUI) events occur. These hooks
can target the keyboard or mouse as well as activity within the GUI environment,
such as messages between sent between applications or an application changing
its foreground/background state. The callbacks associated with these hooks
receive the specific data of event that triggered the hook, such as the button
pressed on a keyboard. Given the power and flexibility of this API, numerous
malware variants and samples have abused this API for keylogging, mouse
monitoring, and code injection.
Figure 1 shows the function prototype for SetWindowsHookEz.

HHOOK SetWindowsHookExA(
[in] int idHook,
[in] HOOKPROC 1pfn,

[in] HINSTANCE hmod,
[in] DWORD dwThreadId

Figure 1: SetWindowsHookEx Prototype

The first parameter, idHook, specifies which event the hook will monitor,
such as WH_KEYBOARD, to monitor keystrokes. The second parameter, Ipfn
is the callback to activated upon each monitor event. The last two parameters,
hmod and dwThreadld, control the behaviour of which processes are hooked and
how they are hooked.

If hmod is NULL then the executable calling Set WindowsHookFEx must host
the callback function. Otherwise, hmod must reference a valid handle to the
DLL that hosts the callback function. If dwThreadID is non-NULL then it
specifies the particular thread for which the monitor should be placed. If NULL
is passed, then all threads within the same desktop as the calling application
will be hooked. As discussed shortly, Volatility does not currently cover all
combinations of hmod and dwThreadld, which we discovered during our testing
and fixed during development.

3.2 Internals

An entry on the Volatility Labs blog [6] and the Art of Memory Forensics [7]
discuss a majority of the internals related to SetWindowsHookEx and the kernel
data structures that it populates. In particular, these cover the data structures
created when hooks are populated as well as the recovery of global hooks placed
inside a DLL. We highly suggest reviewing these resources for readers new to
analysis of the Windows GUI subsystem.

The information specific to each hook is placed within a tagHOOK data
structure. This information includes the following:

1. The desktop where the hook is active

2. The thread targeted by the hook

3. The event monitored

4. The location of the callback function

5. The module hosting the callback function

To support the variety of data structures needed for this analysis across many
Windows 10 versions, a significant reverse engineering effort was undertaken. To
allow for quick support of future Windows versions to be added to our plugins,
we fully documented each function inside of win32k.sys, win32kbase.sys, and
win32kfull.sys needed to uncover the variety of data structure and offsets.

Besides having the correct data structure layouts, fully recovering all varia-
tions of hook placement requires treating each hook in one of three ways, each
of which alters the meaning of the data stored in tagHOOK. These three will be
discussed separately as having complete support in Volatility requires special
handling of each one.

3.3 Global Hooks in a DLL

The first form of SetWindowsHookEz abuse is when hmod is set to a DLL handle
and dwThreadld is set to NULL. This tells the operating system that the caller
wants to monitor all threads within the same desktop using a function defined
in the DLL. The effect of this choice is that the DLL hosting the callback will
be loaded (injected) into each process that triggers the callback, such as after a
keystroke is entered.

This mechanism provides a built-in code injection technique that removes the
need for malware to use heavily monitored APIs, such as WriteProcessMemory,
to introduce code into a victim process. Several malware samples, such as the
Lagma malware discussed in [6], abuse Set WindowsHookEx solely as a mechanism
to get their DLL loaded into victim processes, but then discard all future event
data (keystrokes, mouse movements, etc.).

When a global hook in a DLL is used, the ihmod member of tagHOOK is set
to the index within the global atom table of the element holding the path to the
DLL hosting the hook, and the offPfn member is set to the relative offset of the
callback function from the DLL base address.

3.3.1 Volatility Support

Volatility’s messagehooks plugin recovers global hooks in a DLL by first enu-
merating each desktop along with each thread running inside each desktop. For
each desktop or thread found, it uses the pDeskInfo member of the structure to
find the tagDESKTOPINFO instance. This structure contains a member named
aphkStart, which holds an array of pointers to tagHOOK instances. Each array
index corresponds to the a hardcoded hook type, and each tagHOOK instance
holds a pointer to the next one in its list. For each hook found, its relevant
metadata is computed and reported. Figure 2 shows the output of the current
version of the plugin against a single hook found in a memory sample. In this
particular instance, the system from which memory was acquired was infected
with the infamous Turla malware [8].

Offset(V) : @xfffff90@cl227970

Session L 2

Desktop : WinStae@\Default

Thread : 1816 (explorer.exe 2568)

Filter : WH_KEYBOARD_LL

Flags : HF_GLOBAL

Procedure : @x22c@

ihmod !

Module : C:\Usersh\JohnSmith\Desktop\tll.dll

Figure 2: Recovery of a global keyboard hook

The figure illustrates that Volatility has detected that the explore.exe process
with a PID of 2568 has its thread with ID 1816 hooked. The event being
monitored (Filter) is the keyboard, and the callback function (Procedure) is
located at offset 0x22c0 from the beginning of tll.dll. Existing Volatility plugins,
such as dlldump or dumpfiles, can be used to extract the malicious DLL to disk
and begin binary analysis of the callback function.

3.4 Global Hooks in an Application Executable

The second form of Set WindowsHookEz abuse is the placement of a hook inside
of an application executable (.exe file). In this form, the hmod parameter to
SetWindowsHookEz is set to NULL and dwThreadld can either be NULL or the
thread ID to target. The effect of setting hmod to NULL is quite significant as it
means the calling executable will still have its callback activated for monitored
events, but the executable itself will not be injected into other processes. Instead,
as described by Microsoft [9], the created event information will be sent in a
message to the calling process.
Figure 3 shows how our POC set a global application executable hook.

keyboard_hook = SetWindowsHookEXxA(
WH_KEYBOARD_LL,
keyboard_hook_procedure,
GetModuleHandle(NULL),
NULL

);

Figure 3: SetWindowsHookEx with an Application Hook

In the call it can be seen that the both the module and thread ID parameters
are NULL. This means every thread within the desktop will be hooked and that
the per-event data will be placed into the message input queue of the calling
application. This allowed us to ensure Volatility correctly handles this case going
forward.

3.4.1 Volatility Support

Volatility’s existing messagehooks plugin was able to detect hooks registered in
this way, but did not inform analysts of which process was hosting the hook.
This meant that, in a real-world situation where dozens of processes are running
on a victim desktop, the same hook will be reported for each of them, but
without any indication of which process actually placed it. The output is also
a bit confusing as it reports a callback address that is not even mapped into
all of the processes, or if it is mapped, would have a different meaning in each
process address space. This lack of information forces analysts to manually work
backwards to trace the hook origin, which is time consuming, error prone, and
requires an investigator to have previous reverse engineering experience.

We aimed to resolve this issue by researching a method to detect which
application (process) actually placed the hook. Since the application is not
directly mapped into each victim process, the hooking application must remain
running for as long as the hook is active. With this in mind, we analyzed the
internal implementation of Set WindowsHookEz to see how such processes are
treated. We then determined that threads which set global hooks will have the
TIF.GLOBALHOOKER flag set in the TIF_.FLAGS member of the thread’s
tagTHREADINFO structure. We then updated messagehooks to print True or
False at the end of each Thread line to indicate if the particular thread has set a
global hook.

Figure 4 shows three blocks of output from messagehooks when ran against
the sample with our POC active.

Offset(V)
Session
Desktop
Thread
Filter
Flags
Procedure
ihmod
Module

Offset(V)
Session
Desktop
Thread
Filter
Flags
Procedure
ihmod
Module

Offset(V)
Session
Desktop
Thread
Filter
Flags
Procedure
ihmod
Module

: Oxfffff90146002870

1

: WinSta@\Vol_GUI-DesktopHidden
: <any>

: WH_KEYBOARD_LL

: HF_ANSI |HF_GLOBAL

1 Ox711782002300

: -1

(Current Module)

1 Oxfffff90146002870

1

: WinSta@\Vol_GUI-DesktopHidden

: 5920 (powershell.exe 5916) False
: WH_KEYBOARD_LL

: HF_ANSI |HF_GLOBAL

1 Ox711782002300

-1

(Current Module)

1 Oxfffff90146002870

1

: WinSta@\Vol_GUI-DesktopHidden
: 400 (GUITesterAll.e 1332) True
: WH_KEYBOARD_LL

: HF_ANSI |HF_GLOBAL

1 Ox71f782002300

e |

(Current Module)

Figure 4: SetWindowsHookEx with an Application Hook

The first block shows the global hook registered inside the Vol G UI-Desktop

Hidden desktop, which is created by our POC. This hook is denoted as the global
one by marking the thread as < any > to indicate that this hook will apply to
all threads within the particular desktop. Also note that the procedure address
is the full runtime address of the callback function for the keyboard hook, but
no information is given here on which process is hosting the hook as the module
index is -1, which marks the index as invalid. This also leads Volatility to mark
the hosting module as (CurrentModule), since it cannot automatically infer the

8

hosting module from the tagHOOK structure.

The second block, which is repeated for each victim thread in the full plugin
output, shows that the same hook has targeted the powershell.exe process with
PID 5916. This output can be automatically matched to the first block as the
hook address is the same since the per-thread’s hook structure is pointed to the
same one as the globally registered hook attached to the desktop. We also note
that the False at the end of the Thread line is our addition that prints if the
TIF_.GLOBALHOOKER flag is set. This per-thread output is how analysts can
know which processes and threads were infected by malicious hooks, and, as
mentioned previously, there are typically dozens of these lines when hooks are
active on real-world systems.

The third and final block of output in the figure shows that the GUI-
TesterAll program (our POC) is the one that actually placed the hook as its
TIF_.GLOBALHOOKER flag is set (the True at the end of the Thread line).
With this new information, an analyst immediately knows 1) which process
actually placed the hook 2) which address to look at in process memory for
the hook. Furthermore, since the main application executable is hosting the
hook, the analyst can use the existing procdump plugin’s -p option with the
process ID (1332) to automatically extract this malicious executable to disk.
This allows analysis in static analysis tools, such as IDA Pro or Ghidra. As we
just demonstrated, our addition of analysis of the per-thread TIF_FLAGS has
transformed an error-prone, manual process into a more automated solution.

3.5 Thread-Specific Hooks

The last type of hook covered in this section are thread-specific hooks. These
are created when the dwThreadld is set to a specific thread ID instead of NULL
to target all threads. To create one of these, we added the code shown in Figure
5 to our POC application.

mouse_hook = SetWindowsHookEXA (
WH_MOUSE,
mouse_hook_procedure,
dll_handle,
process_info.dwThreadId

Figure 5: SetWindowsHookEx with a Thread-Specific Hook

In the code it can be seen that the mouse monitoring hook is registered
against a particular process, which in our POC is a notepad.exe process spawned
previously by the POC. The module parameter is a handle to the DLL imple-
menting mouse_hook_procedure. Since this hook is process specific, Windows will

load the referenced DLL into the victim process.
3.5.1 Volatility Support

Our testing showed that the existing Volatility messagehooks plugin had no
support for thread-specific hooks, so we needed to research why these were missed.
Analysis of the kernel functions that activate hooks showed that thread-specific
hooks were placed in a aphkStart array inside the tagTHREADINFO structure,
and not in the one referenced from the tagDESKTOPINFO structure. Based on
this discovery, we updated the messagehooks plugin to enumerate both aphkStart
arrays and then our previous keyboard hook was enumerated along with the
addition of our thread-specific mouse hook. Figure 6 shows the output of our
updated messagehooks plugin against a memory sample with our mouse hook
active. As can be seen, the plugin is now capable of recovering thread-specific
hooks.

Offset(V) : Oxfffff90146007630

Session : 1

Desktop : WinSta@\Vol_GUI-DesktopHidden
Thread : 4192 (notepad.exe 2688) False
Filter : WH_MOUSE

Flags : HF_ANSI

Procedure : 0x10f0

ihmod : 7

Module : Ox7L

Figure 6: messagehooks Recovering our Thread-Specific Hook

We then proceeded to test this new support across Windows versions and
noticed that the DLL path was not recovered for a single memory sample. We
then manually ran Volatility’s atomscan plugin across the memory samples, which
scans Windows atom tables and outputs the individual atoms. We determined
that the DLL path for the hooking DLL was not present in the atom table for
any of the samples. This indicated that something might be wrong with the
plugin, as we expected the ihmod value of tagHOOK to reference a global atom
containing the path of the hooking DLL as it does for the global hooks described
previously.

This led us to re-examine the internal implementation of Set WindowsHookEx,
and we determined that thread-specific hooks do not populate the global atom
table at all. Instead, the ihmod value of thread-specific hooks reference an index
into the ahmodLibLoaded array stored inside the tagPROCESSINFO structure
referenced from the hooked thread. This array holds the base addresses of DLLs
associated with the process. With this information, we were able to update

10

messagehooks to conditionally retrieve the DLL path based on whether the hook
being global or local. With this change, Volatility can now retrieve the DLL
path, if present, for all hook types and variations. Figure 7 shows the output of
our fully updated plugin that is aware of both DLL path sources.

Offset(V) : Oxfffff90146007630

Session i1

Desktop : WinSta@\Vol_GUI-DesktopHidden

Thread : 4192 (notepad.exe 2688) False

Filter : WH_MOUSE

Flags : HF_ANSI

Procedure : 0x10f0

ihmod 7

Module : C:\Users\Administrator\Desktop\hook.dll

Figure 7: Properly Recovering the DLL Path

As illustrated, the full path is retrieved for the DLL hosting the mouse hook
as opposed to simply printing out an thmod value. By extracting the DLL to
disk, the investigator can then begin analysis of the hook procedure beginning
at offset 0x10f0 of the DLL.

With all of the updates described in this section, the messagehooks plugin of
Volatility is now able to successfully recover complete information of all message
hook variations through the latest version of Windows 10.

4 Windows Analysis - RegisterRawInputDevices
4.1 Background

Abuse of the RegisterRawlInputDevices API is the second popular method that
Windows userland malware employs to monitor device activity. Many samples
used in high profile attacks and by APT groups have abused this feature, including
PlugX variants, the Dexter Point-of-Sale malware, HawkEye, FIN7, and APT27
[10, 11, 12, 13, 14, 15]. An article on Code Project by Mike Mee provides a very
accessible read on how these hooks are registered by a programmer [16]. We
strongly suggest reading this article before proceeding if you are new to this
type of keylogger.

The normal method for abusing this API is to first register an invisible
window that will be used to attach the malware’s callback function. This is
performed by registering a custom class through the use of the RegisterClass
API. Once registered, the class can then be used to create the hidden window.
Figure 8 shows how this is performed in our POC application.

11

WNDCLASS wc = { @ };

wc. lpfnWndProc = WndProc;
wc.hInstance = hInstance;
wc. lpszClassName = L"Vol_GUI-K1";

RegisterClass(&wc);

WriteQutputFile(FormatStringOutput("wndClassName", "Vol_GUI-k1"});
WriteQutputFile(FuncAddrFunc("WndProc", &WndProc));

hwnd = CreateWindow(wc.lpszClassName, "My Hidden Window", ...);

Figure 8: RegisterRawInputDevices Prototype

As shown, we define a callback function named WndProc that receives GUI
messages and we named our custom class Vol_GUI-kl. Next, we write information
to the output file for future verification and then we create our hidden window.
The first parameter to Create Window must be the name a registered class,
which we set to our previously registered instance. We then give our window a
pre-defined name so that we can verify it during future plugins runs.

To receive all input events, the callback function must properly handle
WM_CREATE and WM_INPUT messages. WM_CRFEATE is sent upon cre-
ation of a window of the given class, and this is when a keylogger must use
RegisterRawInputDevices to receive future WM_INPUT messages that contain
each keystroke. Figure 9 shows the prototype for RegisterRawlInputDevices and
Figure 10 displays the input structure (tagRAWINPUTDEVICE).

BOOL RegisterRawInputDevices(
[in] PCRAWINPUTDEVICE pRawInputDevices,
[in] UINT uiNumDevices,
[in] UINT cbSize

Figure 9: RegisterRawlInputDevices Prototype

12

typedef struct tagRAWINPUTDEVICE {
USHORT usUsagePage;
USHORT usUsage;
DWORD dwFlags;
HWND hwndTarget;
} RAWINPUTDEVICE, *PRAWINPUTDEVICE, *LPRAWINPUTDEVICE;

Figure 10: tagRAWINPUTDEVICE Definition

The first parameter, pRawlInputDevices, specifies one or more tagRAWIN-
PUTDEVICE structures that describe the devices to be monitored. The second
parameter specifies how many devices are described and the last parameter
specifies how large each input structure is.

To properly monitor the keyboard or other desired device, the usUsagePage
and usUsage of the tagRAWINPUTDEVICE structure must be set correctly.
For malware that targets common devices (keyboard, mouse), the usUsagePage
must be set to HID_-USAGE_PAGE_GENERIC, which has a constant value of 1.
Figure 11 shows the possible options for the usUsage member.

Usage ID Usage Name hidusage.h constant
0x01 Pointer HID_USAGE_GENERIC_POINTER
0x02 Mouse HID_USAGE_GENERIC_MOUSE
0x04 Joystick HID_USAGE_GENMNERIC_JOYSTICK
0x05 Game Pad HID_USAGE_GENERIC_GAMEPAD
0x06 Keyboard HID_USAGE_GENERIC_KEYBOARD
0x07 Keypad HID_USAGE_GENERIC_KEYPAD
0x08 Multi-axis Controller HID_USAGE_GENERIC_MULTI_AXIS_CONTROLLER

Figure 11: messagehooks Recovering our Thread-Specific Hook

For malware that wants to perform keylogging, it will set this value to
HID_USAGE_GENERIC_KEYBOARD, which has a constant value of 6.

Once registered, the window callback procedure will then receive WM_INPUT
messages after each keystroke, and the GetRawlInputData API can be used to

13

translate these messages to the keys typed on the monitored keyboard.

4.2 Internals

A blog post on the “Eye of Ra” blog provides a good overview of the data struc-
tures that Windows 7 uses to track raw input device monitors [17]. This includes
a high level view of determining which processes called Register RawInputDevices
and most of the data structures involved. We used this blog post as a starting
point for our research, but given that it only targeted Windows 7 and many of
the functions and implementation details were modified in Windows 10, there
was still a substantial amount of work to do. We also aimed to determine not
only which process(es) were monitoring input devices, but also the addresses
of the input handlers. Finally, this blog post is able to use WinDBG to parse
the types of the GUI subsystem as Microsoft released full type information for
several versions of Windows 7. Unfortunately, this was stopped and later versions
of Windows 7 and all versions of Windows 10 must be reverse engineered to
discover type and algorithm changes inside the GUI subsystem. This meant
we needed to perform a significant reverse engineering effort to understand the
modern versions of the handling code.

The use of RegisterRawlInputDevices leads to a tagPROCESS_HID_TABLE
instance being tracked from the process’ tagPROCESSINFO structure. This
hid table structure then tracks the monitors associated with each process in
tagPROCESS_HID_REQUEST structures that contain the usUsagePage and
usUsage values described previously as well a handle to the window that the
hook is associated with. Inside of each window, which is tracked by a tag-
WND structure, there is a member named Ipfn WndProc that holds the address
of the window callback procedure, if any. This per-monitor request data is
what we used to build our new Volatility plugin that is capable of uncovering
RegisterRawInputDevices abuse.

4.3 Adding Volatility Support

Before our research effort, Volatility had no plugin to report instances of Regis-
terRawlInputDevices usage. We addressed this issue through the development of
a new rawinputdevicemonitors plugin. Our previous work to make messagehooks
function properly across Windows 10 versions meant that we had a head start in
this effort. In particular, messagehooks already enumerates tagPROCESSINFO
instances, which is what we need to start our analysis of input device monitors.

For each tagPROCESSINFO found, we check if its HID table pointer is
set. If so, that means the process has registered at least one monitor. We
then proceed from the tagPROCESS_HID_TABLE to the list of valid tagPRO-
CESS_HID_REQUEST structures. This allows us to determine which requests
are monitoring devices of interest (keyboard and mouse) and to report the
process ID and name, window name, and window procedure callback address.

Figure 12 shows the output block out our new plugin when run against a
memory sample with our POC input device monitor active.

14

Offset (V) : OxTTfff90141c5bl60

Session 1

Desktop : WinSta@\Vol_GUI-DesktopHidden
Process : GUITesterAll.e 3812

Window Name : My Hidden Window

Window Procedure : @x7ffée3b63220

Monitor usUsage : 6

Figure 12: rawinputdevicemonitors Recovering our POC

As shown, the monitoring application (GUITesterAll) is reported along with
the name and address of the window procedure. The usUsage value is reported
as 6, which corresponds to keyboarding monitoring. With this information
available, an investigator can immediately begin static analysis of the malicious
application to determine which action(s) it takes upon each keystroke.

5 Linux Analysis - strace and ptrace

After finishing our research on Windows, we turned our attention to Linux.
Linux has three main methods for userland keylogging: 1) strace (debugging
APIs) 2) Input Events 3) TIOCSTI. We will now cover these in order.

5.1 Background

strace is a built-in Linux utility that leverages the Linux debug API (ptrace)
to record system calls made by applications. strace is extremely popular with
system administrators and malware analysts as it not only records the names of
system calls made but also the parameters, such as file names, network addresses,
and process IDs. The power afforded by strace and the ptrace system call that
it relies on has resulted in widespread abuse by malware and attackers to spy on
victim processes. Many resources show how it trivial it is to spy on victim users
with strace, including the theft of SSH credentials and recording of commands
(e.g., [18]).

The abuse of these debugging facilities sometimes leads systems administra-
tors to lock down ptrace, even for root users [19, 20]. As with most security
controls, however, these settings are not enabled by default on common distribu-
tions and are not universally applied to production servers. Given the threat
posed by these interfaces, we investigated the debugging API internals with a
goal of detecting processes being debugged.

5.2 Internals

Each Linux process is tracked by a task_struct structure that serves the same
purpose as _EFPROCESS on Windows. Inside each task_struct is a member

15

named ptraced that holds a linked list of all processes that the examined process
is tracing. This allows us to directly enumerate all processes being traced.

ptrace supports a variety of options, such as PTRACE_O_TRACEFORK and
PTRACE_O_TRACECLONE, that allow tracing programs to automatically trace
(debug) child processes spawned by the original. strace supports this capability
by following children processes if the -f option is specified in the command
line invocation. To determine all instances of programs being debugged and
to discover the process debugging them, we must compare the parent member
of task_struct to the real_parent member. These will not be the same when a
process is being debugged by a process other than its direct parent, such as a
debugger, and we can use this discrepancy to determine the real tracing process
even if it is several parents up the chain.

5.3 Volatility Support

Before our research, Volatility had no existing plugin to report processes that
were being debugged. To remedy this, we developed the linuz_process_ptrace
plugin, which reports on all processes being debugged, the process IDs of tracing
processes, and the tracing state of each process. We have two sets of figures that
demonstrate this plugin.

5.3.1 Detecting gdb Usage

The first, Figure 13, shows us loading the cat executable into gdb followed by
executing it inside the debugger.

gdb -q /bin/cat

Reading symbols from /bin/cat...(no debugging symbols found)...done.
(gdb) r

Starting program: /usr/bin/cat

ps aux | grep cat
root 778 2.8 9.7 59108 45688 pts/0 T 09:49 @:00 gdb /bin/cat
root 780 0.0 ©.1 5400 828 pts/e@ t 09:49 @:00 /usr/bin/cat

Figure 13: Debugging the cat command with gdb

We then ran the ps command to determine the process IDs of the created cat
process (780) as well as the PID of the controlling gdb process (778). Figure 14
shows the output of linuz_process_ptrace when run against the memory sample
with these processes active.

16

$ python vol.py ... linux_process_ptrace
Volatility Foundation Volatility Framework 2.6
Name Pid PPid Flags Traced by Tracing

gdb 778 763 780

cat 8@ 778 PTRACED

Figure 14: Our new plugin detecting cat being debugged

As shown, Volatility correctly reports that gdb is tracing PID 780 and that
cat has the PTRACED flag set. The Traced by column of cat is empty since it
is being directly traced by its parent gdb process, so its parent and real_parent
members have the same value.

5.3.2 Detecting SSH Daemon Monitoring

Our second demonstration of linuz_process_ptrace focuses on detection of an
strace instance being used to keylog SSH sessions. Figure 15 shows our invocation
of strace to attach to the running SSH daemon and to follow all future children
processes.

ps aux | grep sshd

root 436 ©.0 1.1 15852 5216 7 5s 09:42 0:00 /usr/sbin/sshd -D
strace -fp 436

strace: Process 436 attached

Figure 15: Monitoring SSHD with strace

After attaching strace to the SSH daemon, we then logged into the system
through SSH from a remote computer. After successfully logging in, we then ran
the netstat command and observed the output. Figure 16 shows select portions
of this output as generated by our strace invocation.

17

1042 write(4, "\@\@\@0\24\f", 5) =5
1042 write(4, "\@\@\@\17secretpassword!", 19) = 19
1042 read(4, <unfinished ...>

1041 <... poll resumed>) = 1 ([{fd=6, revents=POLLIN}])
1041 read(6, "\0\0\0\24", 4) =4

1041 read(6, "\T\@\0\0\17secretpassword!"™, 20) = 20

1047 read(12, "n", 16384) =1

1047 read(12, "e", 16384) =1

1047 read(12, "t", 16384) =1

1047 read(12, "s", 16384) =1

1047 read(12, "t", 16384) =1

1047 read(12, "a", 16384) =1

1047 read(12, "t", 16384) =1

1051 execve("/usr/bin/netstat", ["netstat"], @x559ee66538e@ /* 20 vars x/) = @
1851 openat(AT_FDCWD, "/proc/net/udp6", O_RDONLY) = 3

1851 read(3, " sl local_address ..., 4096) = 497

1051 read(3, "", 4096) =0

1051 close(3) =0

Figure 16: strace output During SSH login and Session

In the first block of output, the string secretpassword! can be observed,
which is the password of the user account that was logged in with remotely.
This theft of plaintext passwords is one of the main reasons that SSHD is a
common target of malware, and it also highlights why the use of SSH keys
can provide a significant security boost. The second block of output shows our
netstat command being read one character at a time, leading to the 3rd and final
blocks of output showing netstat being executed and then network connection
information being read from files under /proc/net/.

Figure 17 shows the output of linuz_process_ptrace against the memory sample
taken after our SSH activity.

$ python vol.py ... linux_process_ptrace
Volatility Foundation Volatility Framework 2.6

Name Pid PPid Flags Traced by Tracing

sshd 436 1 PTRACED | SEIZED 1127

strace 1127 1124 1140,1139,1131,436
sshd 1131 436 PTRACED |SEIZED 1127

sshd 1139 1131 PTRACED|SEIZED 1127

bash 1140 1139 PTRACED|SEIZED 1127

Figure 17: Volatility detecting the SSH Daemon Monitoring

To start, it can be seen that our strace process has a PID of 1127, and that
four processes (3 sshd instances, plus one bash instance) report PID 1127 as
their Traced by value. Furthermore, they all have the SEIZED flag set. SEIZED
indicates that strace either attached to an already running process or was
attached to a child automatically as a result of tracing the parent. As we know,

18

we manually attached strace to the running sshd instance with PID 436 and then
our supplied -f option to strace told it to follow all future children processes.
This information combined with the Tracing column of strace matching the
four PIDs of the other processes confirms to us that strace is truly the process
responsible for tracing the others.

As demonstrated in this section, our new linuz_process_ptrace plugin can
successfully detect all debugged processes in a memory sample, which can lead
to automated detection of a wide variety of malware and attacker abuses.

6 Linux Analysis - Input Events

The next Linux keylogging method that we examined was the abuse of input
events [21].

6.1 Background

The /dev/input directory of Linux systems is powered by the input subsystem
that exposes a wide range of local devices in a uniform manner. By reading from
a specific device’s /dev/input file, applications can receive event data as it is
generated. In the case of keyboard devices, this data includes each keystroke
typed on the physical keyboard. Figure 18 shows hows devices are exported on
a live system.

$ 1s /dev/input
by-path event® eventl event2 event3 mice mouse@ mousel

$ 1s -1 /dev/input/by-path/

total @

[snip] platform-iB8@42-serio-@-event-kbd —> ../eventl
[snip] platform-i8@42-serio-1-event-mouse -> ../event2
[snip] platform-i8@42-serio-1-mouse -> .. /moused

Figure 18: Viewing Input Devices

In this output, in it can be seen that the physical keyboard is mapped to the
eventl file while event2 and mouse0 correspond to the physical mouse. Given
the power of the input subsystem, malware frequently abuses this interface to
perform keylogging. This is accomplished by opening a file handle to the device
of interest, and then calling the read system call in a loop to obtain event data
as it is generated.

6.2 Internals

The input subsystem matches devices to input handlers that pass generated events
back to the userspace components waiting for them to populate. Documentation
maintained by the Linux kernel developers discuss the internals of the kernel
portion and userland APT of this interface [22]. Next, we show that it is possible

19

to automatically detect malware abusing this interface solely from its file handle
activity, so a deep understanding of the kernel internals is not relevant to our
Volatility plugin in this instance.

6.3 Volatility Support

We created the linuz_input_events plugin to detect processes that are monitoring
input events. This plugin operates by enumerating the open file descriptors
(handles) of each process and reporting any that reference a path under the
/dev/input/ directory. Figure 19 shows the output of our test sample with the
logkeys keylogger running [23]. This keylogger uses input device monitoring to
record keystrokes typed on a physical keyboard attached to a system.

$ python vol.py ... linux_input_events
Volatility Foundation Volatility Framework 2.6
Process Pid FD Path

systemd-logind 399 1@ /dev/input/event®@
systemd-logind 399 17 /dev/input/event4
logkeys 4020 @ /dev/input/event®

Figure 19: Detecting Device Input Monitoring Processes

As shown, three entries are reported by the plugin. The first two belong to the
system-logind process, which is a legitimate component of systemd. The process
of the third entry, logkeys, is not part of systemd and immediately informs the
investigator that the process is suspicious and requires further investigation.

7 Linux Analysis - TIOCSTI

The last keylogging approach that was researched for Linux is the abuse of the
TIOCSTI ioctl [24].

7.1 Background

The TIOCSTI ioctl command simulates input to a terminal and allows the caller
to inject a specified character into the terminal’s input stream. This allows mal-
ware to write characters into a victim’s terminal window(s), essentially “faking”
input typed by the user. This capability has led to a number of vulnerabilities
and malware opportunities, such as hijacking su/sudo sessions to run commands
as root [25]. The wide ranging threat posed by this IOCTL command led to
OpenBSD making it a NOOP [26] and many attempts to lock it down on Linux
and within sandboxes.

20

7.2 Internals

Internally, the handler for this IOCTL simply calls the same code path as if a user
had actually typed the given character directly from a keyboard or ssh session.
The tiocsti function in the Linux kernel implements this and the comment
defining the function states: “Fake input to a tty device”. Figure 21 shows our
POC written in Python that performs keylogging by abusing TIOCSTTI.

fd = os.open(pty, 0s.0_RDWR)
tty.setraw(fd)

while True:
c = os.read(fd, 1024)
Insert the given byte in the input gueue
fcntl.ioct1(fd, termios.TIOCSTI, c)

Wait until all output written to file descriptor fd has been transmitted.
termios.tcdrain(fd)

print("Read: %r" % (c.decode()))

Figure 20: TIOCSTT abuse for keylogging

Our POC must first open a handle to the desired terminal device, such as
“/dev/pts/0”, hosting an SSH session or physical keyboard. Next, it continually
reads from the device, and for each set of characters read, it immediately sends
them back to the input stream with TIOCSTI. This is required as the read
performed by our keylogger removes the bytes from the same input queue as
used by the victim’s terminal. To ensure that characters are reflected back to the
terminal and that the user does see any suspicious behavior when our keylogger
is active, all characters are immediately reinserted back into the queue this way.
tedrain is then used to ensure that all characters are written. Our POC then
writes the captured characters to the screen.

Given that the fake character is inserted in exactly the same manner as a
real keypress on the keyboard, there is no specific marker in the kernel to tell us
that this occurred or is still occurring. Due to this lack of artifacts, we chose to
base our detection of this abuse on the open file handle, as discussed next.

7.3 Volatility Support

To detect keyloggers abusing TIOCSTI, we developed the linux_tiocsti plugin.
The plugin operates by detecting when a process has a file descriptor (handle)
open to a terminal device that is not its own. As shown in the POC, a handle to
the particular terminal of interest must be opened to read data from it as well as
re-insert stolen characters. A naive approach the plugin could have taken would
be to compare the terminal device of a process’ stdin/stdout/stderr to that of its
other descriptors, but malicious processes often close these upon startup or dup()
them to network sockets. This would lead to our plugin missing the malicious
process.

21

To ensure that our plugin can detect the full range of TIOCSTT abuse, we
instead compare the terminal device associated with the process’ signal structure
to that of its open file handles. This gives us a direct map between the original
terminal where a process was spawned compared to the one it is targeting.
Figure 21 shows the output of linuz_tiocsti against a memory sample with our
TIOCSTI-based keylogger active.

$ python vol.py ... linux_tty_handles
Volatility Foundation Volatility Framework 2.6
Name Pid FD My Console Handle Console

python 7997 3 ptse@ /dev/pts/1

$ python vol.py ... linux_psaux -p 7997
Volatility Foundation Volatility Framework 2.6
Pid Uid Gid Arguments

7997 @ @ python ssh_keylogger.py

Figure 21: Detecting Device Input Monitoring Processes

As shown, the Python process running the keylogger (PID 7997) was spawned
on /dev/pts/0 but its 3rd file descriptor is open to /dev/pts/1, which was the
terminal of our victim ssh session. We also show the output of linur_psaux as
that lists the name of the script and not just the Python interpreter. With
this new plugin, investigators can automatically discover the abuse of TIOCSTI
within Linux memory samples.

8 macOS - CGEventCreate

The most popular method for keylogging on macOS systems is through creating
Event Taps [27].

8.1 Background

macOS Event Taps allow an application to receive a callback notification whenever
a monitored hardware device is used, such as a keystroke on a keyboard or a
mouse click. Given the power these have on the system, they are commonly
abused by malware for keylogging and other malicious purposes. ReiKey from
Objective See is a free tool to detect when event taps are registered on a live
system and is highly recommend for use on production macOS systems given
how frequently this API is abused by malware [28].

22

Event taps are registered through the CGEventTapCreate API [29]. The
API requires several arguments, but the most important are the callback lo-
cation, which specifies the callback to activated when events of interest fire,
and eventsOfInterest, which specifies which events the particular callback is
interested. These include a number of methods to monitor the keyboard, mouse,
and touchpad.

8.2 Internals

The mechanism for tracking device events and monitors is much different in
macOS than Linux and Windows. This is because the macOS the kernel, znu,
was originally designed as a microkernel, which puts many of the core subsystems
that would be in the kernel on Windows/Linux into userland processes on macOS.
It also means that the kernel performs a significant amount of time passing
data back and forth between processes (interprocess communication, IPC) since
processes cannot directly read/write to each other. The kernel also enforces
security boundaries at this layer to ensure processes have the correct privileges
to perform requested operations. While analyzing modern versions of macOS,
we determined that the subsystem that controls event taps is the SkyLight
Framework.

A process that wishes to register event taps must load SkyLight into its
address space before it can call CGEventTapCreate and related functions. This
call first leads to SLFEventTapCreate being called. The CG of CGFEventTapCreate
stands for Core Graphics as this was the predecessor framework to SkyLight and
the original function name is kept for backwards compatibility. In our testing,
we discovered that nearly all CG* functions have a counterpart SL* functions
inside of SkyLight and the CG functions are now just wrappers.

SLEventTapCreate leads to event_tap_create being executed, which performs
the real work of creating the tap. To our knowledge, there is no online docu-
mentation that explains how taps work internally, so we set out to understand
this implementation. After sanity checking arguments, event_tap_create registers
a Mach port with eventTapMessageHandler as the callback [30].

Figure 22 shows this registration as well as the eventual call to CGSPlaceTap.

23

v12 = malloc(@x10ulLL);

v13 = calloc(lulLL, @x40ull);
*yl2 = 9x100000000LL ;

v12[1] = v13;

v13[1] = al;
v24 = a4d;
v13[2] = a4;

*((_QWORD *)v13 + 3) = callback location;

*((_QWORD *)v13 + 4) = a7;

context.version = @LL;

context,copyDescription = @LL;

context.info = v12;

context.retain = (const void *(__ cdecl *)(const void *))retainTapProxy;
context.release = (void (_ cdecl *)(const void *))releaseTapProxy;

v14 = CFMachPortCreate(@LL, eventTapMessageHandler, &context, @LL);

if (viga)

free(vi3);
free(vi2);
return OLL;
¥
v7 = vl4;
limit_port_queue(vi14);
v23 = -1431655766;
v15 = CGSEventServerPort();

v16 = CFMachPortGetPort(v7);
vl7 = v15;
vl8 = v24;

v19 = CGSPlaceTap(v17, v16, al, v27, v26, v24, a5, v13, &v23);
Figure 22: event_tap_create registering a Mach port and task

As the figure illustrates, the callback location and other parameters to
CGPEventTapCreate are stored within a context variable. This is then passed
to CFMachPortCreate to associate the event tap with a Mach port that can be
referenced across processes. This Mach port plus the other tap information is
then passed to CGSPlaceTap to actually install the event tap. Figure 23 shows
the relevant portion of this function, in particular that it essentially exists to
format its received parameters in the form that mach_msg expects and then
sending this data to mach_msg.

24

msg.msgh size = -1431655766;

vld = 1;

vl5 = a2 | BxAAAAAAAAPRERAROBLL ;
vlt = 1288874,

v1l7 = NDR_record;

v18 = a3;
vld = a4d;
v20 = ab;
v21 = a6;
v22 = al;
msg.msgh bits = -2147478253; I

msg.msgh remote port = al;

v9 = mig_get reply port();

msg.msgh local port = v9;

*(_OWORD *)&msg.msgh _voucher port = 0x743B0000000ALL ;
if (& voucher_mach _msg set)

{

voucher_mach_msg set(&msg);
v9 = msg.msgh_local port;

}
v10 = mach msg(&msg, 3, O0x44u, Ox34u, v9, 0, 0);

Figure 23: CGSPlaceTap calling mach_msg

mach_msg is a system call used to pass data between Mach ports. To continue
investigating the internals of event taps, we needed to find the other end of this
IPC call. Our previous knowledge of macOS combined with online searches for
confirmation, which brought us to resources such as [31], led us to believe that
the WindowServer application would be the final destination of these calls.

We then examined this binary in IDA and realized that it is a thin wrapper
to daemonize many of the capabilities of SkyLight. We then reexamined the
list of functions contained in the SkyLight library and saw that many of the
CG* and SL* functions had counterparts that started with _X followed by the
original function name. Further work in IDA confirmed that these are the server
side components that handle the IPC messages from calling applications.

Figure 24 shows a portion of _XPlaceTap, which is the server side component
of CGSPlaceTap used inside of the WindowServer process.

25

new CGXEventTap = calloc(lullL, @xCEuLL);
if ((v4)

*((_QWORD *)new CGXEventTap + 2) = *(QWORD *)(__sessionControlRef + 32);
*((_DWORD *)}new CGXEventTap + 6) = v30;

*((_DWORD *)new CGXEventTap + 7) = v31;

*((_DWORD *)new CGXEventTap + 8) = generate new tap id();
*((_DWORD *)new CGXEventTap + 9) = v4;

*((_DWORD *)new CGXEventTap + 10) = v32;

*((_QWORD *)new CGXEventTap + 6) = v36;

*((_DWORD *)new CGXEventTap + 46) = v33;

*(_DWORD *)(a2 + 48) = v36;
*((_DWORD *)}new CGXEventTap + 14) = name;
*((_QWORD *)new CGXEventTap + 15) = (v11 << 32) | v34;
if ((v32 &1) 1=0)
{

*(OWORD *)v39.val = v29;

*(_OWORD *)&v39.val[4] = v8;

*(_OWORD *)&v28.val[4] = v8;

*(_OWORD *)v28.val = v29;

v15 = WSAuditTokenCanMonitorEvents(v2g8) * 1;
¥

else
{
vls = 8;
)
*((_BYTE *)new_ CGXEventTap + 128) = v15;
*((_DWORD *)new CGXEventTap + 43) = 0;
*((_BYTE *)new CGXEventTap + 188) = glastAllTapslLoggingEnabledSetting;
*((_QWORD *)new CGXEventTap + 1) = sCGXEventTapMasterlList;
sCGXEventTapMasterList = (CGXEventTap *)new CGXEventTap;

Figure 24: _XPlaceTap creating a new event tap structure

In this figure, a new data structure, of type CGXFEventTap is being allocated
to store the information passed from the previous mach_msg call. Note that
we renamed the data structure to new_CGXFEventTap so that it was easier to
follow the IDA decompiler output. After the data structure is populated, it can
be seen on the last line of the figure that the sCGXFEventTapMasterList global
variable is being set to the address of the new tap. Finding this function and
understanding its code resulted in two benefits. First, we used this to determine
the offsets of data structure members that our plugin would need to retrieve
inside of CGXFEventTap. Thankfully, the offsets of the members of interest did
not change across the macOS versions we tested. The second benefit to this
function was the discovery of the sCGXFEventTapMasterList global variable, as
we realized it was likely the data structure inside of the WindowServer process
that stored all event taps for all processes.

We then used IDA’s cross-referencing capabilities to see where else this
variable was used. This led us to _XGetFventTapList, which is the server side
handler for CGGetEventTapList [32]. This was very encouraging as we knew this
API is what allows tools, such as ReiKey, to enumerate event tap handlers on a
system. Analysis of this function confirmed to us that the global variable is used

26

to track all event taps, and that it stores pointers to all handlers contiguously in
memory. With this binary analysis effort complete, we were then able to devise
an algorithm for a Volatility plugin that could recover all event taps registered
on a system.

8.3 Volatility Support

Before our research, Volatility had no method to enumerate event taps for macOS
memory samples. After researching the internals of SkyLight, we developed the
mac_event_taps plugin to provide this capability to memory forensic analysts.
The plugin begins by finding the WindowServer process. It then locates the
sCGXFEventTapMasterList global variable and processes each pointer that it
references. Each of these pointers leads to a CGXFEventTap structure, and as
mentioned previosuly, our binary analysis effort led us to discover the relevant
offsets inside of this data structure.

For our POC, we used the very well written keylogger project by Casey
Scarborough [33]. This project uses CGFEventTapCreate to monitor Key Down
events on the keyboard. Figure 25 shows the portion of the keylogger that creates
the event tap and then attaches it to the process’ run loop.

// Create an event tap to retrieve keypresses.
CGEventMask eventMask = CGEventMaskBit(kCGEventKeyDown) | CGEventMaskBit(kCGEventFlagsChanged);
CFMachPortRef eventTap = CGEventTapCreate(
kCGSessionEventTap, kCGHeadInsertEventTap, @, eventMask, CGEventCallback, NULL
I}

/ Exit the program if unable to create the event tap

if (leventTap) {
fprintf(stderr, "ERROR: Unable to create event tap.\n");
exit(1);

/ Create a run loop source and add enable the event tap.
CFRunLoopSourceRef runLoopSource = CFMachPortCreateRunLoopSource (kCFAllocatorDefault, eventTap, @);
CFRunLoopAddSource (CFRunLoopGetCurrent(), runLoopSource, kCFRunLoopCommonModes);
CGEventTapEnable(eventTap, true);

Figure 25: Keylogger registering for Key Down events

Figure 26 shows the output of our new plugin against a memory sample with
this keylogger active.

27

$ python vol.py ... mac_event_taps
Volatility Foundation Volatility Framework 2.6
Tapping Process Tapping Pid Events of Interest

keylogger 958 keyDown, flagsChanged

Figure 26: mac_event_taps Detecting the Keylogger

As shown, through analysis of SkyLight and sCGXFventTapMasterList, our
plugin automatically discovers the keylogger’s tap and its registered events of
interest. With this new plugin, investigators can automatically discover all event
tapping malware present in macOS memory samples.

9 Conclusions

In this paper, we have presented a significant memory analysis research effort
that led to the creation of algorithms and Volatility plugins capable of detecting
the most widely abused userland device monitoring techniques across the three
most widely used operating systems. As widely documented in technical reports,
such malware techniques have been used across the world to target journalists
and opposition political figures as well as in espionage campaigns aimed at nation
states and corporations. Our research effort also included updating existing
memory forensics algorithms to support the latest Windows versions, as well as
development of completely new detection techniques for each of the three operat-
ing systems. Once included in the mainline Volatility Framework, investigators
across the field will be able to automatically discover device monitoring malware
across Windows, Linux, and macOS systems.

References

[1] CISA, “Mitigate Microsoft Exchange Server Vulnerabilities,” https://www.
cisa.gov/uscert/ncas/alerts/aa21-062a, 2021.

[2] —, “EMERGENCY DIRECTIVE 21-01- MITIGATE SOLARWINDS
ORION CODE COMPROMISE,” https://www.cisa.gov/emergency-directi
ve-21-01, 2021.

[3] Volexity, “Surge Collect Pro,” https://www.volexity.com/products-overvie
w/surge/, 2022.

[4] Elixir, “Elixir,” https://elixir.bootlin.com/], 2022.
[5] Apple, “Apple Open Source,” [https://opensource.apple.com], 2022.

[6] Volatility, “MoVP 3.1 Detecting Malware Hooks in the Windows GUI
Subsystem,” https://volatility-labs.blogspot.com/2012/09/movp-31-detec
ting-malware-hooks-in.html, 2012.

28

[7]

[10]

[11]

M. H. Ligh, A. Case, J. Levy, and A. Walters, The Art of Memory Forensics:
Detecting Malware and Threats in Windows, Linuz, and Mac Memory. New
York: Wiley, 2014.

T. M. Corporation, “Turla,” https://attack.mitre.org/groups/G0010/, 2018.

Microsoft, “LowLevelKeyboardProc callback function,” https:
//docs.microsoft.com/en-us/previous-versions/windows/desktop/le
gacy /ms644985(v=vs.85), 2022.

Geok Meng Ong, Chong Rong Hwa, “Pacific Ring of Fire: PlugX /
Kaba,” https://www.fireeye.com/blog/threat-research/2014/07 /pacific-rin
g-of-fire-plugx-kaba.html, 2014.

H. K. Chan, “VB2014 paper: Swipe away, we’re watching
you,” https://www.virusbulletin.com/virusbulletin/2015/04/paper-swipe
-away-we-re-watching-you, 2015.

Hod Gavriel, “HawkEye Malware Changes Keylogging Technique,”
https://www.cyberbit.com/blog/endpoint-security /hawkeye-malware-key
logging-technique/, 2019.

D. Web, “Study of the APT attacks on state institutions in Kazakhstan
and Kyrgyzstan,” https://st.drweb.com/static/new-www/news,/2020/july
/Study_of the_ APT _attacks_on_state_institutions_in_Kazakhstan_and_Kyr
gyzstan_en.pdf, 2020.

PTI TEAM, “OpBlueRaven: Unveiling Fin7/Carbanak - Part I : Tirion,”
https://threatintel.blog/OPBlueRaven-Part1/, 2020.

Profero, “Apt27 turns to ransomware,” https://shared-public-reports.s3-e
u-west- 1.amazonaws.com/APT27+turns+to+ransomware.pdf, 2020.

Mike G. P.Mee, “Minimal Key Logger Using RAWINPUT,” https://www.co
deproject.com/Articles/297312/Minimal-Key-Logger-using- RAWINPUT,
2012.

Eye of Ra, “Windows Keylogger Part 2: Defense against user-
land,” https://eyeofrablog.wordpress.com/2017,/06/27 /windows-keylogger
-part-2-defense-against-user-land/, 2017.

debojit, “Spying on ssh password using strace,” https://medium.com/@de
boj88/spaying-on-ssh-password-using-strace-7465edefabcc, 2018.

RedHat, “4.15. DISABLING PTRACE(),” https://access.redhat.com/docu
mentation/en-us/red hat_enterprise_linux/7/html/selinux_users_and_adm
inistrators_guide/sect-security-enhanced_linux-working_with_selinux-disab
le_ptrace, 2022.

29

[20]

[21]

22]

CISA, “LIMITING PTRACE ON PRODUCTION LINUX SYSTEMS,”
https://media.defense.gov/2019/Jul/16,/2002158062/-1/-1/0/CSI-LIMIT
ING-PTRACE-ON-PRODUCTION-LINUX-SYSTEMS.PDF, 2022.

Linux, “The Linux Input Documentation,” https://www.kernel.org/doc/h
tml/v4.14/input/index.html, 2022.

——, “Linux Input Subsystem userspace API,” https://www.kernel.org/d
oc/html/latest/input/input_uapi.html, 2022.

kernc, “logkeys,” https://github.com/kernc/logkeys, 2022.

QNX, “TIOCSTIL,” https://www.qnx.com/developers/docs/7.0.0/#com.q
nx.doc.neutrino.devctl/topic/tioc/tiocsti.html, 2022.

Simon Ruderich, “su/sudo from root to another user allows TTY hijacking
and arbitrary code execution,” https://ruderich.org/simon/notes/su-sudo-f
rom-root-tty-hijacking, 2021.

brynet, “On the Insecurity of TIOCSTL,” https://undeadly.org/cgi?actio
n=article;sid=20170701132619, 2017.

Apple, “Quartz Event Services,” https://developer.apple.com/documentat
ion/coregraphics/quartz_event_services, 2022.

Patrick Wardle, “ReiKey,” https://objective-see.com/products/reikey.html,
2022.

Apple, “CGEventTapCreate,” https://developer.apple.com/documentation/
coregraphics/1454426-cgeventtapcreate, 2022.

——, “CFMachPortCreate,” https://developer.apple.com/documentation/
corefoundation/1400934-cfmachportcreate, 2022.

hoakley, “WindowServer: display compositor and input event
router,” https://eclecticlight.co/2020/06/08 /windowserver-display-compo
sitor-and-input-event-router/, 2022.

Apple, “CGGetEventTapList,” https://developer.apple.com/documentatio
n/coregraphics/1455395-cggeteventtaplist, 2022.

Casey Scarborough, “macOS Keylogger,” https://github.com/caseyscarbo
rough/keylogger, 2022.

30

