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Context and threat model

e Critical CVEs are regularly discovered in the Linux Kernel

e Security administrators worry about:
o Keeping up with security updates
o Deploying security patches
o Monitoring & protecting vulnerable hosts

Google

Q. ebpf verifieq X

(=

O, ebpf verifier
O, ebpf verifier exploit
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Context and threat model

e Hundreds of ways to exploit the Linux kernel

e This talk targets 3 types of vulnerabilities:
o Execution flow redirections
o Logic bugs
o Post compromise kernel runtime alterations

The goal is to detect (and prevent ?) these attacks with eBPF
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Context and threat model

e Hundreds of ways to exploit the Linux kernel

e This talk targets 3 types of vulnerabilities:
o Execution flow redirections
o Logic bugs
o Post compromise kernel runtime alterations

Hregoatstodetect{andprevent-theseattacks with eBPF
Make attackers’ lives a living hell
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What is eBPF ?

e Run sandboxed programs in the Linux kernel

_____________________________________________________________________________________________________________

prog.c LLVM

_____________________

_____________________

User space

Kernel space

"

Loaded eBPF
programs

- multiple syscalls

'Setup the program to '
: trigger on the
‘requested hook point

Privileged process




Why eBPF'?

e Relatively wide kernel support (4.1 +) depending on eBPF
features

e System safety and stability insurances
e Rich feature set with easy to use introspection capabilities

e Some write access and enforcement capabilities

Blackhat 2022 8



Why Sorr \?

M/Ay ic this a terrible idea ?

e Detecting post compromise activity is fighting a lost battle
e There are dozens of ways to disable an eBPF program
e eBPF can have a significant in kernel performance impact

So what'c the point ?

e Script kiddies and OOTB rootkits
e Make it harder to exploit a flaw

e Detecting & blocking pre-compromise is sometimes possible
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Kernel
Runtime
Integrity

with eBPF
(KRle)

e Open source project
e No ARM support (yet)

e Compatible with at least
kernels 4.15+ to now

e First version released today !

https://github.com/Gui774ume/krie
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KRle: SMEP & SMAP on a budget

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

e Textbook use case for Return Object Programming (ROP)
attacks

e Privilege escalation attacks
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KRle: SMEP & SMAP on a budget

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

Kernel Executable code User space memory

Addresses Bytecode Addresses Bytecode
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KRle: SMEP & SMAP on a budget

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

Kernel Executable code User space memory

Addresses Bytecode Addresses Bytecode

[@stack_pivot] | xchg esp, eax ; ret

Attacker _\)

Jumpg to
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KRle: SMEP & SMAP on a budget

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

Kernel Executable code User space memory
Addresses Bytecode Addresses Bytecode
[@stack_pivot] | xchg esp, eax ; ret | [@rop_chain] @gadget_1
Attacker : [@rop_chain+8] 0x42
_\) gtacé Pwof [@rop_chain+16] @kernel_func

Jumpg to
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KRle: SMEP & SMAP on a budget

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

Kernel Executable code User space memory
Addresses Bytecode Addresses Bytecode
[@stack_pivot] | xchg esp, eax ; ret | [@rop_chain] @gadget_1
Attacker . 4| [@rop_chain+8] 0x42
. -\) gtacé 'bwof [@rop_chain+16] @kernel_func
Jumpg to - L —
[o) / y . »
[@kernel_func] | push %rbp Execute a kernel function with
attacker controlled parameters
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KRle: SMEP & SMAP on a budget

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

Kernel Executable code User space memory

Addresses Bytecode Addresses Bytecode

______________________________________ —

[@stack_pivot] | xchg esp, eax ; ret

/lttacéer_\) Stack pivot
Jumpg to

[@kernel_func] | push %rbp /VOt POS'S’;b/e
with SMAP
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KRle: SMEP & SMAP on a budget

e SMEP would have prevented the CPU from executing code
in user space executable memory

e Our example ROP chain will eventually call:
commlit creds (prepare kernel cred(0))

What can we do for machines without SMEP / SMAP ?
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KRle: SMEP & SMAP on a budget

-> Place a BPF PROG TYPE KPROBE on
“prepare_kernel_cred” and check if the Stack pointer /
Frame pointer / Instruction pointer registers point to user
space memory

Demo

(Ubuntu Bionic 18.04 - Kernel 4.15.0-189-generic - SMAP disabled)
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KRle: SMEP & SMAP on a budget

e On a budget because:
o Need to hook “all the functions called by exploits”
o Blocking mode only works on 5.3+ kernels

o An attacker will try to prevent our kprobe from firing ...
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KRle: SMEP & SMAP on a budget

e So .. how can one disable a kprobe ?
o echo 0 > /sys/kernel/debug/kprobes/enabled
O sysctl kernel.ftrace enabled=0

o By killing the user space process that loaded the kprobe
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KRle: SMEP & SMAP on a budget

e So .. how can one disable a kprobe ?
o echo 0 > /sys/kernel/debug/kprobes/enabled
O sysctl kernel.ftrace enabled=0

o By killing the user space process that loaded the kprobe

-> Let's booby trap everything &
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KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

e Global switch that disarms all kprobes on a machine
e The ROP chain can be updated to call

write enabled file bool (NULL, “0”, 1, NULL)
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KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

e Global switch that disarms all kprobes on a machine
e The ROP chain can be updated to call

write enabled file bool (NULL, “0”, 1, NULL)

-> Let's put a kprobe on it &
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KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

e Even when enabled, a kprobe can still be bypassed:

@write_enabled_file_bool - No kprobe

@write_enabled_file_bool - With a kprobe

0x0:
Ox5:
0x6:
0x9:
Oxb:
Oxd:

nop dword ptr [...]
push srbp

mov srsp, srbp
push srld

push srl3

push srl2

0x0:
0x5:
0x6:
0x9:
Oxb:
Oxd:

callq
push
mov
push
push
push

Oxffffff£f£f81a0lcfO
srbp

srsp, srbp

srld

srl3

srl2

Blackhat 2022
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KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

e Even when enabled, a kprobe can still be bypassed:

@write_enabled_file_bool - No kprobe @write_enabled_file_bool - With a kprobe
0x0: nop dword ptr [...] O0x0: callg Oxffffffff81al0lcfOl
0x5: push srbp _» 0x5: push srbp

0x6: mov srsp, srbp ]amp Agke 0x6: mov srsp, srbp

0x9: push srl4 0x9: push srld

Oxb: push  %ril3 with the ROP | oxv: push  sr13

Oxd: push srl2 . Oxd: push srl2

chain
Blackhat 2022
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KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

-> Booby trap the function at random offsets &

@write_enabled_file_bool - No kprobe @write_enabled_file_bool - With kprobe(s)
0x0: nop dword ptr [...] O0x0: callg Oxffffffff81al0lcfOl
Ox5: push srbp Ox5: push Srbp
0x6: mov srsp, 3rbp Ox6: callg Oxffffffff81al0lcfOl
0x9: push rld Oxb: push $rl3
Oxb: push $rl3 Oxd: callg Oxffffffff81al0lcfO
Oxd: push srl2

Blackhat 2022
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KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

e “write enabled file bool” writes 0 or 1 to a global
variable called “kprobes all disarmed”

e An attacker could try to write 1 to it directly
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KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

e “write enabled file bool” writes 0 or 1 to a global
variable called “kprobes all disarmed”

e An attacker could try to write 1 to it directly

- Wecanuse a BPF PROG TYPE PERF EVENT program to
periodically check the values of all sensitive kernel
parameters %

Blackhat 2022
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KRle: Kernel security configuration

2) sysctl kernel.ftrace enabled=0

e There is an eBPF program type dedicated to monitoring and
enforcing sysctl commands:

BPF PROG TYPE CGROUP SYSCTL (kernels 5.2+)

e (Almost) all sysctl parameters are checked by KRle's
periodical check

Blackhat 2022 29



KRle: Kernel runtime alterations

Scenario 2: the attacker is root on the machine and wants to persist its
access by modifying the kernel runtime

e Insert arogue kernel module
e Hook syscalls to hide their tracks
o Using kprobes
o By hooking the syscall table directly

e BPF filters are used to silently capture network traffic

e eBPF programs can also be used to implement rootkits
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https://github.com/Gui774ume/ebpfkit

KRle: Kernel runtime alterations

Scenario 2: the attacker is root on the machine and wants to persist its
access by modifying the kernel runtime

-> KRle monitors;:

\ 4

All bpf() operations and insertion of BPF filters
Kernel module load / deletion events
K(ret)probe registration / deletion / enable / disable / disarm events

Ptrace events

® 6 0 0

Sysctl commands

4

Execution of hooked syscalls .. and more to come !
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KRle: Kernel runtime alterations

-> All syscall tables are checked periodically with the
BPF PROG TYPE PERF EVENT program trick

-> KRle is also able to detect and report when a process
executes a hooked syscall

Demo

(Ubuntu Jammy 22.04 - Kernel 5.15.0-43-generic)
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KRle: Control flow Integrity (CFl)

e Locks down the execution flows in the kernel by controlling
call sites at runtime

e Usually added at compile time or implemented in hardware
e CFlis a great way to prevent ROP attacks

e These features aren’t always available; specifically the
hardware ones
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KRle: Control flow Integrity (CFl)

-> KRIle locks down jumps between control points
-> Both hook points and parameters are checked

______

Kernel space

Blackhat 2022

—————————————————————

............... . KRIE CFl state

l : machine i ‘

- . . ; + Function that accesses a !
- Linux Security - ! *
> i ————————»'  resource or execute a
. Module interface ! e ]
sensitive operation
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KRle: Control flow Integrity (CFl)

The goal:

e Catch malicious calls to sensitive functions (via ROP)
e Detect logic bugs, specifically for access rights

But;

e Tedious process
e Hook points limitations

Blackhat 2022 35



KRle: Enforcement

e KRIe enables blocking features when available:
o bpf override return helper (4.16+)
o BPF PROG TYPE CGROUP SYSCTL programs (5.2+)
o bpf send signal helper (5.3+)
o LSM programs (5.7+)

e Every detection is configurable:

o Log

o Block

o Kill

o Paranoid
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Performance

e Linux kernel compilation time

User space CPU time

Kernel space CPU time

Total elapsed time

Without KRle 4,320s 88% 568s 12% 59:53.14
mtfgaﬁe':) 4,517s 68% 2,097s 32% 8:15.76
+4.5% +270% +40%
Y!yi:?alil(:?c!:k 4,380s 88% 585s 12% 5:58.36
ek [y +3% +1%

Blackhat 2022

(Benchmark run on a 5.15.0 kernel, 11th Gen Intel(R) Core(TM) i9-11950H @ 2.60GHz, 32GB of RAM, average on 10 iterations)
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Thanks

Powerful defensive tools can be implemented with eBPF
eBPF is not reallythe ideal technology to detect kernel

exploits
KRle is realistically a\ast resort, not a bulletproof strategy

https.//github.com/Gui774ume/krie
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KRle: Control flow Integrity (CFl)

eentry SYSCALL_64_after_hwframe

/do_syscall_64]
__X64_SYS_EXECVE | (cmomemn] (omion) (ot

X

'do_execveat_common.isra.0

(securily_lask_nrcﬂ)
e

(DprmM_execve| (ommmmmm) [ omome
| \
‘exec_binprm —
N |
load_elf_binary e
\ commit_creds
hits:301617
avg_latency:0s

Kernel stack traces to commit creds

Graph generated with utrace:
https://github.com/Gui774ume/utrace



KRle: real world rootkits

e Syscall hooking method:

o croemheld/Ikm-rootkit
Quokkal.ight/rkduck
mOnad/Diamorphine
Eternal/puszek-rootkit
reveng007/reveng_rtkit
e Kprobe / Ftrace hooking method:

o h3xduck/Umbra
e eBPF / BPF filters methods:

o Gui774ume/ebpfkit

o pathtofile/bad-bpf

o h3xduck/TripleCross

o O O O

.. and many others !


https://github.com/croemheld/lkm-rootkit
https://github.com/QuokkaLight/rkduck
https://github.com/m0nad/Diamorphine
https://github.com/Eterna1/puszek-rootkit
https://github.com/reveng007/reveng_rtkit
https://github.com/h3xduck/Umbra
https://github.com/Gui774ume/ebpfkit
https://github.com/pathtofile/bad-bpf
https://github.com/h3xduck/TripleCross

