Return to sender

Detecting\kernel exploits with eBPF

Guillaume Fournier
August 2022

blgc’zk hat

&

USA =0== DATADOG

Guillaume Fournier

Senior Security Engineer @Datadog
gui774ume.fournier@gmail.com

Blackhat 2022

e Cloud Workload Security (CWS)

e |everage eBPF to detect threats
e Embedded in the Datadog Agent

Agenda

Context and threat model
Why eBPF ?

KRle

SMEP & SMAP on a budget
Kernel security configuration
Kernel runtime alterations
Control flow integrity
Enforcement

Performance

Context and threat model

e Critical CVEs are regularly discovered in the Linux Kernel

e Security administrators worry about:
o Keeping up with security updates
o Deploying security patches
o Monitoring & protecting vulnerable hosts

Google

Q. ebpf verifieq X

(=

O, ebpf verifier
O, ebpf verifier exploit

BlaCkhat 2022 Q. linux ebpf verifier 4

Context and threat model

e Hundreds of ways to exploit the Linux kernel

e This talk targets 3 types of vulnerabilities:
o Execution flow redirections
o Logic bugs
o Post compromise kernel runtime alterations

The goal is to detect (and prevent ?) these attacks with eBPF

Blackhat 2022 5

Context and threat model

e Hundreds of ways to exploit the Linux kernel

e This talk targets 3 types of vulnerabilities:
o Execution flow redirections
o Logic bugs
o Post compromise kernel runtime alterations

Hregoatstodetect{andprevent-theseattacks with eBPF
Make attackers’ lives a living hell

Blackhat 2022 6

Blackhat 2022

What is eBPF ?

e Run sandboxed programs in the Linux kernel

prog.c LLVM

User space

Kernel space

"

Loaded eBPF
programs

- multiple syscalls

'Setup the program to '
: trigger on the
‘requested hook point

Privileged process

Why eBPF'?

e Relatively wide kernel support (4.1 +) depending on eBPF
features

e System safety and stability insurances
e Rich feature set with easy to use introspection capabilities

e Some write access and enforcement capabilities

Blackhat 2022 8

Why Sorr \?

M/Ay ic this a terrible idea ?

e Detecting post compromise activity is fighting a lost battle
e There are dozens of ways to disable an eBPF program
e eBPF can have a significant in kernel performance impact

So what'c the point ?

e Script kiddies and OOTB rootkits
e Make it harder to exploit a flaw

e Detecting & blocking pre-compromise is sometimes possible

Blackhat 2022

Kernel
Runtime
Integrity

with eBPF
(KRle)

e Open source project
e No ARM support (yet)

e Compatible with at least
kernels 4.15+ to now

e First version released today !

https://github.com/Gui774ume/krie

10

KRle: SMEP & SMAP on a budget

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

e Textbook use case for Return Object Programming (ROP)
attacks

e Privilege escalation attacks

Blackhat 2022 11

KRle: SMEP & SMAP on a budget

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

Kernel Executable code User space memory

Addresses Bytecode Addresses Bytecode

Blackhat 2022 12

KRle: SMEP & SMAP on a budget

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

Kernel Executable code User space memory

Addresses Bytecode Addresses Bytecode

[@stack_pivot] | xchg esp, eax ; ret

Attacker _\)

Jumpg to

Blackhat 2022 13

KRle: SMEP & SMAP on a budget

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

Kernel Executable code User space memory
Addresses Bytecode Addresses Bytecode
[@stack_pivot] | xchg esp, eax ; ret | [@rop_chain] @gadget_1
Attacker : [@rop_chain+8] 0x42
_\) gtacé Pwof [@rop_chain+16] @kernel_func

Jumpg to

Blackhat 2022 14

KRle: SMEP & SMAP on a budget

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

Kernel Executable code User space memory
Addresses Bytecode Addresses Bytecode
[@stack_pivot] | xchg esp, eax ; ret | [@rop_chain] @gadget_1
Attacker . 4| [@rop_chain+8] 0x42
. -\) gtacé 'bwof [@rop_chain+16] @kernel_func
Jumpg to - L —
[o) / y . »
[@kernel_func] | push %rbp Execute a kernel function with
attacker controlled parameters

Blackhat 2022 15

KRle: SMEP & SMAP on a budget

Scenario 1: the attacker controls the address of the next instruction
executed by the kernel

Kernel Executable code User space memory

Addresses Bytecode Addresses Bytecode

______________________________________ —

[@stack_pivot] | xchg esp, eax ; ret

/lttacéer_\) Stack pivot
Jumpg to

[@kernel_func] | push %rbp /VOt POS'S’;b/e
with SMAP

Blackhat 2022 16

KRle: SMEP & SMAP on a budget

e SMEP would have prevented the CPU from executing code
in user space executable memory

e Our example ROP chain will eventually call:
commlit creds (prepare kernel cred(0))

What can we do for machines without SMEP / SMAP ?

Blackhat 2022 17

KRle: SMEP & SMAP on a budget

-> Place a BPF PROG TYPE KPROBE on
“prepare_kernel_cred” and check if the Stack pointer /
Frame pointer / Instruction pointer registers point to user
space memory

Demo

(Ubuntu Bionic 18.04 - Kernel 4.15.0-189-generic - SMAP disabled)

Blackhat 2022 18

KRle: SMEP & SMAP on a budget

e On a budget because:
o Need to hook “all the functions called by exploits”
o Blocking mode only works on 5.3+ kernels

o An attacker will try to prevent our kprobe from firing ...

Blackhat 2022 19

KRle: SMEP & SMAP on a budget

e So .. how can one disable a kprobe ?
o echo 0 > /sys/kernel/debug/kprobes/enabled
O sysctl kernel.ftrace enabled=0

o By killing the user space process that loaded the kprobe

Blackhat 2022 20

KRle: SMEP & SMAP on a budget

e So .. how can one disable a kprobe ?
o echo 0 > /sys/kernel/debug/kprobes/enabled
O sysctl kernel.ftrace enabled=0

o By killing the user space process that loaded the kprobe

-> Let's booby trap everything &

Blackhat 2022 21

KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

e Global switch that disarms all kprobes on a machine
e The ROP chain can be updated to call

write enabled file bool (NULL, “0”, 1, NULL)

Blackhat 2022 22

KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

e Global switch that disarms all kprobes on a machine
e The ROP chain can be updated to call

write enabled file bool (NULL, “0”, 1, NULL)

-> Let's put a kprobe on it &

Blackhat 2022 23

KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

e Even when enabled, a kprobe can still be bypassed:

@write_enabled_file_bool - No kprobe

@write_enabled_file_bool - With a kprobe

0x0:
Ox5:
0x6:
0x9:
Oxb:
Oxd:

nop dword ptr [...]
push srbp

mov srsp, srbp
push srld

push srl3

push srl2

0x0:
0x5:
0x6:
0x9:
Oxb:
Oxd:

callq
push
mov
push
push
push

Oxffffff£f£f81a0lcfO
srbp

srsp, srbp

srld

srl3

srl2

Blackhat 2022

24

KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

e Even when enabled, a kprobe can still be bypassed:

@write_enabled_file_bool - No kprobe @write_enabled_file_bool - With a kprobe
0x0: nop dword ptr [...] O0x0: callg Oxffffffff81al0lcfOl
0x5: push srbp _» 0x5: push srbp

0x6: mov srsp, srbp]amp Agke 0x6: mov srsp, srbp

0x9: push srl4 0x9: push srld

Oxb: push %ril3 with the ROP | oxv: push sr13

Oxd: push srl2 . Oxd: push srl2

chain
Blackhat 2022

25

KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

-> Booby trap the function at random offsets &

@write_enabled_file_bool - No kprobe @write_enabled_file_bool - With kprobe(s)
0x0: nop dword ptr [...] O0x0: callg Oxffffffff81al0lcfOl
Ox5: push srbp Ox5: push Srbp
0x6: mov srsp, 3rbp Ox6: callg Oxffffffff81al0lcfOl
0x9: push rld Oxb: push $rl3
Oxb: push $rl3 Oxd: callg Oxffffffff81al0lcfO
Oxd: push srl2

Blackhat 2022

26

KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

e “write enabled file bool” writes 0 or 1 to a global
variable called “kprobes all disarmed”

e An attacker could try to write 1 to it directly

Blackhat 2022 27

KRle: Kernel security configuration

1) echo 0 > /sys/kernel/debug/kprobes/enabled

e “write enabled file bool” writes 0 or 1 to a global
variable called “kprobes all disarmed”

e An attacker could try to write 1 to it directly

- Wecanuse a BPF PROG TYPE PERF EVENT program to
periodically check the values of all sensitive kernel
parameters %

Blackhat 2022

28

KRle: Kernel security configuration

2) sysctl kernel.ftrace enabled=0

e There is an eBPF program type dedicated to monitoring and
enforcing sysctl commands:

BPF PROG TYPE CGROUP SYSCTL (kernels 5.2+)

e (Almost) all sysctl parameters are checked by KRle's
periodical check

Blackhat 2022 29

KRle: Kernel runtime alterations

Scenario 2: the attacker is root on the machine and wants to persist its
access by modifying the kernel runtime

e Insert arogue kernel module
e Hook syscalls to hide their tracks
o Using kprobes
o By hooking the syscall table directly

e BPF filters are used to silently capture network traffic

e eBPF programs can also be used to implement rootkits

Blackhat 2022 30

https://github.com/Gui774ume/ebpfkit

KRle: Kernel runtime alterations

Scenario 2: the attacker is root on the machine and wants to persist its
access by modifying the kernel runtime

-> KRle monitors;:

\ 4

All bpf() operations and insertion of BPF filters
Kernel module load / deletion events
K(ret)probe registration / deletion / enable / disable / disarm events

Ptrace events

® 6 0 0

Sysctl commands

4

Execution of hooked syscalls .. and more to come !
Blackhat 2022 31

KRle: Kernel runtime alterations

-> All syscall tables are checked periodically with the
BPF PROG TYPE PERF EVENT program trick

-> KRle is also able to detect and report when a process
executes a hooked syscall

Demo

(Ubuntu Jammy 22.04 - Kernel 5.15.0-43-generic)

Blackhat 2022 32

KRle: Control flow Integrity (CFl)

e Locks down the execution flows in the kernel by controlling
call sites at runtime

e Usually added at compile time or implemented in hardware
e CFlis a great way to prevent ROP attacks

e These features aren’t always available; specifically the
hardware ones

Blackhat 2022 33

KRle: Control flow Integrity (CFl)

-> KRIle locks down jumps between control points
-> Both hook points and parameters are checked

Kernel space

Blackhat 2022

—————————————————————

............... . KRIE CFl state

l : machine i ‘

- . . ; + Function that accesses a !
- Linux Security - ! *
> i ————————»' resource or execute a
. Module interface ! e]
sensitive operation

34

KRle: Control flow Integrity (CFl)

The goal:

e Catch malicious calls to sensitive functions (via ROP)
e Detect logic bugs, specifically for access rights

But;

e Tedious process
e Hook points limitations

Blackhat 2022 35

KRle: Enforcement

e KRIe enables blocking features when available:
o bpf override return helper (4.16+)
o BPF PROG TYPE CGROUP SYSCTL programs (5.2+)
o bpf send signal helper (5.3+)
o LSM programs (5.7+)

e Every detection is configurable:

o Log

o Block

o Kill

o Paranoid

Blackhat 2022 36

Performance

e Linux kernel compilation time

User space CPU time

Kernel space CPU time

Total elapsed time

Without KRle 4,320s 88% 568s 12% 59:53.14
mtfgaﬁe':) 4,517s 68% 2,097s 32% 8:15.76
+4.5% +270% +40%
Y!yi:?alil(:?c!:k 4,380s 88% 585s 12% 5:58.36
ek [y +3% +1%

Blackhat 2022

(Benchmark run on a 5.15.0 kernel, 11th Gen Intel(R) Core(TM) i9-11950H @ 2.60GHz, 32GB of RAM, average on 10 iterations)

37

Thanks

Powerful defensive tools can be implemented with eBPF
eBPF is not reallythe ideal technology to detect kernel

exploits
KRle is realistically a\ast resort, not a bulletproof strategy

https.//github.com/Gui774ume/krie

blgc’:k hat

&

UsA === DATADOG

38

KRle: Control flow Integrity (CFl)

eentry SYSCALL_64_after_hwframe

/do_syscall_64]
__X64_SYS_EXECVE | (cmomemn] (omion) (ot

X

'do_execveat_common.isra.0

(securily_lask_nrcﬂ)
e

(DprmM_execve| (ommmmmm) [omome
| \
‘exec_binprm —
N |
load_elf_binary e
\ commit_creds
hits:301617
avg_latency:0s

Kernel stack traces to commit creds

Graph generated with utrace:
https://github.com/Gui774ume/utrace

KRle: real world rootkits

e Syscall hooking method:

o croemheld/Ikm-rootkit
Quokkal.ight/rkduck
mOnad/Diamorphine
Eternal/puszek-rootkit
reveng007/reveng_rtkit
e Kprobe / Ftrace hooking method:

o h3xduck/Umbra
e eBPF / BPF filters methods:

o Gui774ume/ebpfkit

o pathtofile/bad-bpf

o h3xduck/TripleCross

o O O O

.. and many others !

https://github.com/croemheld/lkm-rootkit
https://github.com/QuokkaLight/rkduck
https://github.com/m0nad/Diamorphine
https://github.com/Eterna1/puszek-rootkit
https://github.com/reveng007/reveng_rtkit
https://github.com/h3xduck/Umbra
https://github.com/Gui774ume/ebpfkit
https://github.com/pathtofile/bad-bpf
https://github.com/h3xduck/TripleCross

