
#BHUSA @BlackHatEvents

Google Reimagined a Phone. It’s Our Job to
Red Team & Secure it

Xuan
Xing

Eugene
Rodionov

Christopher
Cole

Farzan
Karimi

#BHUSA @BlackHatEvents
Information Classification: General

● Who We Are
● What’s Our Scope
● How We Help Secure Android & Pixel
● Pixel 6 Attack Surface
● Proof of Concept Deep Dives

○ Titan M2
○ Android Bootloader

● Concluding Thoughts

Agenda

Agenda

[Everything in this presentation has been fixed]

#BHUSA @BlackHatEvents

Who We Are

#BHUSA @BlackHatEvents
Information Classification: General

 Mission

We are the eyes of Android Security: Increase Pixel and Android security by attacking key
components and features, identifying critical vulnerabilities before adversaries

Offensive Security Reviews to verify (break) security assumptions

Scale through tool development (e.g. continuous fuzzing)

Android Red Team

Develop PoCs to demonstrate real-world impact

We hack ourselves to make it harder for others!

Assess the efficacy of security mitigations

#BHUSA @BlackHatEvents
Information Classification: General

What’s Our Scope?

#BHUSA @BlackHatEvents
Information Classification: General

Robust
Development

Practices

Compiler
Mitigations

New Platform
Mitigations

Vulnerability
Reward Programs

Hardware
Architecture

Reviews

Threat Modeling Red Team

How Do We Secure Android & Pixel?

External Security
Reviews

You!

#BHUSA @BlackHatEvents

Information Classification: General

Fuzzing
Host-based Fuzzing

On-device Fuzzing

Static
Analysis

Dynamic
Analysis
(Services)

Variant Analysis

Formal Verification

Manual Code Review

Web/Mobile

Network

TitanM

Red Team Attack Approaches

#BHUSA @BlackHatEvents

Pixel Hardware
Journey

#BHUSA @BlackHatEvents

Information Classification: General

Pixel 1

Pixel as a reference
device

Pixel 2

Building our own
Camera chip

Pixel 4

Custom Dedicated
Hardware

Pixel 6

Security Re-imagined
Google Tensor & Titan M2

Pixel 5

Pixel Hardware Journey

Pixel 3

Custom Titan
Security Chip

External Certification
(CC MDF)

#BHUSA @BlackHatEvents
Information Classification: General

GSA

Apps

Boot

Loader

Tensor

Security

Core

Titan

M2

Vulnerability trends are moving down the stack* Kernel

User

Mobile Phone Vulnerability Trends

* Pyramid represents vulnerability trend direction, not attack surface size

#BHUSA @BlackHatEvents

Information Classification: General

$2.5m Android FCP
Zero Click

Vulnerability Payouts

#BHUSA @BlackHatEvents

Pixel Attack Surface

#BHUSA @BlackHatEvents
Information Classification: General

Google Tensor SoC

Modem

Titan M2

AP

Google Tensor
Security Core

TSC Secure
Kernel

Baseband
firmware

Normal World Secure World

EL1:
Android Bootloader

EL1: Android GKI

EL0: Android Apps &
services S-EL0: Trusty TAs

Titan M2
firmware

S-EL3: EL3 Monitor

S-EL1: Trusty
Kernel, LDFW

Updated features in Pixel 6

New features in Pixel 6

Attack surface tested and
mitigated

LEGEND

Attack surface covered in this
presentation

EL0: Trusty TAs

EL1: Trusty Kernel

EL3: Secure MonitorEL1:
Android Bootloader

EL1: Android GKI

EL0: Android Apps &
Services

Baseband
firmware

TSC Secure
Kernel

Titan M2
firmware

Baseband
firmware

Titan M2
firmware

EL1:
Android Bootloader

Red Teaming Pixel 6

#BHUSA @BlackHatEvents

Titan M2 Code
Execution

#BHUSA @BlackHatEvents

Information Classification: General

Titan M2 Overview Titan M1 vs Titan M2

Discrete security component - element of Pixel 6 with
the highest level of security assurances on the device
(including resistance to physical attacks)

Provides critical security services: hardware-based
key storage, Android Verified Boot, Attestation
services

Based on custom RISC-V architecture

Redesigned operating system on Titan M2

 Titan M2 Overview

Results: 21 security issues has been identified:
1 Critical, 14 Highs, 1 Moderate, 5 NSIs

1) 2021: A Titan M Odyssey, Maxime Rossi Bellom, Damiano Melotti, and Philippe Teuwen

#BHUSA @BlackHatEvents

Information Classification: General

Titan M2 Attack Surface

Directly exposed to
the attacker

Not directly
exposed to the

attacker

LEGEND

#BHUSA @BlackHatEvents

Information Classification: General

What makes Titan M2 More Secure?
Code section is Read-Only, data and stack Not Executable
- Enforced by PMP registers and custom Titan M2 extensions

R^X policy

Every task is isolated from each other
- Each task can read/write only its own stack and globals
- Code section is readable to all the tasks
- Enforced by PMP registers

Isolation

ACL implementation for syscalls
- Restrict syscall usage on a task-based level enforced by the Titan M2 kernel

ACL

Every task has an isolated file system on the secure flash
- Enforced by the Titan M2 kernel

Isolated Filesystem

#BHUSA @BlackHatEvents

Information Classification: General

Fuzzing Approaches

keymaster weaverruntime service avb
user mode
machine mode

Kernel (task & memory management)

identitycrypto

Pros

Cons

Host-based Fuzzing Emulator-based fuzzing

- Takes advantage of existing fuzzing tools for
x86 architecture (ASan, libFuzzer, gdb)
- Good fuzzing performance

- False-positives
- Missing coverage

Port subset of Titan firmware to x86 32-bit arch Use a full-system emulator to fuzz the target

- Comprehensive coverage of the target
- Support of all the peripherals
- No false-positives

- Missing fuzzing code instrumentation (ASan,
fuzzing code coverage)
- Slow fuzzing performance

Covered by the
host fuzzer

Not covered by
the host fuzzer

LEGEND

Architecture-specific
drivers

#BHUSA @BlackHatEvents

Information Classification: General

Fuzzing Outcomes

Fuzzing
performance &
coverage:

 - Emulator-based
fuzzer: on average 5
test cases per second

- Host-based fuzzers: on
average ~200 times
faster than
emulator-based
approach

 - Host-based and
emulator-based fuzzers
discovered relatively
disjoint set of issues

In total 3 fuzzers
were developed to
cover Titan M2
firmware:

- libprotobuf-mutator
host-based fuzzer

- ASN-parsing
host-based fuzzer

- libprotobuf-mutator
emulator-based fuzzer

Fuzzing challenges:

- Most of the tasks
(especially Keymaster and
Identity) implement
stateful code

- Difficult to reach for the
fuzzers

- Hard to reproduce
issues when fuzzing in
persistent mode

- Obstacles for fuzzing
Keymaster due to the
crypto code

#BHUSA @BlackHatEvents

Information Classification: General

OOB Write in Identity Task: Write-What-Where Primitive

● OOB write in globals in eicPresentationPushReaderCert

Global variables of Identity task:

...

/* Starting address of the overflow */

/*0x0000*/ readerPublicKey;

/*0x0044*/ readerPublicKeySize;

…

/*0x00a0*/ cbor.size;

/*0x00a4*/ cbor.bufferSize; <=== overwritten by attacker

…

/*0x0164*/ cbor.buffer; <=== overwritten by attacker

…

bool eicPresentationPushReaderCert(...) {

 // …
 ctx->readerPublicKeySize = publickey_length;

 // sizeof(ctx->readerPublicKey) == 65

 // publickey_length < 1024

 memcpy(ctx->readerPublicKey, publickey, publickey_length);

 return true;

}

● Exploitation:
○ Use the vulnerability to load cbor.buffer and

cbor.bufferSize with attacker-controlled values
○ Invoke eicCborAppendString to write at

cbor.buffer number of cbor.bufferSize
attacker-controlled bytes

● This enables code execution in Identity task only
○ Titan implements task isolation

■ cannot access other tasks’ memory

#BHUSA @BlackHatEvents

Information Classification: General

Achieving Code Execution in Identity task

Attacker

Set Identity state #1

Set Identity state #2

ICinitializeRequest

Set Identity state #3

Identity task

Advance Identity to the state
for step #2

Advance Identity to the state
for step #3

Global `cbor` is set to the
attacker-controlled value

Advance Identity to the state
for step #5

ICstartRetrieveEntryValueRequest

Overwrite Identity
globals ICpushReaderCertRequest

ICgenerateSigningKeyPairRequest

Set Identity state #4

Deliver ROP shellcode
and run it

Advance Identity to the state
for step #6ICstartRetrieveEntriesRequest

ICstartRetrieveEntriesRequest

Step #1:

Step #2:

Step #3:

Step #4:

Step #5:

Step #6: Overwrite return address on
the stack and run ROP chain

#BHUSA @BlackHatEvents

Information Classification: General

● Exfiltrate Weaver’s secrets stored in the secure file

system:

○ Weaver provides secure storage for user/platform

secrets

○ Throttles consecutive failed verification attempts

● Use OOB write in globals to gain code execution in Titan

M2:

○ ROP shellcode running a sequence of arbitrary

syscalls

Exfiltrating Weaver’s secrets from Titan M2

User Weaver

store
secret

retrieve
secret

store secret &
password in
secure flash

secret &
password

verify password:
OK

valid
password

retrieve secret
secret

retrieve
secret

verify password:
WRONG

incorrect
password

throttle
timeout

Flash

store data

read
password

read
secret

read
password

read
secret

code execution on Titan

#BHUSA @BlackHatEvents

Information Classification: General

Titan Shellcode: Script
● Each task in Titan M2 has access to a dedicated file

system:
○ Every task has an isolated file system on the

secure flash
○ Titan M2 kernel provides syscalls to access the

tasks’ file system
○ Identity task cannot read/write Weaver’s files

● Titan M2 kernel provides syscalls for raw access to
the secure flash (e.g. flash_map_page):

○ Syscalls are subject to ACL checks
○ The Identity task is able to access these syscalls

due to a gap in ACL policy (the gap has been
fixed)

○ Thus, the attacker is able to read/write flash and
parse the file system objects

// map the target flash page into memory

void *page_ptr;

flash_map_page(..., &page_ptr); (1)

// allocate a shared memory region to send the response to AP

struct task_response scs;

cmd_alloc_send(&scs, ...); (2)

// copy flash contents into the shared memory region

memcpy(scs.response_buffer, page_ptr, 2048);

// send contents of the shared memory region back to AP over SPI

cmd_app_done(&scs); (3)

// This forces Titan M2 to go into sleep state.

// Use this function to prevent crashing Titan M2: once

// it comes out of sleep the identity app will be restarted

// and we can start over.

usleep(...); (4)

#BHUSA @BlackHatEvents

Information Classification: General

Titan Shellcode: Finding ROP gadgets

.text:000A44BE lw ra, 8+var_s24(sp)

.text:000A44C0 lw s0, 8+var_s20(sp)

.text:000A44C2 lw s1, 8+var_s1C(sp)

.text:000A44C4 lw s2, 8+var_s18(sp)

.text:000A44C6 lw s3, 8+var_s14(sp)

.text:000A44C8 lw s4, 8+var_s10(sp)

.text:000A44CA lw s5, 8+var_sC(sp)

.text:000A44CC lw s6, 8+var_s8(sp)

.text:000A44CE lw s7, 8+var_s4(sp)

.text:000A44D0 lw s8, 8+var_s0(sp)

.text:000A44D2 addi sp, sp, 30h

.text:000A44D4 ret

.text:000B920C mv a7, s8

.text:000B920E mv a2, s4

.text:000B9210 mv a3, s1

.text:000B9212 mv a0, s6

.text:000B9214 mv a1, s5

.text:000B9216 jal eicOpsValidateAuthToken

.text:000B921A beqz a0, loc_B91CC

.text:000B921C sw s6, 60h(s0)

.text:000B9220 sw s5, 64h(s0)

.text:000B9224 sw s4, 68h(s0)

.text:000B9228 sw s1, 6Ch(s0)

.text:000B922A sw s8, 70h(s0)

.text:000B922E sw s7, 74h(s0)

.text:000B9232 sw s2, 78h(s0)

.text:000B9236 sw s3, 7Ch(s0)

.text:000B923A j loc_B91CE

.text:000B91CE loc_B91CE:

.text:000B91CE lw ra, 38h+var_s24(sp)

.text:000B91D0 lw s0, 38h+var_s20(sp)

.text:000B91D2 lw s1, 38h+var_s1C(sp)

.text:000B91D4 lw s2, 38h+var_s18(sp)

.text:000B91D6 lw s3, 38h+var_s14(sp)

.text:000B91D8 lw s4, 38h+var_s10(sp)

.text:000B91DA lw s5, 38h+var_sC(sp)

.text:000B91DC lw s6, 38h+var_s8(sp)

.text:000B91DE lw s7, 38h+var_s4(sp)

.text:000B91E0 lw s8, 38h+var_s0(sp)

.text:000B91E2 addi sp, sp, 60h

.text:000B91E4 ret

.text:000C5922 mv a0, s0

.text:000C5924 j loc_C590E

.text:000C590E lw ra, 4+var_s8(sp)

.text:000C5910 lw s0, 4+var_s4(sp)

.text:000C5912 lw s1, 4+var_s0(sp)

.text:000C5914 addi sp, sp, 10h

.text:000C5916 ret

.text:000A81A4 lw ra, 20h+var_4(sp)

.text:000A81A6 lw s0, 20h+var_8(sp)

.text:000A81A8 addi sp, sp, 20h

.text:000A81AA ret

Gadget #1: load values of saved
registers s0-s8 and ra from stack

Gadget #2: initialize argument
registers a1-a3 using saved registers

Gadget #3: invoke target syscall
(register a0 contains syscall number)

Gadget #4: start over

#BHUSA @BlackHatEvents

Code Execution in Titan M2: Demo

#BHUSA @BlackHatEvents

… And Pixel 6 Was Made More Secure!

All identified issues in Titan M2 are mitigated!

Fuzzers continuously run internally on ClusterFuzz.

#BHUSA @BlackHatEvents

Android
BootLoader (ABL)
Code Execution

#BHUSA @BlackHatEvents

Information Classification: General

S-EL1 S-EL0 NS-EL1EL3

BootROM

PBL/BL1
ABL

Secure
Monitor Trusty Trusty Apps

Android
Kernel

Android Bootloader (ABL)

#BHUSA @BlackHatEvents

Information Classification: General

Important in Android boot chain

Android ABL Overview

Lockdown security configurations
before kernel is loaded

AVB implementation

Android kernel loading

Recovery environment (fastboot)

Bigger attack surface

Recovery interface is a historic
source of security issues

Dealing with arbitrary user input via
fastboot implementation

Updating/verifying Android boot
configurations

Kernel signature verification and
loading

#BHUSA @BlackHatEvents

Information Classification: General

ABL Code Execution

● Evaluation approaches
○ Manual code review

● Vulnerabilities
○ CVE-2021-39645: Heap OOB write in gpt_load_gpt_data
○ CVE-2021-39684: Incorrect configured RWX region in ABL

● Prerequisites
○ Write access to /dev/block/by-name/sd{a-d} devices
○ Needs root privilege or extensive physical access

#BHUSA @BlackHatEvents

Information Classification: General

Missing Size Check ⇒ OOB Write!

Pseudo code:

int gpt_load_gpt_data() {

 …

 gpt_header_t hdr;

 if (!io_read(&hdr)) { return -1; }

 if (hdr.entry_count > MAX_ENTRY_COUNT) { return -1; }

 gpt_entries = (gpt_entry_t*)malloc(sizeof(gpt_entry_t) *

MAX_ENTRY_COUNT);

 size_t size = hdr.entry_count * hdr.entry_size;

 if (!io_read(gpt_entries, size)) { return -1;}

 …

 return 0;

}

typedef struct {

 …
 uint32_t entry_count;

 uint32_t entry_size;

 …
} gpt_header_t;

typedef struct {

 …
} gpt_entry_t;

#BHUSA @BlackHatEvents

Information Classification: General

size=0x10
p_next=0x????

Exploiting ABL OOB Write Issue

size=0x1000
p_next=0x????

HEAP STACK

gpt_entries

Call Frame

LR, …LR, … Payload

RWX Region

ROP

#BHUSA @BlackHatEvents

Information Classification: General

ABL Code Execution

● Impact
○ Arbitrary code execution in the context of bootloader at EL1 (Non-Secure)
○ Full persistence on the vulnerable device for the privileged attacker (persistent rooting of Pixel

6)
■ Survives reboots and even OTA updates

○ The device runs the malicious kernel while attestation services believe the platform’s integrity
is not violated

■ The exploitation happens before Keymaster is initialized (both on Trusty side and on
Titan M2)

■ The exploit can spoof AVB measurements (i.e. boot hash, OS patch level, unlock status)
○ Malicious kernel can use Keymaster-protected secrets

#BHUSA @BlackHatEvents

Information Classification: General

Demo: ABL Rootkit

#BHUSA @BlackHatEvents

Information Classification: General

Demo: ABL Rootkit

#BHUSA @BlackHatEvents

● CVEs used:
○ ABL OOB write: CVE-2021-39645 – High
○ ABL RWX memory configuration: CVE-2021-39684 – High

● Patch release date: December 2021

Mitigation for the ABL Code Execution

#BHUSA @BlackHatEvents

Conclusion

#BHUSA @BlackHatEvents

Information Classification: General

Red Team to Secure Pixel Fuzzing bare-metal != easy Your Pixel 6 is Secure

Findings help make Pixel more secure

Red Team + SDL Integration

Invest in Continuous
Fuzzing

Fuzzers continuously run on
centralized infrastructure and
discover new issues

This helps us scale

HAL and good compartmentalization
makes fuzzing low-level code easier

Mitigations

Several of the targets evaluated in this
review were missing mitigations:
ASLR, CFI, etc.

Pixel 6 is the most secure Pixel yet

Finding bugs are normal

Transparency is good; community
grows from knowledge sharing

Many Google teams came together to
prioritize remediation

We’re never done! The team
continues testing new features prior
to release

Concluding Thoughts

#BHUSA @BlackHatEvents

Thank You!

Questions?

