
#BHUSA @BlackHatEvents

Breaking Firmware Trust From Pre-EFI:
Exploiting Early Boot Phases

Alex Matrosov, Yegor Vasilenko, Alex Ermolov and Sam Thomas

#BHUSA @BlackHatEvents
Information Classification: General

Who Are We?

Alex Matrosov Yegor Vasilenko Alex Ermolov Sam Thomas

@matrosov @yeggorv @flothrone @xorpse

https://www.binarly.io/advisories

Binarly REsearch Team

https://www.binarly.io/advisories

#BHUSA @BlackHatEvents
Information Classification: General

Agenda
Intro

Intel PPAM and STM Internals

Pre-EFI (PEI) Attack Surface
■ PEI->DXE->SMM threat model

✓ BRLY-2022-010 (CVE-2022-23930)
✓ BRLY-2022-011 (CVE-2022-31644)
✓ BRLY-2022-012 (CVE-2022-31645)
✓ BRLY-2022-013 (CVE-2022-31646)
✓ BRLY-2022-015 (CVE-2022-34345)
✓ BRLY-2021-046 (CVE-2022-31640)
✓ BRLY-2021-047 (CVE-2022-31641)

■ ACM-based attacks

Pre-EFI (PEI) Practical Exploitation
■ BRLY-2022-027 (CVE-2022-28858)
■ BRLY-2022-009 (CVE-2022-36372)
■ BRLY-2022-014 (CVE-2022-32579)

Pre-EFI (PEI) Bug Hunting Automation
■ BRLY-2022-016 (CVE-2022-33209)

Intel PPAM Attack Surface and Exploitation
■ One-byte-write PPAM bypass

Conclusions

https://binarly.io/advisories/BRLY-2022-010/index.html
https://binarly.io/advisories/BRLY-2022-011/index.html
https://binarly.io/advisories/BRLY-2022-012/index.html
https://binarly.io/advisories/BRLY-2022-013/index.html
https://binarly.io/advisories/BRLY-2022-015/index.html
https://binarly.io/advisories/BRLY-2021-046/index.html
https://binarly.io/advisories/BRLY-2021-047/index.html
https://binarly.io/advisories/BRLY-2022-027/index.html
https://binarly.io/advisories/BRLY-2022-009/index.html
https://binarly.io/advisories/BRLY-2022-014/index.html
https://binarly.io/advisories/BRLY-2022-016/index.html

#BHUSA @BlackHatEvents
Information Classification: General

STM, PPAM, SMM CET, Intel HW Shield, …
 😭

The party is over, no more easy SMM
exploitation?

#BHUSA @BlackHatEvents
Information Classification: General

Pre-Story: How This REsearch Started

#BHUSA @BlackHatEvents
Information Classification: General

A single byte can serve as a killchain for security features

https://www.binarly.io/posts/Who_Watches_BIOS_Watchers

https://www.binarly.io/posts/Who_Watches_BIOS_Watchers

#BHUSA @BlackHatEvents
Information Classification: General

New Security Boundaries == New Attack Vectors

https://www.binarly.io/posts/Breaking_through_another_SideBypassing_Firmware_Security_Boundaries

https://www.binarly.io/posts/Breaking_through_another_SideBypassing_Firmware_Security_Boundaries

#BHUSA @BlackHatEvents
Information Classification: General

Supply Chain Issues Are The Worst (Intel BSSA DFT)

https://www.blackhat.com/us-21/briefings/schedule/#safeguarding-uefi-ecosystem-firmware-supply-chain-is-hardcoded-23685

https://www.blackhat.com/us-21/briefings/schedule/#safeguarding-uefi-ecosystem-firmware-supply-chain-is-hardcoded-23685

#BHUSA @BlackHatEvents
Information Classification: General

As code complexity increases, memory corruptions remain forever

https://www.offensivecon.org/speakers/2022/alex-ermolov,-alex-matrosov-and-yegor-vasilenko.html

https://www.offensivecon.org/speakers/2022/alex-ermolov,-alex-matrosov-and-yegor-vasilenko.html

#BHUSA @BlackHatEvents
Information Classification: General

As code complexity increases, design issues remain forever

https://www.offensivecon.org/speakers/2022/alex-ermolov,-alex-matrosov-and-yegor-vasilenko.html

https://www.offensivecon.org/speakers/2022/alex-ermolov,-alex-matrosov-and-yegor-vasilenko.html

#BHUSA @BlackHatEvents
Information Classification: General

ACM-based attack surface

#BHUSA @BlackHatEvents
Information Classification: General

Intel ACMs attack surface

● Intel Boot Guard (executed on startup)
○ IBB hash coverage misconfiguration
○ OBB (Vendor) hash coverage misconfiguration
○ Downgrade attacks

● Intel BIOS Guard (executed on-call)
○ SFAM coverage misconfiguration
○ Script interpretation errors
○ Complex and dependent initialization process

● Intel TXT (executed on-call)
○ Memory corruptions in VMCALLs
○ Downgrade attacks

#BHUSA @BlackHatEvents
Information Classification: General

Intel Boot Guard 2.0 ACM
Previous version:

RSA2048
SHA256

New version:
RSA3072 (default exponent = 11h)
SHA384

#BHUSA @BlackHatEvents
Information Classification: General

Intel Boot Guard 2.0 ACM

● Size increased from 32 KB to 256 KB (Attack surface increased)

● Additional functionality (TXT SINIT ACM) (complexity increased with adding
support of new technologies)

● Updated KEYM & IBBM formats, stronger crypto algorithms used

● INTEL-SA-00527, 2021.2 IPU - BIOS Advisory, multiple CVEs
Reported by Oracle, short note in Twitter that these vulns are in ACM

As code complexity increases, design issues remain forever…

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00527.html

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00527.html

#BHUSA @BlackHatEvents
Information Classification: General

Pre-EFI (PEI) Attack Surface

#BHUSA @BlackHatEvents
Information Classification: General

PEI->SMM Threat Model

Attacker Model:
The local attacker uses privileged host OS access to trigger the
vulnerability gaining PEI or DXE stage code execution in System
Management Mode (SMM).

Potential Impact:
PEI/DXE code execution in SMM context allows potential installation
of persistent implants in the NVRAM SPI flash region or directly in
SPI flash storage. Implant persistence across OS installations, can
further bypass Secure Boot attacking guest VM's in bare metal cloud
deployments.

#BHUSA @BlackHatEvents
Information Classification: General

NVRAM Persistence on SPI Flash

● NVRAM region is not protected by Intel Boot Guard and can be abused by
attacker with physical access (supply chain vector).

● Arbitrary code execution via GetVariable() and memory leak over
SetVariable() is common, attacker can modify persistent NVRAM storage and
install fileless DXE/SMM/PEI implant (shellcode payload).

Most security solutions inspect only UEFI drivers!

#BHUSA @BlackHatEvents
Information Classification: General

Pre-EFI attack vectors

#BHUSA @BlackHatEvents
Information Classification: General

Pre-EFI attack vectors

Logical Errors and Memory Corruptions
during NVRAM Variables parsing.

Threat model tended to be
underestimated by vendors

Arbitrary code execution in PEI allows
to escalate privileges to SMM

#BHUSA @BlackHatEvents
Information Classification: General

Pre-EFI attack vectors

During the most part of PEI phase no
security protections against SPI
modifications are enabled!

BLE, SMM_BWP, PRx, Intel BIOS
Guard are not enabled at this moment.

#BHUSA @BlackHatEvents
Information Classification: General

Complexity is the Enemy of Security

#BHUSA @BlackHatEvents
Information Classification: General

Firmware Repeatable Failures
Vendor Vulnerabilities Number

of Issues
BINARLY ID CVE ID CVSS score

PEI Memory Corruption
(Arbitrary Code Execution)

3
BRLY-2022-027
BRLY-2022-009
BRLY-2022-014

CVE-2022-28858
CVE-2022-36372
CVE-2022-32579

8.2 High
8.2 High
7.2 High

DXE Arbitrary Code Execution 1 BRLY-2022-015 CVE-2022-34345 7.2 High

SMM Memory Corruption
(Arbitrary Code Execution)

2 BRLY-2022-003
BRLY-2022-016

CVE-2022-27493
CVE-2022-33209

7.5 High
8.2 High

SMM Memory Corruption
(Arbitrary Code Execution)

6

BRLY-2022-010
BRLY-2022-011
BRLY-2022-012
BRLY-2022-013
BRLY-2021-046
BRLY-2021-047

CVE-2022-23930
CVE-2022-31644
CVE-2022-31645
CVE-2022-31646
CVE-2022-31640
CVE-2022-31641

8.2 High
7.5 High
8.2 High
8.2 High
7.5 High
7.5 High

https://binarly.io/advisories/BRLY-2022-027/index.html
https://binarly.io/advisories/BRLY-2022-009/index.html
https://binarly.io/advisories/BRLY-2022-014/index.html
https://binarly.io/advisories/BRLY-2022-015/index.html
https://binarly.io/advisories/BRLY-2022-003/index.html
https://binarly.io/advisories/BRLY-2022-016/index.html
https://binarly.io/advisories/BRLY-2022-010/index.html
https://binarly.io/advisories/BRLY-2022-011/index.html
https://binarly.io/advisories/BRLY-2022-012/index.html
https://binarly.io/advisories/BRLY-2022-013/index.html
https://binarly.io/advisories/BRLY-2021-046/index.html
https://binarly.io/advisories/BRLY-2021-047/index.html

#BHUSA @BlackHatEvents
Information Classification: General

Pre-EFI (PEI) Practical Exploitation

#BHUSA @BlackHatEvents
Information Classification: General

S3Resume2Pei (BRLY-2022-009/CVE-2022-36372)

AMI implementation (S3Resume2Pei) Intel EDK2 implementation (FirmwarePerformancePei)

AcpiS3RerfomanceTable address extracted from the ACPI
and can not be modified by the attacker (because of
LockBox).

AcpiS3RerfomanceTable address extracted from
the memory pointed by NVRAM variable value and
can be modified by the attacker.

https://2021.zeronights.ru/wp-content/uploads/2021/09/zn2021-dataonly-attacks-bios-ermolov.pdf
Discovered multiple times in the past:

https://2021.zeronights.ru/wp-content/uploads/2021/09/zn2021-dataonly-attacks-bios-ermolov.pdf

#BHUSA @BlackHatEvents
Information Classification: General

S3Resume2Pei (BRLY-2022-009/CVE-2022-36372)

 Memory corruption at a controllable address.

1. Get the value of FPDT_Variable_NV variable

(S3PerformanceTablePointer)

2. Get AcpiS3PerformanceTable address

from memory pointed by

S3PerformanceTablePointer

3. Arbitrary write at a controllable address

#BHUSA @BlackHatEvents
Information Classification: General

S3Resume2Pei (Exploitation)

1. Get the value of FPDT_Variable_NV variable

from the dump of the BIOS region (e.g.

0x8ae9f398)

2. Overwrite the address of

AcpiS3PerformanceTable

3. S3 sleep / wake up

Restriction: the attacker can overwrite memory that satisfies the following conditions

PoC: https://github.com/binarly-io/Vulnerability-REsearch/tree/main/AMI/BRLY-2022-009-PoC/

https://github.com/binarly-io/Vulnerability-REsearch/tree/main/AMI/BRLY-2021-005-PoC/

#BHUSA @BlackHatEvents
Information Classification: General

Demo Time 🪄

#BHUSA @BlackHatEvents
Information Classification: General

S3Resume2Pei (Demo)

#BHUSA @BlackHatEvents
Information Classification: General

PlatformInitAdvancedPreMem
(BRLY-2022-027/CVE-2022-28858)

● A double-GetVariable problem
will cause a arbitrary code
execution during early PEI
phase

● Usually the values of the
variables SaSetup, CpuSetup
cannot be changed from the
runtime

● But it was possible on the
target device (due to
incorrectly configured filtering
in NvramSmm) If the SaSetup, CpuSetup variables are filtered, their values can still be

changed by reflashing the NVRAM or through a vulnerability in SMM (!)

#BHUSA @BlackHatEvents
Information Classification: General

Modifying protected NVRAM
variables

Physical vector
○ Use a SPI flash programmer to overwrite NVRAM directly into the SPI flash

Software vector:
○ Use SMI-provided interface to reflash unprotected parts of SPI memory (SMIFlash,

ReflashSMM, etc.)
○ Use Runtime Services if filtration is missing in main NVRAM driver stack

(NvramSmm/NvramDxe)
■ only if the RT attribute is present
■ it was possible to modify the SaSetup, CpuSetup values this way

(BRLY-2022-027/CVE-2022-28858)

○ Exploit vulnerability in SMM stack to gain arbitrary code execution, then use
EFI_SMM_VARIABLES_PROTOCOL protocol or EFI_SMM_RUNTIME_SERVICES_TABLE
configuration table

■ it needs to be patched in SMRAM to bypass fitrations or change variable values
without RT attributes (check the demo for BRLY-2022-016/CVE-2022-33209)

#BHUSA @BlackHatEvents
Information Classification: General

Demo Time 🪄

#BHUSA @BlackHatEvents
Information Classification: General

Modifying protected NVRAM variables (SaSetup,
CpuSetup) values using Runtime Services

BRLY-2022-027
CVE-2022-28858

#BHUSA @BlackHatEvents
Information Classification: General

SmmSmbiosElog
(BRLY-2022-016/CVE-2022-33209)

gSmbiosElog->ApiFunc1()

ChildSwSmiHandler
{9c72f7fb-86b6-406f-b86e-f3809a86c138}

#BHUSA @BlackHatEvents
Information Classification: General

SmmSmbiosElog
(BRLY-2022-016/CVE-2022-33209)

● 4 functions are forwarded to the runtime through the ChildSwSmiHandler
{9c72f7fb-86b6-406f-b86e-f3809a86c138}:

● In the SmbiosElog->SmbiosElogApi.ApiFunc1() function, the attacker can trigger an
overflow on the stack (Src and Size are fully controlled by the attacker)

https://github.com/binarly-io/Vulnerability-REsearch/tree/main/AMI/BRLY-2022-016-PoC/
(PoC implements primitives for reading, writing and executing arbitrary code in SMRAM)

https://github.com/binarly-io/Vulnerability-REsearch/tree/main/AMI/BRLY-2022-016-PoC/

#BHUSA @BlackHatEvents
Information Classification: General

Reference Code Issues Are The Worst

https://www.binarly.io/posts/Firmware_Supply_Chain_is_Hard(coded)

https://www.binarly.io/posts/Firmware_Supply_Chain_is_Hard(coded)

#BHUSA @BlackHatEvents
Information Classification: General

Demo Time 🪄

#BHUSA @BlackHatEvents
Information Classification: General

SmmSmbiosElog (Demo)

#BHUSA @BlackHatEvents
Information Classification: General

OverclockSMIHandler Story

● Could be enabled in CpuSetup / OcSetup EFI variables via
EFI_RUNTIME_SERVICES_TABLE->SetVariable()

● Static Storage for Performance & Security Policies problem

https://binarly.io/posts/AMI_UsbRt_Repeatable_Failures_A_6_year_old_attack_vector_still_affecting_millions_of_enterprise_devices
https://www.ami.com/ami-clarification-on-uefi-firmware-vulnerabilities-presentation-at-offensivecon-2022/

https://binarly.io/posts/AMI_UsbRt_Repeatable_Failures_A_6_year_old_attack_vector_still_affecting_millions_of_enterprise_devices
https://www.ami.com/ami-clarification-on-uefi-firmware-vulnerabilities-presentation-at-offensivecon-2022/

#BHUSA @BlackHatEvents
Information Classification: General

BRLY-2022-003 / CVE-2022-27493

If an attacker sets the Buffer to point to [imagebase + 800h offset], this instruction will be rewritten with
a calculated value

#BHUSA @BlackHatEvents
Information Classification: General

SbPei (BRLY-2022-014/CVE-2022-32579)

#BHUSA @BlackHatEvents
Information Classification: General

SbPei (Exploitation)

1. Prepare PCD value with token 0xF2. This
can be done with PCD_PROTOCOL. The
new PCD value will be used even after
reboot.

2. Specify address via
AmiCspGlobalNvsPtrVar NVRAM
variable value.

3. This variable has no RT attribute, but its
value can be changed by NVRAM reflash
or through another vulnerability in
DXE/SMM.

4. S3 sleep / wake up.

#BHUSA @BlackHatEvents
Information Classification: General

Demo Time 🪄

#BHUSA @BlackHatEvents
Information Classification: General

SbPei (BRLY-2022-014/CVE-2022-32579)

In this demo we change the value of
the AmiCspGlobalNvsPtrVar variable
through a vulnerability in SMM.

Nevertheless, an attacker can change
the value of a variable with a
hardware write to NVRAM during S3
sleep.

#BHUSA @BlackHatEvents
Information Classification: General

Enable S3 sleep from the OS

Windows Linux

● Make sure that the operating system supports the S3 sleep mode
(powercfg /a)

● If the S0 Low Power Idle mode is enabled instead of S3, you need to
create the following registry value:

● echo deep >
/sys/power/mem_sleep

● after that you can enter S3 sleep in
the usual ways, e.g: rtcwake -m mem
-s {number of seconds}

Subkey HKLM\SYSTEM\CurrentControlSet\Control\Power

Value Name PlatformAoAcOverride

Value Type REG_DWORD

Value Data 0

● On some platforms, devices may not initialize correctly after S3 wakes up
● This does not prevent from executing arbitrary code in the PEI during the S3 sleep/wake up circle

#BHUSA @BlackHatEvents
Information Classification: General

AMITSE (BRLY-2022-015/CVE-2022-34345)
Arbitrary code execution in DXE.

1. Get the function pointer from

EsaVarPtr01 variable value

2. Execution of the function at the

controlled address

(GetPackageListHandle)

#BHUSA @BlackHatEvents
Information Classification: General

Intel BIOS Guard disable

PlatformInitPreMem EEEE611D-F78F-4FB9-B868-55907F169280:

#BHUSA @BlackHatEvents
Information Classification: General

The payload is not measured
and TPM PCR's are not extended.

Remote health attestation will not detect the exploitation!

Important Reminder

#BHUSA @BlackHatEvents
Information Classification: General

Pre-EFI (PEI) Bug Hunting Automation

#BHUSA @BlackHatEvents
Information Classification: General

Revisiting Automated Bug Hunting

● Progression of our past work:
“efiXplorer: Hunting for UEFI Firmware Vulnerabilities at Scale with Automated Static Analysis” 1

● Scalable approach based on vulnerability models; combination of:
1. Lightweight static analysis
2. Under-constrained symbolic execution

 1: https://i.blackhat.com/eu-20/Wednesday/eu-20-Labunets-efiXplorer-Hunting-For-UEFI-Firmware-Vulnerabilities-At-Scale-With-Automated-Static-Analysis.pdf

#BHUSA @BlackHatEvents
Information Classification: General

Limitations of current approaches

False Positive

#BHUSA @BlackHatEvents
Information Classification: General

Limitations of current approaches

 Limitations of existing approaches:
● Large number of false positives
● Based on syntactic properties (pattern matching on disassembly)
● Highlighted in research by SentinelOne (Brick2):

○ Pattern matching on decompiler output
○ But: requires decompiler (Hex-Rays) & will not scale

Binarly team approach:
○ Leverage semantic properties
○ Use lightweight code pattern checkers to provide hints for deeper analysis

 2: https://www.sentinelone.com/labs/another-brick-in-the-wall-uncovering-smm-vulnerabilities-in-hp-firmware/

#BHUSA @BlackHatEvents
Information Classification: General

Analysis pipeline

 Inspired by: “Sys: A Static/Symbolic Tool for Finding Good Bugs in Good (Browser) Code” (Brown et al., USENIX Security 2020)

Typically takes 4-6s per firmware image (100s of modules)

#BHUSA @BlackHatEvents
Information Classification: General

IR lifting

● Extract uniform SSA form IR representation for 32-bit and 64-bit modules
● IR explicitly encodes instruction side-effects

Lifting

SSA transformation

#BHUSA @BlackHatEvents
Information Classification: General

Binarly Semantic annotations

● Annotate IR with types and service information (similar to efiXplorer3 and FwHunt4)
● Identify analysis entry-points based on module type, e.g.:

○ SMI handlers (DXE/SMM modules)
○ PEI notification callbacks (PEI modules)

 3: https://github.com/binarly-io/efiXplorer
 4: https://github.com/binarly-io/fwhunt-scan

https://github.com/binarly-io/efiXplorer
https://github.com/binarly-io/fwhunt-scan

#BHUSA @BlackHatEvents
Information Classification: General

Binarly Static checkers

● Checkers based on lightweight static analysis defined using an eDSL:

○ Control-flow properties (reachability)
○ Data-flow properties (data-dependence)
○ Inferred call-site properties (e.g., arguments passed, type information)
○ Domain-specific annotations:

■ Service-specific (e.g., GetVariable variants in PEI and DXE phases)
■ Common APIs (e.g., CopyMem, ZeroMem, etc.)

#BHUSA @BlackHatEvents
Information Classification: General

Symbolic Execution

● We can ask questions such as:
○ What value of varA.0 is needed to reach loc4
○ Is there a way for buggy_function to be called?

#BHUSA @BlackHatEvents
Information Classification: General

Under-constrained Symbolic Execution

● Similar to past research:
“Finding BIOS Vulnerabilities with Symbolic Execution and Virtual Platforms” 5

● No source-code required
● Custom execution environment:

○ Instrument anything (IR operation granularity)
○ Simulate execution from anywhere
○ Reason about hardware interactions and partial state using symbolic variables

injected during simulation
● Identify violations of model assumptions (e.g., input to API should not be

user-controlled)

 5: https://www.intel.com/content/www/us/en/developer/articles/technical/finding-bios-vulnerabilities-with-symbolic-execution-and-virtual-platforms.html

#BHUSA @BlackHatEvents
Information Classification: General

Demo Time 🪄

#BHUSA @BlackHatEvents
Information Classification: General

(BRLY-2022-014/CVE-2022-32579)

GetVariable leading to arbitrary write

PEI-phase vulnerabilities

#BHUSA @BlackHatEvents
Information Classification: General

Demo Time 🪄

#BHUSA @BlackHatEvents
Information Classification: General

PEI-phase vulnerabilities

(BRLY-2022-027/CVE-2022-28858)

GetVariable without DataSize check
&

False Positive detection

#BHUSA @BlackHatEvents
Information Classification: General

Demo Time 🪄

#BHUSA @BlackHatEvents
Information Classification: General

(BRLY-2022-016/CVE-2022-33209)

Buffer overflow discovery
&

 CommBuffer reconstruction

DXE/SMM vulnerabilities

#BHUSA @BlackHatEvents
Information Classification: General

“AMI is committed to working closely with Binarly to leverage its
innovative vulnerability detection technologies to strengthen the
security of our products and firmware supply chain.

We believe this collaboration is essential to protecting our customers
and improving AMI's overall security posture. AMI looks forward to
partnering with Binarly in this important effort.”

We would like to warmly thank AMI PSIRT team
for the collaboration during the disclosure.

#BHUSA @BlackHatEvents
Information Classification: General

“HP appreciates Binarly’s contributions to help make HP
products more secure.”

We would like to warmly thank HP PSIRT team for
the collaboration during the disclosure.

HP PC BIOS August 2022 Security Updates for Potential SMM and TOCTOU Vulnerabilities (HPSBHF03805)
HP PC BIOS August 2022 Security Updates for Potential SMM and TOCTOU Vulnerabilities (HPSBHF03806)

https://support.hp.com/us-en/document/ish_6662920-6662944-16/hpsbhf03805
https://support.hp.com/us-en/document/ish_6664419-6664458-16/hpsbhf03806

#BHUSA @BlackHatEvents
Information Classification: General

Intel PPAM and STM Internals

#BHUSA @BlackHatEvents
Information Classification: General

Preparing an STM in UEFI

https://www.intel.com/content/dam/develop/external/us/en/documents/a-tour-beyond-bios-launching-stm-to-monitor-smm-in-efi-developer-kit-ii-819978.pdf

https://www.intel.com/content/dam/develop/external/us/en/documents/a-tour-beyond-bios-launching-stm-to-monitor-smm-in-efi-developer-kit-ii-819978.pdf

#BHUSA @BlackHatEvents
Information Classification: General

Preparing an PPAM in UEFI

The PPAM initialization process is inspired by the STM initialization process => the same bypassing
techniques from the PEI

#BHUSA @BlackHatEvents
Information Classification: General

PpamPlatformSmm
(reference implementation)

#BHUSA @BlackHatEvents
Information Classification: General

Get PPAM support version (1)

PpamPlatformSmm

● 3 checks in GetPpamSupport function
● if (PpamSupport != 11) return EFI_UNSUPPORTED

● This procedure depends on the OEM/platform

#BHUSA @BlackHatEvents
Information Classification: General

EFI_SM_MONITOR_INIT_PROTOCOL
PpamLoadMonitor (PiSmmCpuDxeSmm)

PpamPlatformSmm

The hooking of EFI_SM_MONITOR_INIT_PROTOCOL
will break the PPAM initialization

Load PPAM image (2)

#BHUSA @BlackHatEvents
Information Classification: General

CheckPpamImage()

A single-byte write in the MSEG HOB will
break the PPAM initialization

LoadPpamImage()

Load PPAM image (2)

#BHUSA @BlackHatEvents
Information Classification: General

Install PPAM Manifest (2)

● PPAM Manifest saved in Configuration table
● Can be received by the OS component in the runtime

#BHUSA @BlackHatEvents
Information Classification: General

Install/Configure IO, MSR access policies (3)

● Only if (PpamSupports >= 11)
● It will use policies from SpsIoPolicyBitmap/MsrIoPolicyBitmap files

if gPcdPolicyOverride is set (usually, it is not)
● Otherwise policies from whitelisted IO/MSR will be used

#BHUSA @BlackHatEvents
Information Classification: General

Intel PPAM Attack Surface and Exploitation

#BHUSA @BlackHatEvents
Information Classification: General

● We looked at Intel's reference PpamPlatformSmm implementation

● The implementation of this module is OEM specific

○ this can produce additional attack surface

PpamPlatformSmm
(HP EliteBook x360 830 G7)

#BHUSA @BlackHatEvents
Information Classification: General

Compromising the preparation process?

#BHUSA @BlackHatEvents
Information Classification: General

PpamPlatformSmm
(HP EliteBook x360 830 G7)

HP implementation Reference implementation

#BHUSA @BlackHatEvents
Information Classification: General

● If this function returns 0, PPAM will not be initialized
● HobData can be controlled by an attacker using an arbitrary write primitive from

the PEI/DXE phase

PpamPlatformSmm
(HP EliteBook x360 830 G7)

#BHUSA @BlackHatEvents
Information Classification: General

PpamPlatformSmm
(HP EliteBook x360 830 G7)

● If the HOB check will be passed, PpamSupport (Version) will be initialized by 11 on the target
platform

● But there are 2 ways to downgrade it
○ using the CpuSmm NVRAM variable
○ using PcdProtocol->SetBool(0x138, 0)

● After downgrading PpamSupport to version 10, EFI_SMM_RESOURCE_CONFIG_PROTOCOL (used
to install/configure IO, MSR access policies) will be useless

#BHUSA @BlackHatEvents
Information Classification: General

PPAM Manifest

Validity
 Not Before: Aug 5 03:10:37 2019 GMT
 Not After: Aug 5 03:10:37 2021 GMT

#BHUSA @BlackHatEvents
Information Classification: General

PPAM Manifest

https://github.com/binarly-io/ppam-parser
https://github.com/binarly-io/Vulnerability-REsearch/chipsec-modules/ppam_cmd.py

* Will be available soon after embargo ends. Stay tuned!

https://github.com/binarly-io/ppam-parser
https://github.com/binarly-io/Vulnerability-REsearch/chipsec-modules/ppam_cmd.py

#BHUSA @BlackHatEvents
Information Classification: General

PPAM Manifest

Certificate validity (not after) Number of device firmwares

2020/06/12, 10:59:01 16

2020/08/05, 03:10:37 16

2021/08/05, 03:10:37 177

The table shows the results of PPAM 11 certificate parsing for 209 enterprise vendors firmware.

#BHUSA @BlackHatEvents
Information Classification: General

PPAM Manifest

#BHUSA @BlackHatEvents
Information Classification: General

“Intel appreciates recent collaboration with Binarly involving
their security research and notification of affected vendors.”

We would like to warmly thank Intel PSIRT team
for the collaboration and assistance they have
provided during the disclosure process.

#BHUSA @BlackHatEvents
Information Classification: General

Conclusions

● STM & PPAM should be properly configured by Vendors

● Again, Static Storage Problem - the configuration is stored in PCD or other
accessible by the attacker storage.

● Could be modified in memory if arbitrary code execution gained during early boot.
Or with physical access to the device to access SPI flash storage.

#BHUSA @BlackHatEvents
Information Classification: General

Complexity is the Enemy of Security

#BHUSA @BlackHatEvents
Information Classification: General

Binarly FwHunt rules are available!

Binarly team provides FwHunt rules to detect vulnerable
devices at scale and help the industry recover from firmware

security repeatable failures.
➔ Community FwHunt Scanner: https://github.com/binarly-io/fwhunt-scan

➔ FwHunt detection rules: https://github.com/binarly-io/FwHunt/tree/main/rules

https://github.com/binarly-io/fwhunt-scan
https://github.com/binarly-io/FwHunt/tree/main/rules

#BHUSA @BlackHatEvents

Thank you!

fwhunt@binarly.io

