
#BHUSA @BlackHatEvents

Devils Are in the File Descriptors:
It Is Time To Catch Them All

Le Wu from Baidu Security

Le Wu(@NVamous)

• Focus on Android/Linux bug hunting and exploit

• Found 200+ vulnerabilities in the last two years

• Blackhat Asia 2022 speaker

About me

2

https://twitter.com/NVamous

Outline

 Background

 Diving into issues in the fd export operations

 Diving into issues in the fd import operations

 Conclusion & Future work

3

Introduction to file descriptor—— An integer in a process

Process A

fd:0

file ojbect0 file object_nfile ojbect1

fd:1 fd:n

…

read(fd, …), write(fd, …), ioctl(fd, …), mmap(fd, …), close(fd) …

Thread1 … Thread_M

Background

…
User Space

Kernel Space

4

Process A

User Space fd:0

file ojbect0

Kernel Space

file object_nfile ojbect1

fd:1 fd:n…

…

read(fd, …), write(fd, …), ioctl(fd, …), mmap(fd, …), close(fd) …

Thread1 … Thread_M

Background

fd_array

[0] [1] [n]

… NULL …

Introduction to file descriptor—— An integer in a process

5

User SpaceKernel space

export operation

Introduction to file descriptor——fd export operation and import operation in kernel

import operation

Background

fdfile

fdfile

6

Process A

User Space fd:0

file ojbect0

Kernel Space

file object_nfile ojbect1

fd:1 fd:n…

…

read(fd, …), write(fd, …), ioctl(fd, …), mmap(fd, …), close(fd) …

Thread1 … Thread_M

Background

fd_array

[0] [1] [n]

… …

Introduction to file descriptor—— fd export operation in kernel

[x]

file object_x

fd:x

Step1: get an unused fd

Step2: fd_array[fd]=file

Step3: pass fd to user space

7

Process A

User Space fd:0

file ojbect0

Kernel Space

file object_nfile ojbect1

fd:1 fd:n…

…

read(fd, …), write(fd, …), ioctl(fd, …), mmap(fd, …), close(fd) …

Thread1 … Thread_M

Background

fd_array

[0] [1] [n]

… …

Introduction to file descriptor—— fd import operation in kernel

fd:x

[x]

file object_x

Step1: file=fd_array[x]

Step2: acquire file reference

8

User SpaceKernel space

file fd
Step1:get an unused fd

Step2:fd_array[fd]=file

Step3:pass the fd to user space

Introduction to file descriptor——fd export operation and fd import operation

Step1:file=fd_array[fd]

Step2:acquire file reference

import operation

file fd

export operation

Background

9

Process A

User Space fd:0

file ojbect0

Kernel Space

file object_nfile ojbect1

fd:1 fd:n…

…

read(fd, …), write(fd, …), ioctl(fd, …), mmap(fd, …), close(fd) …

Thread1 … Thread_M

Background

fd_array

[0] [1] [n]

… …

fd:x

[x]

file object_x

Introduction to file descriptor—— User process close(fd)

10

Process A

User Space fd:0

file ojbect0

Kernel Space

file ojbect1

fd:1 fd:n…

…

read(fd, …), write(fd, …), ioctl(fd, …), mmap(fd, …), close(fd) …

Thread1 … Thread_M

Background

fd_array

[0] [1] [n]

… NULL …

fd:x

[x]

Introduction to file descriptor—— User process close(fd)

Step1: fd_array[fd]=NULL

Step2: drop file reference, set fd unused

file object_nfile object_x

11

Why file descriptor——Inspired by CVE-2021-0929

Import dma-buf fd to get a dma_buf file object

Map the memory buffer represented by the ion_handle into kernel space:

kernel_vaddr= ion_map_kernel(ion_client, ion_handle);

Reference the kernel_vaddr; UAF

Thread A

Kernel space

Create a dma-buf fd with ION

sync.flag = DMA_BUF_SYNC_END;

ioctl(dma-buf fd, DMA_BUF_IOCTL_SYNC, &sync);

Thread B

User space

dma-buf fd

trigger the unmap

of kernel_vaddr

Background

Create an ion_handle related to the dma_buf file object;

Operations on fd and file

object or related objects
Operations on fd

12

A file descriptor can be shared between kernel space and user space, race condition can happen between kernel and

user operations：

Background

Thread A Thread B

User SpaceKernel space

Operations on

file object
Operations on fd

Race condition 1

Thread A Thread B

User SpaceKernel space

Operations on fd Operations on fd

Race condition 2

Maybe there are issues in these

race conditions? Let’s try to

construct such race conditions in

the fd export and import

operations!

Why file descriptor——Inspired by CVE-2021-0929

13

User SpaceKernel space

file fd
Step1:get an unused fd

Step2:fd_array[fd]=file

Step3:pass the fd to user space

Step1:file=fd_array[fd]

Step2:acquire file reference

import operation

file fd

export operation

Diving into issues in the fd export operation

14

 Scenario of fd export operation

 UAF caused by race condition

 Find the issues

 Fixes

Diving into issues in the fd export operation

15

User SpaceKernel space

file

Operations on fd:

read(fd, …);

write(fd, …);

ioctl(fd, …);

close(fd);

…

Request a resource

Thread A

Step1:get an unused fd

Step2:fd_array[fd]=file

Step3:pass the fd to user space

Scenario of fd export operation

fd

16

SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, umode_t, mode)

{

…

return do_sys_open(AT_FDCWD, filename, flags, mode);

}

static long do_sys_openat2(int dfd, const char __user *filename,

struct open_how *how)

{

…

fd = get_unused_fd_flags(how->flags);

if (fd >= 0) {

struct file *f = do_filp_open(dfd, tmp, &op);

…

fd_install(fd, f);

…

}

…

return fd;

}

Example:

Step1:get an unused fd

get_unused_fd_flags()

Step2.fd_array[fd]=file:

fd_install(fd, file)

Step3.pass the fd to user space:

fd as return value

Scenario of fd export operation

…

17

But this regular fd export operation is executed sequentially, which is still far from the race conditions we want to see:

Thread A Thread B

User SpaceKernel space

Operations on

file object
Operations on fd

Race condition 1

Thread A Thread B

User SpaceKernel space

Operations on fd Operations on fd

Race condition 2

Scenario of fd export operation

18

User SpaceKernel space

file
Request a resource

Thread A

Step1:get an unused fd

Step2:fd_array[fd]=file

Step3:pass the fd to user space fd

After step2, we already can

perform the operations on

fd, but we only know the

value of fd after step3!

UAF caused by race condition

Operations on fd:

read(fd, …);

write(fd, …);

ioctl(fd, …);

close(fd);

…

19

Hold on! Do we have to wait for fd to be passed from kernel to know the value of it ?

Fd is predictable:

int fd = open(file_path, …);

close(fd);

int fd2 = open(file_path2,…);

For a new process, fd 0，1，2 are usually occupied, 3 will be the next fd exported from kernel,

and then 4, 5, 6……

• Assigned in ascending order

• Reused after close(fd)

fd2=fd

UAF caused by race condition

20

User SpaceKernel space

file

Thread A

Step1:get an unused fd

Step2:fd_array[fd]=file

Step3:pass the fd to user space

Thread B

We already know the value of fd !

time window

Operations on fd:

read(fd, …);

write(fd, …);

ioctl(fd, …);

close(fd);

…

UAF caused by race condition

21

User SpaceKernel space

file

Thread A

Step1:get an unused fd

Step2:fd_array[fd]=file

Step3:return to user space

Thread B

More assumption:

Operations on file objecttime window Operations on fd:

read(fd, …);

write(fd, …);

ioctl(fd, …);

close(fd);

…

We succeed in

constructing the case

of race condition 1

UAF caused by race condition

Thread A Thread B

User SpaceKernel space

Operations on

file object Operations on fd

Race condition 1

22

User SpaceKernel space

file

Thread A

Step1:get an unused fd

Step2:fd_array[fd]=file

Step3:return to user space

Thread B

A potential UAF scenario:

Operations on file object

close(fd);

file

file->private_data

file->private_data->…

release

UAF

drop file

reference

UAF caused by race condition

23

Looking for all kinds of kernel APIs which perform the “step2”: Step2:fd_array[fd]=file

• fd_install(fd, file)

• anon_inode_getfd()

• dma_buf_fd()

• sync_fence_install()

• ion_share_dma_buf_fd()

• …

They all wrap fd_install(fd, file)

UAF caused by race condition

24

Try to search for the bug pattern: “reference file or related objects after the step2”

From Vendor Q:

static int get_fd(uint32_t handle, int64_t *fd)

{

int unused_fd = -1, ret = -1;

struct file *f = NULL;

struct context *cxt = NULL;

…

cxt = kzalloc(sizeof(*cxt), GFP_KERNEL);

…

unused_fd = get_unused_fd_flags(O_RDWR);

…

f = anon_inode_getfile(INVOKE_FILE, &invoke_fops, cxt, O_RDWR);

…

*fd = unused_fd;

fd_install(*fd, f);

((struct context *)(f->private_data))->handle = handle;

return 0;

…

}

From Vendor M:

int ged_ge_alloc(int region_num, uint32_t *region_sizes)

{

unsigned long flags;

int i;

struct GEEntry *entry =

(struct GEEntry *)kmem_cache_zalloc(gPoolCache, …);

…

entry->alloc_fd = get_unused_fd_flags(O_CLOEXEC);

…

entry->file = anon_inode_getfile("gralloc_extra",

&GEEntry_fops, entry, 0);

…

fd_install(entry->alloc_fd, entry->file);

return entry->alloc_fd;

…

}

UAF caused by race condition

My assumption is correct!

let’s try to search for more!

25

From CVE-id/issue fd exported by function Feature

Vendor M CVE-2022-21771 fd_install() GPU related driver

CVE-2022-21773 dma_buf_fd() dma-buf related

Duplicated issue#1 dma_buf_fd() dma-buf related

Vendor Q CVE-2022-33225 fd_install()

Vendor S Issue#1 fd_install() sync_file related

Issue#2 dma_buf_fd() dma-buf related

Linux Mainstream Issue#1 anon_inode_getfd() Amd GPU driver

Issue#2 dma_buf_fd() dma-buf related

I found since the end of 2021:

ARM Mali GPU driver

CVE-2022-28349 anon_inode_getfd() can be triggered from

untrusted apps

CVE-2022-28350 fd_install() sync_file related, can

be triggered from

untrusted apps

Maybe I should

pay more

attention to the

GPU drivers?

UAF caused by race condition

26

CVE-2022-28349—— A Nday in ARM Mali GPU driver

Affect:
•Midgard GPU Kernel Driver: All versions from r28p0 – r29p0

•Bifrost GPU Kernel Driver: All versions from r17p0 – r23p0

•Valhall GPU Kernel Driver: All versions from r19p0 – r23p0

int kbase_vinstr_hwcnt_reader_setup(

struct kbase_vinstr_context *vctx,

struct kbase_ioctl_hwcnt_reader_setup *setup)

{

int errcode;

int fd;

struct kbase_vinstr_client *vcli = NULL;

…

errcode = kbasep_vinstr_client_create(vctx, setup, &vcli);

…

errcode = anon_inode_getfd(

"[mali_vinstr_desc]",

&vinstr_client_fops,

vcli,

O_RDONLY | O_CLOEXEC);

…

fd = errcode;

…

list_add(&vcli->node, &vctx->clients);

…

}

Android 10 devices of some

vendors are affected !

UAF caused by race condition

27

static int kbase_kcpu_fence_signal_prepare(…)

{

struct sync_file *sync_file;

int ret = 0;

int fd;

…

sync_file = sync_file_create(fence_out);

…

fd = get_unused_fd_flags(O_CLOEXEC);

…

fd_install(fd, sync_file->file);

…

if (copy_to_user(u64_to_user_ptr(fence_info->fence), &fence,

sizeof(fence))) {

ret = -EFAULT;

goto fd_flags_fail;

}

return 0;

fd_flags_fail:

fput(sync_file->file);

…

return ret;

}

CVE-2022-28350—— A 0day in ARM Mali GPU driver

Affect:
Valhall GPU Kernel Driver: All versions from r29p0 – r36p0

Android 12 devices of some

vendors are affected !

UAF caused by race condition

28

Exploit of CVE-2022-28350

 My new exploit method

 A known exploit method

The method won’t work on

Android because of SELinux 

• No need for KASLR、SMEP/SMAP 、 KCFI bypass

• Read/write privileged files from unprivileged processes

(Details are put in the supplement part of the slides)

Given by Mathias Krause from grsecurity for a similar vulnerability CVE-2022-22942:

• Bypass SELinux and work on the affected Android 12 devices

• Write privileged files from untrusted apps

UAF caused by race condition

29

https://seclists.org/oss-sec/2022/q1/99
https://www.openwall.com/lists/oss-security/2022/01/27/4

Find the issues

• fd_install(fd, file)

• anon_inode_getfd()

• dma_buf_fd()

• sync_fence_install()

• ion_share_dma_buf_fd()

• …

Check if the file or related objects are referenced after these functions:

They all wrap fd_install(fd, file)

30

Fixes

• Don’t reference the file or related objects after step2 of fd export operation in kernel until return to user space

static long do_sys_openat2(int dfd, const char __user *filename,

struct open_how *how)

{

struct open_flags op;

int fd = build_open_flags(how, &op);

…

fd = get_unused_fd_flags(how->flags);

if (fd >= 0) {

struct file *f = do_filp_open(dfd, tmp, &op);

if (IS_ERR(f)) {

…

} else {

fsnotify_open(f);

fd_install(fd, f);

}

}

putname(tmp);

return fd;

}

return to user space directly

√:

31

Fixes
• Reference the file object or related objects with lock protection, and share the lock in file_release of fd:

int fd_export_func(…) {

mutex_lock(g_lock);

fd_install(file, fd);

Reference file or related objects;

mutex_unlock(g_lock);

return fd;

}

int file_release(…) {

…

mutex_lock(g_lock);

…

mutex_unlock(g_lock);

…

}

close(fd)

√: (From vendor S)

void hpa_trace_add_task(void)

{

struct hpa_trace_task *task;

…

mutex_lock(&hpa_trace_lock);

…

task = kzalloc(sizeof(*task), GFP_KERNEL);

…

fd = get_unused_fd_flags(O_RDONLY | O_CLOEXEC);

…

task->file = anon_inode_getfile(name, &hpa_trace_task_fops, task, O_RDWR);

…

fd_install(fd, task->file);

list_add_tail(&task->node, &hpa_task_list);

mutex_unlock(&hpa_trace_lock);

…

}

static int hpa_trace_task_release(struct inode *inode, struct file *file)

{

struct hpa_trace_task *task = file->private_data;

…

mutex_lock(&hpa_trace_lock);

list_del(&task->node);

mutex_unlock(&hpa_trace_lock);

kfree(task);

return 0;

}

32

User SpaceKernel space

file fd
Step1:get an unused fd

Step2:fd_array[fd]=file

Step3:pass the fd to user space

Step1:file=fd_array[fd]

Step2:acquire file reference

import operation

file fd

export operation

Diving into issues in the fd import operation

33

 Scenario of fd import operation

 Fd type confusion caused by race condition

 Find the issues

 Fixes

Diving into issues in the fd import operation

34

Scenario of fd import operation

User SpaceKernel space

Operations on file

or related objects

Step1:file=fd_array[fd]

Step2:acquire file referencefile fd

Operations on fd:

read(fd, …);

write(fd, …);

ioctl(fd, …);

close(fd);

…

Thread A

import operation

35

ssize_t ksys_write(unsigned int fd, const char __user *buf, size_t count)

{

struct fd f = fdget_pos(fd);

…

if (f.file) {

…

ret = vfs_write(f.file, buf, count, ppos);

…

fdput_pos(f);

}

…

}

SYSCALL_DEFINE3(write, unsigned int, fd, const char __user *, buf,

size_t, count)

{

return ksys_write(fd, buf, count);

}

Step1:file=fd_array[fd]

Step2:acquire file reference

Example:

Scenario of fd import operation

36

But this regular fd import operation is executed sequentially, which is still far from the race conditions we want to see:

Thread A Thread B

User SpaceKernel space

Operations on

file object
Operations on fd

Race condition 1

Thread A Thread B

User SpaceKernel space

Operations on fd Operations on fd

Race condition 2

Scenario of fd import operation

Searching for all kinds of scenarios of fd import operation in kernel…

37

Fd type confusion caused by race condition

Special case1: CVE-2022-21772

TEEC_Result TEEC_RegisterSharedMemory(struct TEEC_Context *ctx,

struct TEEC_SharedMemory *shm)

{

int fd;

size_t s;

struct dma_buf *dma_buf;

struct tee_shm *tee_shm;

…

fd = teec_shm_alloc(ctx->fd, s, &shm->id);

…

dma_buf = dma_buf_get(fd);

close(fd);

…

tee_shm = dma_buf->priv;

…

shm->shadow_buffer = tee_shm->kaddr;

…

return TEEC_SUCCESS;

}

import the dma-buf fd to get the dma_buf

reference the “dma_buf->priv” as tee_shm

void *priv;

dma_buf
file

void *private_data;

tee_shm

create a specific dma-buf fd

38

Thread A Thread B

User SpaceKernel space

Operations on fd Operations on fd

Race condition 2

create a specific dma-buf fd

Import the dma-buf fd to get the dma_buf

reference the “dma_buf->priv” as tee_shm

Thread A
Kernel space

Special case1: CVE-2022-21772

Fd type confusion caused by race condition

39

Normally this is

safe in sequential

execution. But what

if a race condition

gets involved?

create a specific dma-buf fd:

fd = teec_shm_alloc(ctx->fd, s, &shm->id);

User SpaceKernel space

Import the dma-buf fd to get the dma_buf：
dma_buf = dma_buf_get(fd);

reference the “dma_buf->priv” as tee_shm：
tee_shm = dma_buf->priv;

fd type confusion happens!

Thread A Thread B

Recreate the fd:

close(fd);

fd = create_a_diff_dma_buf_fd();

A kernel object

?

Special case1: CVE-2022-21772

void *priv;

dma_buf
file

void *private_data;

Fd type confusion caused by race condition

40

Special case2:

struct sync_file*internal_sync_fence_fdget(int fd)

{

struct file *file;

struct dma_fence *fence = sync_file_get_fence(fd);

/* Verify whether the fd is a valid sync file. */

if (unlikely(!fence))

return NULL;

dma_fence_put(fence);

file = fget(fd);

return file->private_data;

}

Import fd to get dma_fence object

Import fd again to get file object

Check the dma_fence object

struct dma_fence *fence;

sync_file
file

void *private_data;

dma_fence

Return “file->private_data” as sync_file for later use

Fd type confusion caused by race condition

41

Thread A Thread B

User SpaceKernel space

Operations on fd Operations on fd

Race condition 2

Thread A
Kernel space

Import fd to get dma_fence object

Import fd again to get file object

Check the dma_fence object

Return “file->private_data” as sync_file

for later use

Fd type confusion caused by race condition

Normally this is

safe in sequential

execution. But what

if a race condition

gets involved?

Special case2:

42

User SpaceKernel space

Thread A Thread B

Recreate the fd:

close(fd);

fd = open();

Import fd to get dma_fence object:

struct dma_fence *fence = sync_file_get_fence(fd);

Import fd to get file object:

file = fget(fd);

Check the dma_fence object

Return “file->private_data” as sync_file for later use

A kernel object

?

fd type confusion happens!

file

void *private_data;

Fd type confusion caused by race condition

Special case2:

43

• Case1: fd time-of-create time-of-import

• Case2: fd double import

create a specific fd

import the fd to get a specific file

reference the “file->private_data” or other

file related private objects

import the fd to get a specific file

Kernel space User space

recreate the fd

Kernel space User space

recreate the fd

process the file for purpose A

process the file for purpose B

import the fd to get a specific file

fd type confusion

might happen!

Fd type confusion caused by race condition

44

The difficulty of fuzzing the fd type confusion caused by race condition:

 The buggy code is lurking in kernel, the user process can barely notice it!

 The race window can be tiny!

Maybe we can detect

such issues at runtime

by some detecting code?

 Are there more issues like these?

Find the issues

There are still two questions that need to be answered:

 How to find these issues more effectively?
CVE-2022-21772

…

fd = teec_shm_alloc(ctx->fd, s, &shm->id);

…

dma_buf = dma_buf_get(fd);

close(fd);

…

45

enter syscall &
import

FD_UNUSED FD_CREATED FD_FIRST_USE

FD_IN_USER

fd_install(file,fd)

put_unused_fd()

syscall
return

syscall
return

close(fd)

Regular lifecycle of an fd:

Kernel space

User space

fd export

operation

Find the issues

46

Detecting the potential issues:

enter syscall &
import

FD_UNUSED FD_CREATED FD_FIRST_USE

FD_IN_USER

fd_install(file,fd)

put_unused_fd()

syscall
return

syscall
return

close(fd)

FD_SECOND_USE importimport

fd Time-of-create
Time-of-import

import

fd double-import

syscall
return

Kernel space

User space

Source code:

https://github.com/yanglingxi1993/evil_fd_detect

Find the issues

47

Bug hunting result

type From CVE-id/issue Found by

fd time-of-create time-of-import

Vendor M CVE-2022-21772 code auditing

Issue#1 detect tool

Issue#2 detect tool

Vendor S Issue#1 code auditing

Vendor Q Issue#1 detect tool

fd double import

Vendor M CVE-2022-20082 code auditing

Issue#1 detect tool

Issue#2 detect tool

Vendor Q Issue#1 code auditing

Issue#2 code auditing

Issue#3 code auditing

48

• Case1: fd time-of-create time-of-import

• Case2: fd double import

create a specific fd

import the fd to get a specific file

reference the “file->private_data” or other

file related private objects

import the fd to get a specific file

Kernel space User space

recreate the fd

Kernel space User space

recreate the fd

process the file for purpose A

process the file for purpose B

import the fd to get a specific file

Fixes

create a specific file

reference the “file->private_data” or

other file related private objects

process the file for purpose A

process the file for purpose B

import the fd to get a specific file

fix

fix

49

fd export operation

Thread A Thread B

User SpaceKernel space

Operations on

file object Operations on fd

Race condition 1

UAF caused by

race condition

Are there any other

similar resources:

Predictable;

Export operation;

IDR

handle id session id

object id memory entry id

……

used as

Self-implementing

index

Conclusion & Future work

+

50

fd import operation
fd type confusion caused

by race condition

Are there any other

similar resources:

import operation;

IDR

Race condition 2

Operations on fd

Thread A Thread B

User SpaceKernel space

Operations on fd

pid

user address

…

task_struct

vma

Conclusion & Future work

+

51

Acknowledge

Thanks to 某因幡, Ye Zhang, Chenfu Bao, Shufan Yang, Lin Wu,

Yakun Zhang, Zheng Huang, Tim Xia

52

Supplement

 Exploit of CVE-2022-28350

• UAF caused by race condition in fd export operation

• Fd type confusion caused by race condition in fd import operation

 Small race windows can be exploitable!

53

Supplement

 Exploit of CVE-2022-28350

• UAF caused by race condition in fd export operation

• Fd type confusion caused by race condition in fd import operation

 Small race windows can be exploitable!

54

static int kbase_kcpu_fence_signal_prepare(…)

{

…

struct sync_file *sync_file;

int ret = 0;

int fd;

…

sync_file = sync_file_create(fence_out);

…

fd = get_unused_fd_flags(O_CLOEXEC);

…

fd_install(fd, sync_file->file);

…

if (copy_to_user(u64_to_user_ptr(fence_info->fence), &fence,

sizeof(fence))) {

ret = -EFAULT;

goto fd_flags_fail;

}

return 0;

fd_flags_fail:

fput(sync_file->file);

…

return ret;

}

Exploit of CVE-2022-28350

What will CVE-2022-28350 lead to?

UAF in a race condition:

User SpaceKernel space

file

Thread A

Step1:get unused fd

Step2:fd_array[fd]=file

Step3:return to user space

Thread B

fput(sync_file->file)

close(fd);

UAF

mmap the “fence_info->fence” to

read-only memory

55

Exploit of CVE-2022-28350

But the CVE-2022-28350 can do more:

static int kbase_kcpu_fence_signal_prepare(…)

{

…

struct sync_file *sync_file;

int ret = 0;

int fd;

…

sync_file = sync_file_create(fence_out);

…

fd = get_unused_fd_flags(O_CLOEXEC);

…

fd_install(fd, sync_file->file);

…

if (copy_to_user(u64_to_user_ptr(fence_info->fence), &fence,

sizeof(fence))) {

ret = -EFAULT;

goto fd_flags_fail;

}

return 0;

fd_flags_fail:

fput(sync_file->file);

…

return ret;

}

A valid fd associated with an released file object

Kernel space

file

Thread A

Step1:get an unused fd

Step2:fd_array[fd]=file

Step3:return to user space

fput(sync_file->file)

file ojbect1

fd_array
[0] [1] [fd]

file ojbect0 file object_x

… …

56

Exploit of CVE-2022-28350

So what if the released file object get reused by some other privileged processes when opening a privileged file?

Unprivileged Process A Privileged Process B

file ojbect1

fd_array

[0] [1] [fd]

file ojbect0

file object_x

[0] [1] [fd2]
fd_array

int fd2=open(“/etc/crontab”, O_RDWR)

We succeed in “stealing” a

privileged file from others!

… …… …

57

Exploit of CVE-2022-28350

If the SELinux is disabled, the unprivileged process will have the ability to read/write the “stolen” privileged file:

Unprivileged Process A

file ojbect1

fd_array

[0] [1] [fd]

file ojbect0

file object_x

read(fd, buf, buf_len);

write(fd, buf, buf_len);

/etc/crontab

-rw-r--r-- 1 root root 722 4月 6 2016 /etc/crontab

Is it strange that we can bypass the DAC of

privileged file to perform the read/write operation?

The answer is:

The DAC is only checked in open(). There are no

DAC checks in read() and write() 

… …

58

Exploit of CVE-2022-28350

On Android, the unprivileged process cannot read/write the “stolen”privileged file because of SELinux 

int rw_verify_area(int read_write, struct file *file, const loff_t *ppos,

size_t count)

{

…

return security_file_permission(file,

read_write == READ ? MAY_READ : MAY_WRITE);

}

read(fd, buf, buf_len);

write(fd, buf, buf_len);

The exploitation method of “stealing” privileged file from others has been mentioned by Mathias Krause here ,

but this won’t work on Android.

59

https://seclists.org/oss-sec/2022/q1/99

Exploit of CVE-2022-28350

Let’s find some other way out!

What if the released file object gets

reused in the same process?

Unprivileged Process A

file ojbect1

fd_array

[0] [1] [fd]

file ojbect0

file object_x

[fd2]

Two different fds are associated with a

same file object! But the refcount of the

file object is still 1

… …

60

Exploit of CVE-2022-28350

What happens if we close both fd and fd2?

close(fd);

close(fd2);

int filp_close(struct file *filp, fl_owner_t id)

{

int retval = 0;

…

fput(filp);

return retval;

}

A double-fput() vulnerability

has been constructed!!!

61

Exploit of CVE-2022-28350

What can we do with a double-fput() vulnerability?

Jann Horn from Google Project Zero has given an answer to this question here, he showed how to write a privileged file

from a unprivileged process with a double-fput() vulnerability！

Maybe I can use the

similar strategy to

exploit the CVE-2022-

28350?

62

https://static.sched.com/hosted_files/lsseu2019/04/LSSEU2019 - Exploiting race conditions on Linux.pdf

My exploit for CVE-2022-28350

Step1: Construct the scene with CVE-2022-28350

fd

file object
fd2

An unprivileged file, for

example:/sdcard/data/test.txt

Untrusted

app

63

Step2: try to write the privileged file in a race condition

Thread A
Thread B

write(fd, evil_content, len);

ssize_t vfs_write(struct file *file, const char __user *buf, size_t

count,…)

{

ssize_t ret;

if (!(file->f_mode & FMODE_WRITE))

return -EBADF;

…

ret = rw_verify_area(WRITE, file, pos, count);

…

if (file->f_op->write)

ret = file->f_op->write(file, buf, count, pos);

…

return ret;

}

close(fd);close(fd2);

open(privileged_file_path, O_RDONLY);

file object The privileged file

write mode check

SELinux check

Succeed in writing the privileged file!

reuse the file object

release the file object

My exploit for CVE-2022-28350

64

Thread A Thread B

write(fd, evil_content, len);

ssize_t vfs_write(struct file *file, const char __user *buf, size_t

count,…)

{

ssize_t ret;

if (!(file->f_mode & FMODE_WRITE))

return -EBADF;

…

ret = rw_verify_area(WRITE, file, pos, count);

…

if (file->f_op->write)

ret = file->f_op->write(file, buf, count, pos);

…

return ret;

}

close(fd);close(fd2);

open(privileged_file_path, O_RDONLY);

write mode check

SELinux check

reuse the file object

release the file object

The tiny race window is still a challenge:

race window

Succeed in writing the privileged file!

file object The privileged file

My exploit for CVE-2022-28350

65

Try to widen the race window with the method given by Jann Horn:

Thread A Thread B Thread C

read(<pipe>)

if (!(file->f_mode & FMODE_WRITE))

return -EBADF;

…

ret = rw_verify_area(WRITE, file, pos,

count);

ret = file->f_op->write(file, buf, count, pos);

write mode check

SELinux check

close(fd);close(fd2);

open(privileged_file_path, O_RDONLY);

write(<pipe>)

[pinned to CPU 1]

[idle priority]

[pinned to CPU 1]

[normal priority]
[pinned to CPU 2]

[normal priority]

Succeed in writing the privileged file!

My exploit for CVE-2022-28350

66

https://static.sched.com/hosted_files/lsseu2019/04/LSSEU2019 - Exploiting race conditions on Linux.pdf

The exploit will succeed in a big chance  :

Tested on an affected Android 12 device

Attack from an untrusted app

My exploit for CVE-2022-28350

67

Supplement

 Exploit of CVE-2022-28350

• UAF caused by race condition in fd export operation

• Fd type confusion caused by race condition in fd import operation

 Small race windows can be exploitable!

68

UAF caused by race condition in fd export operation

static long dev_ioctl(struct file *filp, unsigned int cmd, unsigned long

arg)

{

switch(cmd) {

case UAF_TEST:

{

int fd;

struct file *f;

void *cxt = kzalloc(128, GFP_KERNEL);

…

fd = get_unused_fd_flags(O_RDWR);

…

f = anon_inode_getfile("DEMO", &demo_fops, cxt,

O_RDWR);

…

fd_install(fd, f);

*(unsigned long *)(f->private_data) = 0xdeadbeef;

return put_user(fd, (int __user *)arg);

}

…

static int demo_release(struct inode *nodp, struct file *filp)

{

kfree(filp->private_data);

return 0;

}

static const struct file_operations demo_fops = {

.owner = THIS_MODULE,

.open = demo_open,

.release = demo_release

};

A typical issue with a tiny race window:

Very tiny race

windows!!!

69

Try to trigger the UAF:

User SpaceKernel space

file

Thread A

fd_install(fd, f);

*(unsigned long *)(f->private_data) =

0xdeadbeef;

Thread B

close(fd);

UAF

It is really hard to hit the race

because of tiny race window

tiny race window

UAF caused by race condition in fd export operation

70

If we want to exploit the issue:

User SpaceKernel space

file

Thread A

fd_install(fd, f);

*(unsigned long *)(f->private_data) =

0xdeadbeef;

Thread B

close(fd);

evil write

We can barely hit the race

because these operations are too

slow for the tiny race window 

Open many files to try to reuse the

released file object

Release file object

Heap spray
tiny race window

UAF caused by race condition in fd export operation

71

Try to widen the race window with the method given by Jann Horn:

Thread A Thread B Thread C

read(<pipe>)

fd_install(fd, f);

*(unsigned long *)(f->private_data) = 0xdeadbeef;

close(fd);

Open many files to try to reuse the

released file object;

write(<pipe>)

[pinned to CPU 1]

[idle priority]

[pinned to CPU 1]

[normal priority]
[pinned to CPU 2]

[normal priority]

Evil write succeeds!

UAF caused by race condition in fd export operation

72

https://static.sched.com/hosted_files/lsseu2019/04/LSSEU2019 - Exploiting race conditions on Linux.pdf

*(unsigned long *)(f->private_data) =

0xdeadbeef;

binder file

void *private_data

binder_proc

0xdeadbeef

UAF caused by race condition in fd export operation
We have a big chance to hit the race and turn the issue to a memory corruption:

73

Supplement

 Exploit of CVE-2022-28350

• UAF caused by race condition in fd export operation

• Fd type confusion caused by race condition in fd import operation

 Small race windows can be exploitable!

74

Fd type confusion caused by race condition in fd import operation

CVE-2022-21772

TEEC_Result TEEC_RegisterSharedMemory(struct TEEC_Context *ctx,

struct TEEC_SharedMemory *shm)

{

int fd;

size_t s;

struct dma_buf *dma_buf;

struct tee_shm *tee_shm;

…

fd = teec_shm_alloc(ctx->fd, s, &shm->id);

…

dma_buf = dma_buf_get(fd);

…

tee_shm = dma_buf->priv;

…

shm->shadow_buffer = tee_shm->kaddr;

…

return TEEC_SUCCESS;

}

import the dma-buf fd to get dma_buf

reference the “dma_buf->priv” as tee_shm

void *priv;

dma_buf
file

void *private_data;

tee_shm

create a specific dma-buf fd

75

create a specific dma-buf fd:

fd = teec_shm_alloc(ctx->fd, s, &shm->id);

User SpaceKernel space

Import the dma-buf fd to get dma_buf：
dma_buf = dma_buf_get(fd);

reference the “dma_buf->priv”：
tee_shm = dma_buf->priv;

close(fd);

fd = create_a_diff_dma_buf_fd();

fd type confusion happens!

Thread A Thread B

recreate the fdrace window

We can hardly hit the

race because the

operations are too slow

for the race window

Fd type confusion caused by race condition in fd import operation

76

create a specific dma-buf fd:

fd = teec_shm_alloc(ctx->fd, s, &shm->id);

User SpaceKernel space

Import the dma-buf fd to get dma_buf：
dma_buf = dma_buf_get(fd);

reference the “dma_buf->priv”：
tee_shm = dma_buf->priv;

fd type confusion happens!

Thread A Thread B

recreate the fdrace window We only want to finish the work:

fd_array[fd] = another dma_buf file

Are there any other

syscalls which can

finish this work

faster?

Fd type confusion caused by race condition in fd import operation

77

Syscall:dup2(int oldfd, int newfd)

static int do_dup2(struct files_struct *files,

struct file *file, unsigned fd, unsigned flags)

__releases(&files->file_lock)

{

…

rcu_assign_pointer(fdt->fd[fd], file);

…

if (tofree)

filp_close(tofree, files);

return fd;

…

}

fd_array[fd] = file

release the old file

dup2() can finish the “fd_array[fd] = another dma_buf file” much faster !

Fd type confusion caused by race condition in fd import operation

78

create a specific dma-buf fd:

fd = teec_shm_alloc(ctx->fd, s, &shm->id);

User SpaceKernel space

Import the dma-buf fd to get dma_buf：
dma_buf = dma_buf_get(fd);

reference the “dma_buf->priv”：
tee_shm = dma_buf->priv;

fd type confusion happens!

Thread A Thread B

recreate the fdrace window dup2(diff_dma_buf_fd, fd);

int diff_dma_buf_fd =

create_a_diff_dma_buf_fd();

Fd type confusion caused by race condition in fd import operation

79

void ion_buffer_destroy(struct ion_buffer *buffer)

{

…

buffer->heap->ops->free(buffer);

vfree(buffer->pages);

kfree(buffer);

}

void *priv;

dma_buf
file

void *private_data;

ion_buffer

fd

struct ion_heap *heap;

memory corruption

We have a big chance to hit the race and turn the issue to a memory corruption:

Fd type confusion caused by race condition in fd import operation

80

Thank you!

81

