bl.%k’hat@

by 2 T =)

Greybox Program Synthesis: A New
Approach to Attack Dataflow Obfuscation

Robin David
<rdavid@quarkslab.com>

Quarkslab

About me

QO Software Security Engineer @ Quarkslab

QO Primarily interested in attacking
obfuscation and automating bug
discovery

Quarkslab

l. Introduction

Il. Synthesis Primer
o Usages
o Application to software deobfuscation

lll. Greybox Synthesis
o Algorithm overview
o black-box I/O oracle
o whitebox AST search

IV. Table generation

V. Implementation in QSynthesis (deobfuscation up-to reassembled instructions)
o implementation & reassembly
o IDA integration

VI. Use-cases

VII. Conclusion

Introduction

(obfuscation techniques)

Obfuscation

What ?

Transformation of a program P in a semantically equivalent P’
harder to understand

Why ?
To protect intellectual property from
reverse-engineering

How ?
By hiding valuable assets of the program

/"‘\ (which are usually) "\
‘_J \'_,.

program logic program data

algorithms keys, strings, constants...
(referred as control-flow) (referred as data-flow)

Obfuscation Diversity |

Control-Flow Obfuscation

Hiding the logic and algorithm
of the program

virtualization, opaque predicates,
CFG-flattening, split, merge, packing,
implicit flow, MBA, loop-unrolling...

Data-Flow Obfuscation

Hiding data: constants, strings,
APIs, keys etc.

data encoding, MBA, arithmetic
encoding, whitebox, array
split/fold/merge, variable splitting...

(@ A b))+ b) << .
NA-(@Vb)-
e § E(a/\b)»<<1)_§
: ' (@ A “b)+b) <<
Ne(@Vb-@A:
1) =

Data Obfuscation (data—f/ow)

= This work focuses on data-flow and more especially MBA (Mixed Boolean Arithmetic)
(but many other transformation exists like: data encoding, whitebox, variable splitting/merging ..)

(A A =8) + 8) «

OBFUSCATION
,,,,__.,.._...."} NA—=-UaYV B)-
A+ | ’ (a A B)) « 1) — ((a
W A —B) +B) «
DEOBFUSCATION? DelaVe-aA

B8))))

o Problem Reversing the transformation is hard (unlike many control-flow obfuscation, solution
is not boolean)

Deobfuscation Problems

Deobfuscating data-flow expressions on real-world obfuscated
programs yield two distinct research problems.

PB #1 PB #2
Locating the data to deobfuscate Deobfuscating the data obtained
and knowing what to deobfuscate after it gets located (in our context a
(depends on what you’re looking for data-flow expression).
in the binary).
(This is specific to each binary and is (Synthesis only addresses this issue !)

mostly manual)

Synthesis primer

Program Synthesis

= Program synthesis consists in automatically deriving a program from

O A high-level specification (typically its semantic through its I/O behaviour)

O Additional constraints:
e Compilation: a faster program
e Deobfuscation: a smaller or more readable program

- synthesis -
i f
(fitness func)
q

P
I ? \ . .
Program ! : o New pro.gf.raml(sat/sﬂ//ng
(for which the semantic Synthesis constraint (fitness i@i:ﬁ zgt/;at/on and
is the specification) function which optimizes

speed, size, etc..) 10

Synthesis for Superoptimization

Synthesis is used in a variety of domains.
Applied on program analysis it is mostly
used for optimization (known as super-optimization)

A Synthesizing Superoptimizer

Raimondas Sasnauskas Yang Chen Peter Collingbourne
SES Engineering Nvidia, Inc. Google, Inc.
raimonda om m pec@google.com
Jeroen Ketema Gratian Lup Jubi Taneja
Embedded Systems Innovation by Microsoft, Inc. University of Utah
TNO gratilup@microsoft.com jubi@cs.utah.edu

jeroen ketemaG@tno.nl

Abstract

John Regehr
University of Utah
regehr@cs.utah edu

signed for LLVM [12] but we have also used it to find new
for the Microsoft Visual C++ compiler.

derive compiler we
might be able to sidestep some of the substantial engineer-
ing challenges involved in creating and maintaining a high-
quality compiler. We developed Souper. a synthesizing su-
peroptimizer, to see how far these ideas might be pushed in
the context of LLVM. Along the way. we discovered that
Souper’s intermediate representation was sufficiently similar
to the one in Microsoft Visual C++ that we applied Souper to
that compiler as well. Shipping. or about-to-ship. versions of
both compilers contain optimizations suggested by Souper
but implemented by hand. Altemately, when Souper is used
as a fully automated optimization pass it compiles a Clang
compiler binary that is about 3 MB (4.4%) smaller than the
one compiled by LLVM.

Kiv:1711.04422v2 [cs.PL] 6 Apr 2018

Several trends convinced us that it was time to write a
w superoptimizer. There has been increased pressure on
compiler developers due 1o the adoption of higher-level pro-
‘gramming languages and a proliferation of interesting hard-
‘ware platforms. SAT and SMT solvers continue to improv
they are already more than capable of discovering equiva-
lence proofs necessary to verify compiler optimizations in-
volving tens to hundreds of instructions. Solvers are also a
key enabler for program synthesis, which supports the dis-
covery of new optimizations that are out of reach for naive
search. Finally, verified compilers appear to be much more
difficult o extend than are traditional compilers. Though we
have not yet done so, a natural extension of superoptimiza-
tion research would be to use a proof-producing solver to

Souper: superoptimizer for LLVM IR
(backed by SMT solving)

or deobfuscation.

Superoptimizers

STOKE

STOKE is a stochastic optimizer and program synthesizer for the x86-64
instruction set. STOKE uses random search to explore the extremely high-
dimensional space of all possible program transformations. Although any one
random transformation is unlikely to produce a code sequence that is
desirable, the repeated application of millions of transformations is sufficient
to produce novel and non-obvious code sequences. STOKE can be used in
many different scenarios, such as optimizing code for performance or size,
synthesizing an implementation from scratch or to trade accuracy of floating
point computations for performance. As a superoptimizer, STOKE has been
shown to outperform the code produced by general-purpose and domain-
specific compilers, and in some cases expert hand-written code

Publications
STOKE has appeared in a number of publications.

« Stochastic Superoptimization - ASPLOS 2013

« Data-Driven Equivalence Checking - OOPSLA 2013

% ic Optimization of Floating-Poi g with Tunable
Precision - PLDI 2014

« Conditi Correct imization - OOPSLA 2015

* Stochastic Program Optimization - CACM 2016

Stratified Synthesis: Automatically Learning the x86-64 Instruction Set —
PLDI 2016

Sound Loop Superoptimization for Google Native Client — ASPLOS 2017

STOKE: stochastic superoptimizer at
assembly level (x86 64)

1

Synthesis for Deobfuscation

Multiple approaches exist, templates, stochastics (c.g
MCTS), solver-based, enumerative approaches,
search-based (S-Metaheuristics) etc...

2014 Synti Search-based approach
Rolf Rolles, template-based ynta using S-Metaheuristics Implementation of QSynth
and solver-based approaches Monte-Carlo Search (expected CCS 2021) algorithm with MIASM
Tree based approach framework
2016 2020
2017
hSSPAM QSynth
Appr:'ac bas'e'd o pIattemd FBiondi et al. Offline enumerative (obfuscation oriented)
mat9 g r.ewr.|t|n9. ru e§ an SMT based approach search based approach .
arithmetic simplification to def discuss how to defeat
i o defeat MBAs (our approach) hesi h
(not synthesis per se) synthesis approaches

12

Greybox Synthesis

(design & principles of our algorithm)

Synthesis algorithm

Our algorithm is based on an enumerative approach

backed by symbolic execution and a synthesis (iise/f based
on two sub-components)

Synthesis
1/0O Oracle
Symbolic Execution expr precomputed table ’
program —p»> e —P expr

AST simplification
algorithm

14

Symbolic Execution

= We use symbolic execution as a means of extracting data-flow expressions of registers or
memory at arbitrary locations in the program. The symbolic execution can either be static or

dynamic. Can backfrack Avoid having to r\/

expressions up to
2\ program entry execute the program

AST
Assembly Intermediate Representation
mov rax, rsi rax® := rsi
xor rax, OxEFFFFFFFFFFFFFFF raxl := rax ® OxFFFFFFFFFFFFFFFF
’ H rax2 := raxl | rdi
mov rcx, rdi rex0 s= rdi
xor rex, OxFFFFFFFFFFFFFFFF rcxl := rcx@ © OxFFFFFFFFFFFFFFFF 5
and rex, rsi SE rex2 := rcxl & rsi rax
mov rdx, rdi —> | rdx0 := rdi >
oo ron ORLFFFFEFFFFFFEFFF rdx1 := rdx0 & rsi
ﬁgr :dﬁ’ r:i rdx2 := rdxl © OXFFFFFFFFFFFFFFFF
add rax. rex rdi0 := rdi | rsi
sub rax’ rdx rax3 = rax2 + rcx2
add rax’ rdi rax4 := rax3 - rdx2
’ rax5 := rax4 + rdio
retn OxfEEEEEEFEEEFELLE| [rdi] [OXEEEEEEEFEEELLELL)

15

Our synthesis algorithrh

Our algorithm is a greybox synthesizer based on two

components
An AST simplification An I/O oracle based on an
algorithm that can use various offline enumerative search
strategies backed by a pre-computed
. . table
“ Synthesis '.‘

expr (sub-)AST I/0 Oracle expr’

W“-‘:}
—> AST simplification —> (j%

algorithm <‘ .

synthesised || Precomputed fable
expr AST
1

]
ITEBOX C ENT LACKBOX C ENT
W/HITEBOX COMPONENT = ~ B OX COMPONEN

16

Blackbox vs Whitebox in Synthesis (for déobfuscation)

Blackbox

relates to approaches
considering expressions to
synthesize as blackboxes
and only interacting with
them through their
input/ouput behavior

Whitebox
relates to approaches
manipulating the semantic
of the expression through
its syntactic representation
(usually the AST of the
semantic)

+ only influenced by semantic complexity + the exact semantic is considered
- large search space - influenced by syntactic complexity
- boolean result (fully synthesized or not at all) ' + enable sub-expressions synthesis

17

Blackbox I/O Synthesié Oracle

Blackbox I/O Oracle Pre-computed tables
set of pseudo- :
random inputs A B Given a grammar with some operators (+, -, |,

'OV. _ :; 2 ; I &, @.), and variables (o, b, c..), derives all
in 3 | 4 1 | possible expressions (up to a given bound)
\ | and evaluate them on Vin to obtain a
/ : function:
! Vo™ expr
A +B I
i Vo expr
: <1, 2, 5> A+B
U U I <-1,-4, 3> A-B
| <1, -1, 5> AlB
ol 02 03 ol 1 02 03 :
V. =125 12 |5
out
\ / o generated once, and ensures O(log(n)) synthesis

Equivalent | o Unsound but equivalence can be checked by SMT
quivaient :

= What happens if it cannot synthesize the root node ?

18

Whitebox AST search

O Ifit cannot synthesize root node it aims at simplifying sub-expressions to obtain
at least a partial synthesis (while with an I/O oracle the result is boolean).

O Thus an AST search algorithm will iterate through the graph looking for
sub-nodes to synthesize.
Original strategy

. ® B
;Algorlthm : /6\ . This simplification

. : (&) i
1. .Se.arch a node to sy|t1the5|ze § @\ . strategy have some :
“ ooy prorder E ﬁ ﬁ % @\ complexity issues (yet it |
temporary placeholder § Y ¥ RO yetit .
3. ifnot, replaces it also @@ /? @\@ @ 0 . provides optimal results) g
4. repeat the search until having : R (xsi) @‘ éD\ = @
substituted all nodes § : :
5. recursively replace placeholders ® R ® R
5 by the corresponding AST g & =) 8‘ (rsi)
S Yoo or oI @ £

19

https: outu.be/ID PEVseecI

https://docs.google.com/file/d/1MAVlzhi7uRKhZQ3wtnfcmTtc9ZpDoKSg/preview
https://youtu.be/ID_PEVseecI

New AST search stratégies

Top-Down pivide & conquer) Top-Down & Bottom-Up

Single DFS traversal of the AST. Ensures Like Top-Down but if a node gets
linearity of the simplification of the synthesized attempts to re-synthesize its
algorithm (while original one was quadratic parents by means of reducing the
in the worst case). variable cardinal.

|

|

® | 2
s . : A .
A A | @Kgﬁ A g\@
R/C?D | R@%\ /gbg\
@@ . @R@@ ﬂ@

)) @ © R@ R@

s: outu.be/VORg3LHC6Lw https: outu.be/G11BOgmwLal

?}

@ (&)

<@
o

E

O
®

20

=
+
+

https://docs.google.com/file/d/15_j5fO_WfLj4IvxO_FZ3dF2w44qg0h5M/preview
https://youtu.be/VQRg3LHC6Lw
https://docs.google.com/file/d/1p9nLlntxLT4ZBL1Xw-8U60wG1p_BJTsw/preview
https://youtu.be/G1lBOqmwLaI

Algorithm Visualization

https://docs.google.com/file/d/1jb6dUbRCx6I-97em8JC2fUGPv2-_XgYg/preview
https://youtu.be/Nz8KC1HtgiI

Algorithm Visualization

https://docs.google.com/file/d/1b8943OTxwWnK0XmodIhDotx3dTvPF6X5/preview
https://youtu.be/9MHeGtc3Uhc

Table generation

(aka generating a potent I/O oracle)

Table Generation

= Table generation requires evaluating millions of expressions and keeping millions of V_

t

vectors to ignore identical ones (by construction we generate from smaller to larger expressions).

Improvements:

O Memoization of all evaluated expressions (thus A+B is evaluated only once for all,
when combined with another expression like A+B-C the memoized result is reused for
evaluation)

QO JITTing of expressions evaluation. Evaluation made on native integers (not
using Python). For that uses dragonFFI (could also have used numpy).

U

We now have a table with 375 million entries
(last year we had “3 millions)

(Generated with a 235 GB RAM machine :p)

'\

reach
25K exprs/sec

25

https://github.com/aguinet/dragonffi

Table Storage

Python object Python ORM for Key Value database

serialization module databases like sqlite (by Google)
' ® Requires loading the = | elf V_,, primary key, —) | e Store keys as “tries”
' whole table : ' insertion is linear in : ' to ensure O(log(n)) :
' e Parsing is slow on number of entries. ' access
' large object | e If not, lookup is linear ! ' Automatic caching
' in the number of ' mechanism
| entries
i = Ok for small tables but , ' = Not suitable for such ! ' = Best suited for our ,
| limited for larger ones : | large tables : | need :

__

(format used by MSynth) L
=> 122 ps

= We also made a REST API (using FastAPI) to serve Level-DB database content 26

Expression Normalization

= Tables are limited by the enumerative approach, combining some variables (a, b, c..) with some
operators (+, -, & ...). Thus no constants in sight. To improve expression diversity we performed two
experiments.

Expression Linearization

Goal: Representing expressions
as normalized equations. For
that, uses SymPy a library for
symbolic maths.

Pros/Cons:

e introduces constants !
- . . e annihilates generation performances
& gL SITEETPES = e introduces power operators
5 a- (c-a) 2%a - ¢ e only works on pure arithmetic
(a-b) - (a +a) -a-b expressions
a+ (b x b) b2 + a
ky_, we thus do not use it in

Pracﬂce

27

Expression Learning

Problem
What if the synthesized expression is larger than the one in input ?

expr Synthesis expr

1/0O Oracle
606 —> —>

precomputed
table

28

Expression Learning

Problem
What if the synthesized expression is larger than the one in input ?

expr Synthesis expr
I/O Oracle
gl —* —
precomputed
\ table
\\ ,
We can update the table ,
with the smaller expr §', /
/
\ /
)
Input Expr Output Expr’ (in table)
It (a*xa) -1 = ety
TRODUCES . I SRt
CONSTANTS | F
(b A a) — l = (a4 a) + (l'\ A a)

= We also now introduce simple constants in our table generation process 29

Paper benchmarks

Comparison with Syntia Against Tigress
simplification | Simplification
— I Mean expr. size Simplification Mean Scale factor
Mean expr. size Simplification Mean scale factor ! orig Obfy Synt 2 | Partial Fall Obfs/Orig Synt/Org
Orig | Obfg | Synt | @ | Partial | Full | Obfs/Orig Synt/Orig I Dataset 2 354
- 13.5 | 245.81 21.92 0 500 x18.34 x1.64
Syntia / / / 52 0 448 / / . EA (70.80%)
QSynth | 3.97 | 203.19 | 3.71 0 500 500 x35.03 x0.94 I Dataset 3 135 | 44364 25.42 0 500 375 i x1.90
Orig, Obfs, Obfg, Synt are rsp. original, obfuscated (source, binary level) and synthesized exprs I VR-EA (75.00%)
Dataset 4 133
. 135 | 9223.46 | 3812.84 | 5 234 x405.25 x234.44
I EA-ED (565.65%)
ACCUTGCY & sPeed . Orig, Obfs, Obfy, Synt are respectively original, obfuscated (source, binary level) and synthesized expressions
Semantic Time | Accuracy & Speed
Sym.Ex | Synthesis Total per fun. -
Syntia / / / 34min | 4.08s | Semantic Time
Qsynth | 500 1m20s 155 | 1m35s | 0.19s . Sym.Ex_ | Synthesis | Total | perfun.

Dataset2 | OK: 413
EA KO: 4
Dataset 3 | OK: 401
VR-EA KO: 43
Dataset 4
EA-ED

1m7s 1md2s 2m49s 0.34s

17m10s 2mdbs 19m56és 2.39s

13m18s 2h7m 2h2Tm 35.47s

= Results were promising ! 31

Benchmarks improvements

Algorithm | Mean size Simplification Mean Scale factor Time
Evolution | Synt Expr. | @ | Partial | Full | Obfs/Orig | Synt/Obfg | Synt/Orig | Sym.Ex | Synthesis | Total | per fun.
Dataset 1 Paper 3.71 0 500 500 x35.03 x0.02 x0.94 1m20s 15s 1m35s 0.19s
Syntia New 3.71 0 500 500 x35.03 x0.01 x0.94 57s 6s 64.05s 0.13s
Mul 3.71 0 500 500 x35.03 x0.02 x0.94 54s 4s 59.50s 0.12s
Concat 3.71 0 500 500 x35.03 x0.02 x0.94 60s 4s 64.90s 0.13s
LDB 3.71 0 500 500 x35.03 x0.02 x0.94 60s 4s 64.91s 0.13s
370M 3.85 0 500 471 x35.03 x0.02 x0.97 61s 4s 65.73s 0.13s
Dataset 2 Paper 21.92 0 500 354 x18.34 x0.17 x1.64 67s 1md2s 2m49s 0.34s
EA New 19.93 0 500 324 x18.34 x0.12 x1.49 37s 26s 63.89s 0.13s
Mul 19.48 1 499 324 x18.34 x0.15 x1.45 37s 23s 60.59s 0.12s
Concat 19.48 1 499 324 x18.34 x0.15 x1.45 39s 23s 62.71s 0.13s
LDB 19.48 1 499 324 x18.34 x0.15 x1.45 40s 17s 58.39s 0.12s
370M 17.37 2 498 343 x18.34 x0.13 x1.30 39s 16s 55.94s 0.11s
Dataset 3 Paper 25.42 0 500 375 - x0.06 x1.90 17m10s 2m46s 19m56s 2.39s
VR-EA New 75.14 14 486 296 - x0.16 x5.61 11m55s 36s 12m31s 1.50s
Mul 73.98 18 482 296 - x0.19 x5.52 11m46s 35s 12m21s 1.48s
Concat 21.50 0 500 324 - x0.06 x1.60 12m32s 16s 12m18s 1.48s
LDB 21.52 0 500 324 - x0.06 x1.61 10m2s 8s 10m11s 1.61s
370M 19.07 0 500 346 - x0.05 x1.42 9mb7s 9s 10m6s 1.21s
Dataset 4 Paper 3812.84 5 234 133 x405.25 x0.41 x234.44_ | 13ml8s 2h7m 2h21m 35.47s
EA-ED New 483.26 0 239 133 x458.47 x0.03 x35.87 _ 9m?22s 2h19m 2h28m 37.29s
Mul 375.36 0 239 133 x458.47 x0.04 x27.86 _ 9m?20s 1h34m 1h43m 26.01s
Concat 375.36 0 239 133 x458.47 x0.04 x27.86 _ 9m15s 1h21m 1h30m 22.88s
LDB 375.45 0 239 133 x458.47 x0.04 x27.87_ 9m34s 1h16m 1h26m 21.64s
370M 315.01 0 239 149 x458.47 x0.04 x23.38 _ 9Im30s 1h21m 1h30m | 22.79s 3 2

Benchmarks improvements

Algorithm | Mean size Simplification Mean Scale factor Time

/ L. \ Evolution | Synt Expr. | @ | Partial { Full | Obfg/Orig | Synt/Obfg | Synt/Orig | Sym.Ex | Synthesis | Total | per fun.
e Paper: Original results Dataset 1 | | Paper 370 | 0| 500 |50] x3503 | x002 [x094 | 1m20s | 155 | 1m35s | 0.19s
New 3.71 0| 500 | 500 | x35.03 x0.01 x0.94 57s 6s 64.05s | 0.13s
Mul 3.71 0| 500 | 500 | x35.03 x0.02 x0.94 5ds 4s 59.50s | 0.12s
Concat 3.71 0| 500 | 500 | x35.03 x0.02 x0.94 60s 4s 64.90s | 0.13s
LDB 3.71 0| 500 | 500 | x35.03 x0.02 x0.94 60s 4s 64.91s | 0.13s
370M 3.85 0| 500 | 471 | x35.03 x0.02 x0.97 61s 4s 65.73s | 0.13s

Dataset 2 Paper 2192 | 0 | 500 | 354 | x1834 x0.17 x1.64 67s 1m42s | 2md9s | 0.34s | |
[T] New 19.93 0| 500 | 324 | x1834 x0.12 x1.49 37s 265 63.80s | 0.13s
e Syntia: ED + EA (very simple) / Mul 19.48 1| 499 | 324 | x1834 x0.15 x1.45 37s 23s 60.59s | 0.12s
e EA: EncodeArithmetic = Concat 19.48 1 499 324 x18.34 x0.15 x1.45 39s 23s 62.71s 0.13s
LDB 19.48 1| 499 | 324 | x1834 x0.15 x1.45 40s 17s 58.39s | 0.12s
MBA 370M 17.37 2 | 498 | 343 | «x1834 x0.13 x1.30 395 16s 55.94s | 0.11s

e VR-EA: Virtualization + EA | ———; . . : N
) Dataset 3 Paper 2542 | 0 | 500 | 375 | 2 x0.06 x1.90 17ml10s | 2md6s | 19m56s | 2.39s
® EA-ED: EA + EncodeData New 75.14 14| 486 | 296 = x0.16 X5.61 11m55s 365 12m31s | 1.50s
\ Mul 73.98 18 | 482 | 296 = x0.19 X5.52 11md6s 355 12m21s | 1.48s
Concat 21.50 0| 500 | 324 - x0.06 x1.60 12m2s 16s 12mi18s | 1.48s
LDB 21.52 0 500 324 - x0.06 x1.61 10m2s 8s 10mlls 1.61s
370M 19.07 0| 500 | 346 = x0.05 x1.42 9m57s 9s 10m6s | 1.21s

Dataset 4 || Paper 3812.84 | 5 | 234 | 133 | x405.25 x0.41 x234.44_ | 13ml8s | 2h7m | 2h2lm | 35.47s| |
New 483.26 0| 239 | 133 | x45847 x0.03 x35.87_ | 9m22s | 2h19m | 2h28m | 37.29s
Mul 375.36 0| 239 | 133 | x45847 x0.04 X27.86_ | 9m20s | 1h34m | 1hd3m | 26.01s
Concat 375.36 0 239 133 x458.47 x0.04 x27.86 _ 9m15s 1h21m 1h30m 22.88s
LDB 375.45 0| 239 | 133 | x45847 x0.04 x27.87_ | 9m34s | 1h16m | 1h26m | 21.64s

\ / 370M 315.01 0| 239 | 149 | x45847 x0.04 x23.38_ | 9m30s | 1h2lm | 1h30m | 22.79s 33

Benchmarks improvements

Algorithm | Mean size Simplification Mean Scale factor Time
Evolution | Synt Expr. | @ | Partial | Full | Obfs/Orig | Synt/Obfg | Synt/Orig | Sym.Ex | Synthesis | Total | per fun.
Dataset 1 Paper 3.71 0| 500 | 500 | x35.03 x0.02 x0.94 1m20s 15s 0.19s
Syntia New 3.71 0| 500 | 500 | x35.03 x0.01 x0.94 57s 6s A 64.05s
Mul 3.71 0| 500 | 500 | x35.03 x0.02 x0.94 54s 4s 59.50s
Concat 3.71 0| 500 | 500 | x35.03 x0.02 x0.94 60s as 1| 64.90s
LDB 3.71 0| 500 | 500 | x35.03 x0.02 x0.94 60s 4s 'l 64.91s
370M 3.85 0| 500 | 471 | x35.03 x0.02 x0.97 61s as
Dataset 2 Paper | 21.92 I\(\] 500 354 x18.34 x0.17 x1.64 67s 1mdds |21114.‘)s f
L4 X o 19.93 0 NS00 | 324 | x18.34 x0.12 x1.49 37s 264 53.89s
Better average ;1948 1| 499 | 324 | x18.34 x0 S d 2ds ,| 6059
.] . t /] 1948 1 99 | 324 | x18.34 | 2P€€ 235/ | 62.71s
simplification , (K . K
L. 19.48 1 L7499 | 324 | x18.34 x| Improvement 1 58.39s
than original ; “ { 498 | 343 | x18.34 X0 . gﬁg
. . ranging from A
|mp|ementat|on r (B2}~ | 500 |37 2 x0 31% to 67% 6s | [[9m56sH
(90% for EA-ED) \ 75.14 296 = x0 ° ° 365 | 12m3ls
vl | 73.98 296 - x0.19 x5.52 11m46s 359 12m21s
Concat 21.50 324 . x0.06 x1.60 12m2s 16s\ | 12m18s
LDB \ 21.52 ! 324 - x0.06 x1.61 10m2s 8s \ 10m1lls
370M * [19.07 |0 500 | 346 - x0.05 x1.42 9m57s 9s * 10m6s
Dataset 4 Paper 3812.81 133 | x405.25 x0.41 x234.44_ | 13ml18s | 2h7m
EA-ED New 483.26 133 x458.47 x0.03 x35.87 _ 9m22s 2h19m 2h28m
Mul 375.36 133 x458.47 x0.04 x27.86 _ 9m20s 1h34m 1h43m
Concat 375.36 133 x458.47 x0.04 x27.86 _ 9m15s 1h21m 1h30m
LDB 375.45 133 | x458.47 x0.04 x27.87_ | 9m34s | 1h16m | 1h26m
370M 315.01 149 | x458.47 x0.04 x23.38_ | 9m30s | 1h2lm 34

Implementation

(in the QSynthesis utility)

Triton
Dynamic Symbolic
Execution framework

Dynamic Binary
QBD' Instrumentation

Framework
Used for

reassembly features
(bit vector IR in ANF form) .)
Dynamic Tracing Framework &

Time Travel Debugger (TTD)

QSynthesis
Framework

FastAPI (developed in dragonffi

To serve a table as a Python) For the JITTing of
REST API expression evaluation
(during table generation)
IDA Pro
Integrated as a Level-DB

As database for table

plugin
storage

36

IDA Integration

File Edit Jump Search View Debugger Lumina Options Windows Bip Help
HH v B8 B 3 v @O hghatFvF e X > @ O|Nodebugger | %] @

J: =" -~ — @ - § o.___________________________K =

Library function [ll Regular function [ll Instruction Data | Unexplored External symbol [ll Lumina function

\\z Functions window o @l IDA View-A, QSynthesis, Synthesized AST, Triton AST X | [@] Hex View-1 X @& Structures X @A Enums X | & Imports X @& Exports X
Function name 2
(7] _init_proc [o viewa o e 8] Qsynthesis X | @ Synthesized AST X W TitonAST X
s jmov rdx, rax 5
[7] sub_401020 mov rax, [rbp+var_8] i
and rax, [rbptvar 18] QSynthesis
add rax, rax >
Eaa tax) rde Synthesis configuration
sub rcx, rax
mov rax, [rbp+var_8] From: [0x4011a2 | To: [0x40128a | Target: |REG v||rRax ~
7] _dl_relocate_static_pie [rax, [rbpivar_20]
Sa i lea rdx, [rax+rax] Table: | LEVELDB ~ | [ftmpyitsfinal_table_leveldb
(7] deregister_tm_clones mov rax, [rbptvar_20]
[7] register_tm_clones xor rax, [rbptvar_8] Algorithm: | Top-Down v | Type: | FULL_SYMBOLIC ~ || FULL SYMBOLIC
[7] _do_global_dtors_aux sub EdX; Bl
e mov rax, rdx
[7] frame_dummy not. rax
[7] target 344 ox rax; [tBpivar_8] Run Triton Run Synthesis
¥ target 77 embly options
[7] target_362 g - o < Node count Depth simplified: Yes
F\ tarnat 120 . patch function bytes Synthesiszed Expression
s shrink function 124 12 ((((rex + rdi)) & rdi) ~ ((rdx +
) move some instruction instead of filling with NOPs rdi)))
‘-’h o uavien a ®‘ Can break disassembly for relative instructions. (Works only for linear blocks) Inputs
Snapshot database before patching Kesd Node count Depth Scale
OK Cancel
X = 64 9 4 -92.74%
mov rax, [rbptvar_8]
and rax, [rbp+var_18] rdx = 64
add rax, rax
add rax, rdx
not rax
or rax, rsi
add rax, rax
sub rex, rax
mov rax, rex
sub rax, 1
pop rbp
retn
i } // starts at 4011A2
target_77 endp
Highlight Deps Show AST Show AST Reassemble
(743, 326)
Output window 0o@ ®

T o e
IDA is analysing the input file... —
You may start to explore the input file right now.

Python 3.9.1+ (default, Feb 5 2021, 13:46:56)
[GCC 10.2.1 20210110]
IDAPython 64-bit v7.4.0 final (serial 0) (c) The IDAPy Team <idap; .com>

Propagating type information...
Function argument information has been propagated
lumina: applied metadata to 3 functions.

The initial autoanalysis has been finished.
Running QSynthesis

Python

37

https outu.be/AwZs56Yajiw

https://docs.google.com/file/d/1dOg4MUl7gSGHotJtk3ZHULfwdTle11wy/preview
https://youtu.be/AwZs56YajJw

Use-Cases

getting our hands dirty!

Attacking YANSOIllvm

Transforms:

e VM: transforms basic operators T — -
(+, ®..) with function calls Yet Another Not So Obfuscated LLVM

e Merge: merges all internal i i i it | SR
linkage functions in a single = READMEMd szm
one . . YANSOIlvm

e Flattening: CFG flattening Releases

e Connect: sp”ts basic blocks wetanotherNotSo Obiscaica:ELVM No feleases pibiehed
and uses switch to add false LLVM Version aages
branches Based on the release version 9.0.1. Other version might work as well, but one has to merge/rebase the X86 related No packages published

e ObfCon: obfuscates constants o
with MBAs Build

* BB2func: splits & extracts S s Do WD
basic blocks in new functions it nis e A SR TR e

git remote add origin https://github.com/emc2314/YANSOllvm.git

e ObfCall: changes internal

linkage function calling https://github.com/emc2314/YANSOllvm
convention

= There are plenty of other Obfuscator-LLVM derivatives used in the wild 39

https://github.com/emc2314/YANSOllvm

YANSOIIvm: VM obfuscation

var_8= dword ptr -8
var_2= word ptr -2
; _unwind {
push rbp
mov rbp, rsp
sub rsp, 10h [ﬁ
mov [rbp+var_8], edi
cmp [rbp+var_8], 0
jnz short loc_40128E
™l __YANSOLLVM_VM_Add proc near N
v V ; _unwind {
E[ﬁ, E@@ mov rax, rsi
xor rax, OFFFFFFFFFFFFFFFFh H
calL d # Synthesized and
movsx eax, word ptr [rax+2]| |loc_40128E: :r:v :_::' ::i y
i i .
Eov el e = xor rcx, OFFFFFFFFFFFFFFFF reassembled to
mov esi, eax mov esi, eax and rex, ts;,L
call __ YANSOLLVM_VM_Xor call __ YANSOLLVM_VM_Sub mov rdx, rdi
mov [rbp+var_2], ax mov edi, eax and rdx, rsi
mp short loc 4012B7 call c xor rdx, OFFFFFFFFFFFFFFFFh
— cwde or rdi, rsi
mov edi, eax add rax, rcx 4
mov eax, 1 sub rax, rdx
mov esi, eax add rax, rdi . .
call _ YANSOLLVM_VM_Add| — retn Yy, lea rax [rsi+rdi]
mov [rbp+var_2], ax ; } // starts at 4012E0 J
T __YANSOLLVM_VM_Add endp ret

= We then could go further by removing calls and replacing them by the operation directly

40

YANSOIllvm: MBA used

° ((~x | OXTAFAFA69) & 0xA061440) + ! X +y | (xX]|~y)+(~x&y)-(~(x&y))+(x]|y)
((x & 0x1050504) | 0x1010104) == | X -y x4~y +1
185013572 !
: x <<y |/
o plx(x|any)x*2 != p2x(y|any)**2 i x >ay |/
R ! x >Ly |/
e X +vy =x"y + 2%x(x & vy) !
! x &y [—(~(x&y)) + (~x|y) + (x&~y)
o x Ty = (x|~y) - 3x(~(x]y)) + i x [y [(Xy) +y - (~x&y)
2x(~x) -y ? x My [x +y - ((x&y) << 1)

About MBA & constants:

expression using constants: a & Oxdeadbeef = % tables do not contains constants

constants: Oxdoodfeed = ¢ can synthesize it!
41

Example: Opaque Constant

“blackbox I/0 optimization
. If the evaluation of all inputs

: produces the same output,

thus the expression encodes a
. constant.

all i =

push
mov
mov
not
mov
or

mov
and
lea
mov

mov
or

mov
or

not
lea
mov
xor
add
sub
mov
xor

mov

movzx

rbp
rbp, rsp
edx, edi
edx
eax, edx

eax, 0OA021040h

eax, OA061440h

ecx, edi

ecx, 40400h

eax, [rcx+rax+1010104h]
r9d, eax

r9d, 0B071544h

esi, r9d

esi, edx

edx, r9%

edx, edi

edx

r8d, [rdx+rdx*2]
edx, eax

edx, 74F8EABBh
edx, edx

edx, edi

ecx, r9%

ecx, edi

ecx, esi

ecx, r8d

ecx, edx

edx, ecx

edx, 9054CBSh
eax, edx

eax, 20259FCh

rax, [rax+rax+0Fh]

rax, OFFFFFFFFFFFFFFFOh
r8, rsp

r8, rax

rsp, r8

ecx, OEEh

eax, cl

imul
imul

mov
sub
setz
neg
xor
mov

mov

v

eax, eax
esi, eax, 37F1h
edx, edx

eax, esi

eax, 203D2640h
dl

edx

edx, OF88BA89%h
rl0d, esi
rl0d, ODFC2D9BFh

eax, esi
eax
ecx, eax

ecx, ODFC2D9BFh

ecx, [rcx+rcx*2]

eax, [rax+rax-203D2640h]
esi, 203D2640h

esi, rlod

esi, ecx

esi, eax

eax, esi

eax, O0BDC2BASh
edx, eax

rcx, ds:0Fh[rdx*8]
rcx, OFFFFFFFFFFFFFFFOh

rax, rsp
rax, rcx
rsp, rax
[rax], rdi
rl0, [rax]
ecx, esi
ecx, r9d
edx, esi
edx, r9%d
ecx, edx
esi, r9d
esi, 1
ecx, esi
ecx, ecx
rl0, rcx
cl

el;: i

short loc_401D60

Value
synthesized

= 0Ox0

42

Windows Warbird

= Part of the Windows kernel is known to be obfuscated with a framework
called Warbird. More specifically PatchGuard features are obfuscated. We
gave a very quick look at the PatchGuardInit function.

lall e 5=

loc_140A3AF54:

rdtsc

shl rdx, 20h

mov rdi, 7010008004002001h
or rax, rdx

mov rlad, 5

mov rcx, rax

ror rax, 3

xXor rcx, rax

mov rax, rdi

mul rcx

mov rcx, rdx

mov [rsp+24B8h+var_1858], rdx
xXor rcx, rax

mov rax, 2ESBA2ESBA2ESBA3h
mul rcx

shr rdx, 1

imul rax, rdx, OBh

sub rcx, rax

cmp ecx, rlad

ja loc_140A3B062

*thanks Damien for pinpointing me that function 43

Windows Warbird

mov
xor
mov
mul
shr
imul
sub
cmp
ja

rdx, 20h

r8, 7010008004002001h
rax, rdx

ebx, 5

rcx, rax

rax, 3

rcx, rax

rax, r8

rex

rex, rdx
[rsp+24B8h+var_1AD0], rdx
rcx, rax

rax, 2ES8BA2ESBA2ESBA3h
rex

rdx, 1

rax, rdx, OBh

rcx, rax

ecx, ebx

loc_140A2B288

Bl B
o [
-

(v v oo [

3 (1 O Emcemeed]

v rem v oo o R &}

08 E=E3

oV rax, rdx
rol rax, Ox3d
or rax, rdx
ovabs rcx, 0x7010008004002001

imul rcx, rax

(more detailed analyses of Warbird &

= Deobfuscating it
would require a
deeper understanding
of the function and
more time!

44

https://github.com/airbus-seclab/warbirdvm
https://blog.tetrane.com/downloads/Tetrane_PatchGuard_Analysis_RS4_v1.00.pdf

Messaging Applicationv

Contains beautiful MBAs
U

45

.

Messaging Application

loc_SBTAEC h)
X8, WMOx636BA875FD33DC87
SMULH X14, x24, X8 stnt eSIS
[MOV W9, #0x5C00 - P
IASR X15, X14, #0x19 bynthest configuration
|MOVK W9, W#Ox526,LSL#16
|ADD X14, X15, X14,LSR#63
MsuB X14, X14, X9, X24 From: 0x9b7aec To: 0x9b7bfc
MOV X10, #0x770F
|AND X9, X9, X14, ASR#63
IMOVK X10, #0xF608,LSL#L16 Table: |LEVELDB ¥ /home/robin/Quarkslab/synthesis/Its/final_table_leveldb
|ADD X23, x9, Xx14
IMOVK X10, #0xB272,LSL#3.
peitd e Algorithm: [Top-Down ~| Type: |[FULL SYmBOLIC ~
[MOVK
MoV
[Mov 13,
[SMULR X8, X9, X8
[MOVK . #0x2492,LSL#16 i
W foxtA29. LSLE16 Run Triton Run Synthesis
SMULH X10, x23, X10
ASR X14, X8, #0x19 S If d
[MOVK X11, #0x9249,LSL#32 implitieq:
e i ea Node count Depth 'P v
juov K18, M0HAIRS LELIS2 Synthesiszed Expression
. , #ox
[ADD X26, X14, X8, LSR#63 5093 37 0x7Bz
MOVK X11, #0x4924,LSL#48
[MOVK X13, #0x92FD,LSL#48
|ADD X24, X9, X10,LSR#63 I
[ADD X8, X26, #4
IMUL X9, X26, X12 A Node Depth Scale
SMULH X10, X8, Xi1 t
SMULH X11, X9, X13 coun
IAsr X12, X10, #1 x24 64
[ADD X11, x11, X9
[ADD X10, X12, X10,LSR#63 - 0,
Asr , X11, #oxis 99.98%
|ADD , X12, X11,LSR#63
[Mov #0xBB4Y
SUB X10, X10,LSL#3
[MOVK #0x37, LSL#16
|ADD X8, X8, X10
sTR X8, [SP,#0xB04var_BO)]
[MUL X8, x11, x12
SUB X9, X9, X8
[AND X9, X12, X9, ASR#63
SUB X8, x8, X
SMULH X9, x8, x13
|MOoV X28, #0xD70B
[ADD X8, X9, X8
[MOVK X28, #0x70A3,LSL#16
JASR X9, X8, #0x15
|MOVK X28, #0xA3D,LSL¥32
[ADD X8, X9, XB,LSR#63
MOV W27, #0x16D
MOVK X28, #0xA3D7,LSL#48
IMOV #0x 4
|ADD X8, #0x7B2
[MoV #0x190
B loc_9B7BF8
T

= We managed to synthesize many MBASs (but as usual it is mixed with other transformations and we do not
really know what we are synthesizing) 46

Conclusion

QSynthesis Conclusion

Greybox algorithm

The greybox algorithm strongly reduces the need for huge tables
and enable opportunistically synthesizing sub-expressions

(thus tables shall be more representative than exhaustive introducing constants etc)
Next plans

QO Breaking MBA using constants (we have ideas on mechanisms that can be integrated
within the synthesis algorithm but with some ad-hoc checks)

O Restoring original simplification algorithm potency (by fixing some complexity induced by Triton)

48

Takeaways

O Breaking the obfuscation is crucial as it is the first step before further reversing

O Synthesis only help on a sub-part of the deobfuscation process:
e it addresses PB#2: deobfuscating a data-flow expression
e but do not addresses PB#1: locating the data to deobfuscate

O We do use these techniques to assess and continuously improve the
strength of our own obfuscator (Quarks AppShield)

O (As usual) what makes obfuscation potent is carefully mixing obfuscation
passes

49

Acknowledgement

O Luigi Coniglio how kickstarted that approach in our dynamic tracing framework
Qtrace

O Jonathan Salwan that tweaked Triton to make it more efficient on this kind of
use-cases

O My Quarkslab’s colleagues, and people of the synthesis community with whom
| had stimulating discussions

50

https://blog.quarkslab.com/exploring-execution-trace-analysis.html

Thank you !
Q&A

9 rdavid@quarkslab.com
u @RobinDavidl

Quarkslab

