
Robin David
<rdavid@quarkslab.com>

Greybox Program Synthesis: A New
Approach to Attack Dataflow Obfuscation

#BHUSA @BlackHatEvents 1

About me

Software Security Engineer @ Quarkslab

Primarily interested in attacking
obfuscation and automating bug
discovery

2

Agenda

I. Introduction

II. Synthesis Primer
○ Usages
○ Application to software deobfuscation

III. Greybox Synthesis
○ Algorithm overview
○ black-box I/O oracle
○ whitebox AST search

IV. Table generation

V. Implementation in QSynthesis (deobfuscation up-to reassembled instructions)
○ implementation & reassembly
○ IDA integration

VI. Use-cases

VII. Conclusion

3

Introduction
(obfuscation techniques)

4

Obfuscation

What ?
Transformation of a program P in a semantically equivalent P’

harder to understand

Why ?
To protect intellectual property from

reverse-engineering

How ?
By hiding valuable assets of the program

(which are usually)

program logic
algorithms

(referred as control-flow)

program data
keys, strings, constants...

(referred as data-flow) 5

Obfuscation Diversity

Control-Flow Obfuscation

Hiding the logic and algorithm
of the program

virtualization, opaque predicates,
CFG-flattening, split, merge, packing,

implicit flow, MBA, loop-unrolling...

⇒

Data-Flow Obfuscation

Hiding data: constants, strings,
APIs, keys etc.

data encoding, MBA, arithmetic
encoding, whitebox, array

split/fold/merge, variable splitting...

a + b ⇒

((((((a ∧ ¬b) + b) <<
1) ∧ ¬ ((a ∨ b) −
(a ∧ b))) << 1) −
((((a ∧ ¬b) + b) <<
1) ⊕ ((a ∨ b) − (a ∧
b))))

6

Data Obfuscation (data-flow)

⇒ This work focuses on data-flow and more especially MBA (Mixed Boolean Arithmetic)
 (but many other transformation exists like: data encoding, whitebox, variable splitting/merging ..)

a + b

((((((a ∧ ¬b) + b) <<

1) ∧ ¬ ((a ∨ b) −

(a ∧ b))) << 1) − ((((a

∧ ¬b) + b) <<

1) ⊕ ((a ∨ b) − (a ∧

b))))

obfuscation

Deobfuscation?

 Reversing the transformation is hard (unlike many control-flow obfuscation, solution
 is not boolean) Problem

7

Deobfuscation Problems

Deobfuscating data-flow expressions on real-world obfuscated
programs yield two distinct research problems.

PB #1

Locating the data to deobfuscate
and knowing what to deobfuscate
(depends on what you’re looking for
in the binary).

(This is specific to each binary and is
mostly manual)

PB #2

Deobfuscating the data obtained
after it gets located (in our context a
data-flow expression).

(Synthesis only addresses this issue !)

8

Synthesis primer

9

Program Synthesis

10

⇒ Program synthesis consists in automatically deriving a program from

A high-level specification (typically its semantic through its I/O behaviour)

Additional constraints:
● Compilation: a faster program
● Deobfuscation: a smaller or more readable program

Program
(for which the semantic

is the specification)
Synthesis constraint (fitness

function which optimizes
speed, size, etc..)

New program (satisfying
the specification and
constraints)

Synthesis for Superoptimization

Synthesis is used in a variety of domains.
Applied on program analysis it is mostly

used for optimization (known as super-optimization)
or deobfuscation.

at core

level the

same issue

Superoptimizers

Souper: superoptimizer for LLVM IR
(backed by SMT solving) STOKE: stochastic superoptimizer at

assembly level (x86_64) 11

Synthesis for Deobfuscation

12

Multiple approaches exist, templates, stochastics (e.g
MCTS), solver-based, enumerative approaches,

search-based (S-Metaheuristics) etc...

2014
Rolf Rolles, template-based

and solver-based approaches

Xyntia
Search-based approach
using S-Metaheuristics
(expected CCS 2021)

2021

LOKI
(obfuscation oriented)
discuss how to defeat
synthesis approaches

MSynth
Implementation of QSynth

algorithm with MIASM
framework

F.Biondi et al.
SMT based approach

to defeat MBAs

2017

Syntia
Monte-Carlo Search

Tree based approach

SSPAM
Approach based on pattern

matching rewriting rules and
arithmetic simplification

(not synthesis per se)

2016

QSynth
Offline enumerative

search based approach
(our approach)

2020

Greybox Synthesis
(design & principles of our algorithm)

13

Synthesis algorithm

Our algorithm is based on an enumerative approach
backed by symbolic execution and a synthesis (itself based

on two sub-components)

Synthesis

AST simplification
algorithm

Symbolic Execution

I/O Oracle

precomputed table
program

expr
expr’

14

AST

rax5

Symbolic Execution

⇒ We use symbolic execution as a means of extracting data-flow expressions of registers or
memory at arbitrary locations in the program. The symbolic execution can either be static or
dynamic. Can backtrack

expressions up to
program entry

Avoid having to
execute the program

mov rax, rsi
xor rax, 0xFFFFFFFFFFFFFFFF
or rax, rdi
mov rcx, rdi
xor rcx, 0xFFFFFFFFFFFFFFFF
and rcx, rsi
mov rdx, rdi
and rdx, rsi
xor rdx, 0xFFFFFFFFFFFFFFFF
or rdi, rsi
add rax, rcx
sub rax, rdx
add rax, rdi
retn

Assembly

rax0 := rsi
rax1 := rax ⊕ 0xFFFFFFFFFFFFFFFF
rax2 := rax1 | rdi
rcx0 := rdi
rcx1 := rcx0 ⊕ 0xFFFFFFFFFFFFFFFF
rcx2 := rcx1 & rsi
rdx0 := rdi
rdx1 := rdx0 & rsi
rdx2 := rdx1 ⊕ 0xFFFFFFFFFFFFFFFF
rdi0 := rdi | rsi
rax3 := rax2 + rcx2
rax4 := rax3 - rdx2
rax5 := rax4 + rdi0

Intermediate Representation

SE

15

Our synthesis algorithm

Our algorithm is a greybox synthesizer based on two
components

Synthesis

expr
expr’

AST simplification
algorithm

(sub-)AST

synthesised
expr AST

Whitebox component

An AST simplification
algorithm that can use various

strategies

I/O Oracle

precomputed table

Blackbox component

An I/O oracle based on an
offline enumerative search
backed by a pre-computed

table

16

Blackbox vs Whitebox in Synthesis (for deobfuscation)

17

Blackbox
relates to approaches
considering expressions to
synthesize as blackboxes
and only interacting with
them through their
input/ouput behavior

+ only influenced by semantic complexity
- large search space
- boolean result (fully synthesized or not at all)

((((((a ∧ ¬b) + b) <<
1) ∧ ¬ ((a ∨ b) −
(a ∧ b))) << 1) − ((((a
∧ ¬b) + b) <<
1) ⊕ ((a ∨ b) − (a ∧
b))))

Whitebox
relates to approaches
manipulating the semantic
of the expression through
its syntactic representation
(usually the AST of the
semantic)

+ the exact semantic is considered
- influenced by syntactic complexity
+ enable sub-expressions synthesis

Blackbox I/O Synthesis Oracle

⇒ What happens if it cannot synthesize the root node ?

Blackbox I/O Oracle Pre-computed tables

A + B

A B
i1 0 1
i2 -1 3
i3 4 1

o1 o2 o3
1 2 5

o1 o2 o3
1 2 5

⇓ ⇓

Vout =

Equivalent !

Vin =

Given a grammar with some operators (+, -, |,
&, ⊕..), and variables (a, b, c..), derives all
possible expressions (up to a given bound)
and evaluate them on Vin to obtain a
function:

Vout ↦ expr

Vout expr

<1, 2, 5> A + B
<-1,-4, 3> A - B
<1, -1, 5> A | B

.... ….

○ generated once, and ensures O(log(n)) synthesis
○ Unsound but equivalence can be checked by SMT

18

set of pseudo-
random inputs

Whitebox AST search

If it cannot synthesize root node it aims at simplifying sub-expressions to obtain
at least a partial synthesis (while with an I/O oracle the result is boolean).

Thus an AST search algorithm will iterate through the graph looking for
sub-nodes to synthesize.

Original strategy

19

This simplification
strategy have some
complexity issues (yet it
provides optimal results)

Algorithm
1. Search a node to synthesize
2. if find one, replaces it by a

temporary placeholder
3. if not, replaces it also
4. repeat the search until having

substituted all nodes
5. recursively replace placeholders

by the corresponding AST
(synthesized or original)

https://youtu.be/ID_PEVseecI

https://docs.google.com/file/d/1MAVlzhi7uRKhZQ3wtnfcmTtc9ZpDoKSg/preview
https://youtu.be/ID_PEVseecI

New AST search strategies

 Top-Down (Divide & Conquer)

Single DFS traversal of the AST. Ensures
linearity of the simplification of the
algorithm (while original one was quadratic
in the worst case).

Top-Down & Bottom-Up
Like Top-Down but if a node gets
synthesized attempts to re-synthesize its
parents by means of reducing the
variable cardinal.

20
https://youtu.be/VQRg3LHC6Lw https://youtu.be/G1lBOqmwLaI

https://docs.google.com/file/d/15_j5fO_WfLj4IvxO_FZ3dF2w44qg0h5M/preview
https://youtu.be/VQRg3LHC6Lw
https://docs.google.com/file/d/1p9nLlntxLT4ZBL1Xw-8U60wG1p_BJTsw/preview
https://youtu.be/G1lBOqmwLaI

Algorithm Visualization

21
https://youtu.be/Nz8KC1HtgiI

https://docs.google.com/file/d/1jb6dUbRCx6I-97em8JC2fUGPv2-_XgYg/preview
https://youtu.be/Nz8KC1HtgiI

Algorithm Visualization

22
https://youtu.be/9MHeGtc3Uhc

https://docs.google.com/file/d/1b8943OTxwWnK0XmodIhDotx3dTvPF6X5/preview
https://youtu.be/9MHeGtc3Uhc

Algorithm Visualization

23

Table generation
(aka generating a potent I/O oracle)

24

Table Generation

⇒ Table generation requires evaluating millions of expressions and keeping millions of Vout
vectors to ignore identical ones (by construction we generate from smaller to larger expressions).

Improvements:

Memoization of all evaluated expressions (thus A+B is evaluated only once for all,
when combined with another expression like A+B-C the memoïzed result is reused for
evaluation)

JITTing of expressions evaluation. Evaluation made on native integers (not
using Python). For that uses dragonFFI (could also have used numpy).

⇓
We now have a table with 375 million entries

(last year we had ~3 millions)
 (Generated with a 235 GB RAM machine :p)

reach
25K exprs/sec

25

https://github.com/aguinet/dragonffi

Table Storage

pickle

Python object
serialization module

● Requires loading the
whole table

● Parsing is slow on
large object

⇒ Ok for small tables but
limited for larger ones

Python ORM for
databases like sqlite

● If Vout primary key,
insertion is linear in
number of entries.

● If not, lookup is linear
in the number of
entries

⇒ Not suitable for such
large tables

⇒

Key Value database
(by Google)

● Store keys as “tries”
to ensure O(log(n))
access

● Automatic caching
mechanism

⇒ Best suited for our
need

⇒

122 µs

⇒ We also made a REST API (using FastAPI) to serve Level-DB database content 26

(format used by MSynth)

Expression Normalization

⇒ Tables are limited by the enumerative approach, combining some variables (a, b, c..) with some
operators (+, -, & …). Thus no constants in sight. To improve expression diversity we performed two
experiments.

Original Linearized
a - (c - a) 2*a - c
(a-b) - (a + a) -a - b
a + (b * b) b2 + a
... ...

Expression Linearization
Goal: Representing expressions
as normalized equations. For
that, uses SymPy a library for
symbolic maths.

● introduces constants !
● annihilates generation performances
● introduces power operators
● only works on pure arithmetic

expressions

Pros/Cons:

⇒

27

we thus do not use it in
practice

Expression Learning

Problem
What if the synthesized expression is larger than the one in input ?

Synthesis expr’expr
I/O Oracle

precomputed
 table

28

Expression Learning

Input Expr Output Expr’ (in table)

(a*a) - 1 ⇒ ((a*a) + a) + (~a)

-1 + a ⇒ (~a + a) + (~(-a))

(b ^ a) - 1 ⇒ (~a + a) + (b ^ a)

Problem
What if the synthesized expression is larger than the one in input ?

Synthesis expr’expr
I/O Oracle

precomputed
 table

We can update the table
with the smaller expr

It

introduces

constants !

29⇒ We also now introduce simple constants in our table generation process

Benchmarks

30

Paper benchmarks

Comparison with Syntia Against Tigress

⇒ Results were promising ! 31

Benchmarks improvements

32

Benchmarks improvements

● Paper: Original results

● Syntia: ED + EA (very simple)
● EA: EncodeArithmetic ⇒

MBA
● VR-EA: Virtualization + EA
● EA-ED: EA + EncodeData

33

Benchmarks improvements

Better average
simplification
than original
implementation
(90% for EA-ED)

Speed
improvement
ranging from
31% to 67%

34

Implementation
(in the QSynthesis utility)

35

QSynthesis
Triton
Dynamic Symbolic
Execution framework

QSynthesis
Framework

(developed in
Python)

Qtrace
QBDI

Dynamic Tracing Framework &
Time Travel Debugger (TTD)

Dynamic Binary
Instrumentation
Framework

AryboUsed for
reassembly features
(bit vector IR in ANF form)

llvmlite

dragonffi
For the JITTing of
expression evaluation
(during table generation)

Level-DB
As database for table
storage

FastAPI
To serve a table as a

REST API

IDA Pro
Integrated as a

plugin
36

IDA Integration

37
https://youtu.be/AwZs56YajJw

https://docs.google.com/file/d/1dOg4MUl7gSGHotJtk3ZHULfwdTle11wy/preview
https://youtu.be/AwZs56YajJw

Use-Cases
(getting our hands dirty!)

38

Attacking YANSOllvm

Transforms:
● VM: transforms basic operators

(+, ⊕..) with function calls
● Merge: merges all internal

linkage functions in a single
one

● Flattening: CFG flattening
● Connect: splits basic blocks

and uses switch to add false
branches

● ObfCon: obfuscates constants
with MBAs

● BB2func: splits & extracts
basic blocks in new functions

● ObfCall: changes internal
linkage function calling
convention

https://github.com/emc2314/YANSOllvm

39⇒ There are plenty of other Obfuscator-LLVM derivatives used in the wild

https://github.com/emc2314/YANSOllvm

YANSOllvm: VM obfuscation

Synthesized and
reassembled to

lea rax, [rsi+rdi]
ret

⇒ We then could go further by removing calls and replacing them by the operation directly

40

YANSOllvm: MBA used

OpaqueConstant

41

● ((~x | 0x7AFAFA69) & 0xA061440) +
((x & 0x1050504) | 0x1010104) ==
185013572

● p1*(x|any)**2 != p2*(y|any)**2

● x + y = xˆy + 2*(x & y)

● x ˆ y = (x|~y) - 3*(~(x|y)) +
2*(~x) - y

MBAs

x + y (x|~y)+(~x&y)-(~(x&y))+(x|y)
x - y x + ~y + 1
x << y /
x >a y /
x >l y /
x & y -(~(x&y)) + (~x|y) + (x&~y)
x | y (xˆy) + y - (~x&y)
x ^ y x + y - ((x&y) << 1)

About MBA & constants:

expression using constants: a & 0xdeadbeef ⇒ ✖ tables do not contains constants
constants: 0xd00dfeed ⇒ ✔ can synthesize it !

Example: Opaque Constant

42

⇒

Value
synthesized

0x0

blackbox I/O optimization
If the evaluation of all inputs
produces the same output,
thus the expression encodes a
constant.

Windows Warbird

⇒ Part of the Windows kernel is known to be obfuscated with a framework
called Warbird. More specifically PatchGuard features are obfuscated. We
gave a very quick look at the PatchGuardInit function.

*thanks Damien for pinpointing me that function 43

Windows Warbird

⇒ Deobfuscating it
would require a
deeper understanding
of the function and
more time!

44(more detailed analyses of Warbird here & here)

https://github.com/airbus-seclab/warbirdvm
https://blog.tetrane.com/downloads/Tetrane_PatchGuard_Analysis_RS4_v1.00.pdf

Messaging Application

Contains beautiful MBAs
⇓

45

Messaging Application

⇒ We managed to synthesize many MBAs (but as usual it is mixed with other transformations and we do not
really know what we are synthesizing) 46

Conclusion

47

QSynthesis Conclusion

The greybox algorithm strongly reduces the need for huge tables
and enable opportunistically synthesizing sub-expressions

(thus tables shall be more representative than exhaustive introducing constants etc)

Greybox algorithm

Next plans

Breaking MBA using constants (we have ideas on mechanisms that can be integrated
within the synthesis algorithm but with some ad-hoc checks)

Restoring original simplification algorithm potency (by fixing some complexity induced by Triton)

48

Takeaways

We do use these techniques to assess and continuously improve the
strength of our own obfuscator (Quarks AppShield)

Synthesis only help on a sub-part of the deobfuscation process:
● it addresses PB#2: deobfuscating a data-flow expression
● but do not addresses PB#1: locating the data to deobfuscate

(As usual) what makes obfuscation potent is carefully mixing obfuscation
passes

49

Breaking the obfuscation is crucial as it is the first step before further reversing

Acknowledgement

50

Jonathan Salwan that tweaked Triton to make it more efficient on this kind of
use-cases

Luigi Coniglio how kickstarted that approach in our dynamic tracing framework
Qtrace

My Quarkslab’s colleagues, and people of the synthesis community with whom
I had stimulating discussions

https://blog.quarkslab.com/exploring-execution-trace-analysis.html

Thank you !
Q & A

rdavid@quarkslab.com

@RobinDavid1

51

