
© NCC Group 2021. All rights reserved

Sleight of ARM:
Demystifying Intel Houdini

Brian Hong

@im_eningeer

whoami

© NCC Group 2021. All rights reserved

Brian S. Hong (@im_eningeer)
• Hardware Enthusiast

• Forward Reverse Engineer

• Like to reverse low-level stuff and break embedded systems

• Android Penetration Testing

• Security Consultant @

• Cooper Union Electrical Engineering

Introduction — Android NDK

© NCC Group 2021. All rights reserved

1 https://gs.statcounter.com/os-market-share/mobile/worldwide
2 https://www.android-x86.org/

• Android is the operating system powering 70%1 of the mobile devices

• Android supports application development in Java and Kotlin, and additionally in

native languages such as C and C++ through the Native Development Kit (NDK)

• ARM is the main hardware platform for Android, with official support for x86

introduced in later versions – Android Lollipop (2014)

• NDK r6 (2011) added support for x86

• NDK r10 (2014) added support for 64 bit ABIs, including x86_64

• There is also out-of-tree support for Android on x86

• Android-x86 (2011)2

Introduction — Android on x86

© NCC Group 2021. All rights reserved

• Two main kinds of x86 devices running Android

(neither of them are phones)

• x86 Chromebooks

• Commercial Android emulators on x86 hosts

• x86 support is generally lacking across apps

• ARM is the primary target platform

• If shipping native code, the Play Store

only requires ARM builds

• Few developers end up shipping x86 binaries

for their APKs, but many apps have native code

• So then how are x86 Android devices supposed to

support popular apps (optimized with native ARM code)?

Houdini — What is it?

© NCC Group 2021. All rights reserved

• Intel’s proprietary dynamic binary translator from ARM to x86

• Co-created by Google for Android

• Enables ARM native applications to run on x86 based platforms

• A black box shrouded in mystery

• Little mention of it on Intel’s websites, seemingly not a public-facing product

• No public documentation

• Several vendors may be obfuscating their use of Houdini?

• There are three variants:

• 32-bit x86 implementing 32-bit ARM

• 64-bit x86 implementing 32-bit ARM

• 64-bit x86 implementing 64-bit ARM

Houdini — Where’s it used?

© NCC Group 2021. All rights reserved

• Physical hardware

• x86-based mobile phones (e.g. Zenfone 2)

• x86 Chromebooks

• This is how we got it

• Commercial Android Emulators

• BlueStacks

• NOX

• Android-x86 Project

Houdini — How’s it work?

© NCC Group 2021. All rights reserved

Interpreted emulator

• Essentially a while loop around a switch (but actually more like a state machine)

• Reads ARM opcodes and produces corresponding behavior in x86

• Doesn’t JIT; no x86 instructions produced at runtime

Two components

• houdini: interpreter used to run executable binaries

• libhoudini: loadable shared object (x86); used to load and link ARM libraries

./houdini

© NCC Group 2021. All rights reserved

Runs ARM executable binaries (static and dynamic)

• Uses dynamic libraries precompiled for ARM+Android from:

• /system/lib/arm

• /system/vendor/lib/arm

• Loaded in by the Linux kernel binfmt_misc feature

./houdini — binfmt_misc

© NCC Group 2021. All rights reserved

1 https://en.wikipedia.org/wiki/Binfmt_misc

binfmt_misc (Miscellaneous Binary Format) is a capability of the Linux kernel which

allows arbitrary executable file formats to be recognized and passed to certain user

space applications, such as emulators and virtual machines. It is one of a number of

binary format handlers in the kernel that are involved in preparing a user-space program

to run. 1

./hello -> /system/bin/houdini ./hello

libhoudini.so

© NCC Group 2021. All rights reserved

• Is a shared object (x86)

• Loads in ARM shared objects

• Mainly designed to be used with Android NativeBridge to run ARM native code

Android NativeBridge

© NCC Group 2021. All rights reserved

1 Ye, Roger. Android System Programming: Porting, Customizing, and Debugging Android HAL.

Packt Publishing, 2017.

• Main interface from Android to libhoudini

• Part of the Android Runtime (ART)

• Supports running native libraries in

different processor architectures

1

Android NativeBridge — Initialization

© NCC Group 2021. All rights reserved

• Initialized on boot by Android Runtime (ART)

• NativeBridge reads system property ro.dalvik.vm.native.bridge

• Disabled if set to ”0”

• Otherwise, it provides the name of the library file to be loaded with

NativeBridge (e.g ”libhoudini.so”)

• Android-x86 project uses ”libnb.so” instead, which is a shim that loads

libhoudini

• NativeBridge defines interface with callbacks

• NativeBridgeRuntimeCallbacks

• NativeBridgeCallbacks

Android NativeBridge— Java Native Interface (JNI)

© NCC Group 2021. All rights reserved

1 https://android.googlesource.com/platform/libnativehelper/+/refs/heads/master/include_jni/jni.h

The JNI is an FFI for calling between JVM

code (e.g. Java) and native code (e.g.

C/C++). Java native methods are mapped

to native symbols. The native functions

receive a JNIEnv* from the JVM, which is a

bag of function pointers providing a

low-level Java/JVM reflection API, including

object allocation, class lookups, and method

invocations. It also provides a type mapping

between Java primitives and C types.

typedef uint8_t jboolean; /* unsigned 8 bits */

typedef int8_t jbyte; /* signed 8 bits */

typedef uint16_t jchar; /* unsigned 16 bits */

typedef int32_t jint; /* signed 32 bits */

typedef int64_t jlong; /* signed 64 bits */

typedef const struct JNINativeInterface* JNIEnv;

struct JNINativeInterface {

...

jint (*GetVersion)(JNIEnv *);

jclass (*DefineClass)(JNIEnv*, const char*...

jclass (*FindClass)(JNIEnv*, const char*);

...

jobject (*AllocObject)(JNIEnv*, jclass);

jobject (*NewObject)(JNIEnv*, jclass, jmethodID...

...

jmethodID (*GetStaticMethodID)(JNIEnv*, jclass...

jobject (*CallObjectMethod)(JNIEnv*, jobject...

jboolean (*CallBooleanMethod)(JNIEnv*, jobject...

...

jbyte (*GetByteField)(JNIEnv*, jobject, jfieldID);

jchar (*GetCharField)(JNIEnv*, jobject, jfieldID);

jint (*GetIntField)(JNIEnv*, jobject, jfieldID);

...

source1

Android NativeBridge — Callbacks

© NCC Group 2021. All rights reserved

1 https://android.googlesource.com/platform/art/+/master/runtime/native_bridge_art_interface.cc

NativeBridgeRuntimeCallbacks

provide a way for native methods to

call JNI native functions.

NativeBridge -> libhoudini

// Runtime interfaces to native bridge.

struct NativeBridgeRuntimeCallbacks {

// Get shorty of a Java method.

const char* (*getMethodShorty)(JNIEnv* env, jmethodID mid);

// Get number of native methods for specified class.

uint32_t (*getNativeMethodCount)(JNIEnv* env, jclass clazz);

// Get at most 'method_count' native methods

// for specified class.

uint32_t (*getNativeMethods)(JNIEnv* env, jclass clazz,

JNINativeMethod* methods, uint32_t method_count);

};

source1

Android NativeBridge — Interface

© NCC Group 2021. All rights reserved

1 https://android.googlesource.com/platform/art/+/master/runtime/native_bridge_art_interface.cc

NativeBridge can interact with

libhoudini via

NativeBridgeCallbacks

Fetched from libhoudini via symbol

NativeBridgeItf

• initialize()

• loadLibrary() "dlopen()"

• getTrampoline() "dlsym()"

// Native bridge interfaces to runtime.

struct NativeBridgeCallbacks {

uint32_t version;

bool (*initialize)(const NativeBridgeRuntimeCallbacks* runtime_cbs,

const char* private_dir, const char* instruction_set);

void* (*loadLibrary)(const char* libpath, int flag);

void* (*getTrampoline)(void* handle, const char* name,

const char* shorty, uint32_t len);

...

int (*unloadLibrary)(void* handle);

void* (*loadLibraryExt)(const char* libpath, int flag,

native_bridge_namespace_t* ns);

};

source1

NativeBridge — Libhoudini
$ objdump -T libhoudini.so

libhoudini.so: file format elf32-i386

DYNAMIC SYMBOL TABLE:

...

004f8854 g DO .data 0000003c Base NativeBridgeItf

NativeBridge — Summary

• dlopen(libhoudini.so)

• dlsym(NativeBridgeItf)

• initialize()

• loadLibrary() "dlopen()"

• getTrampoline() "dlsym()"

• Houdini provides a ARM version

of JNIEnv

• Handled via trap

instructions

Houdini Emulation — Memory

© NCC Group 2021. All rights reserved

• Dual architecture userland (separate ARM binaries; e.g. libc, etc.)

• Shared virtual address space

• Real world view of memory

• Maintains a separate allocation for ARM stack

00008000-0000a000 rw-p 00000000 [anon:Mem_0x10000002]

0c000000-0c001000 r--p 00000000 /vendor/lib/arm/nb/libdl.so

0c001000-0c002000 r--p 00000000 /vendor/lib/arm/nb/libdl.so

0c200000-0c203000 r--p 00000000 /data/app/com.nccgroup.research.../lib/arm/libnative-lib.so

0c203000-0c204000 r--p 00002000 /data/app/com.nccgroup.research.../lib/arm/libnative-lib.so

0c204000-0c205000 rw-p 00003000 /data/app/com.nccgroup.research.../lib/arm/libnative-lib.so

0c500000-0c5d6000 r--p 00000000 /vendor/lib/arm/nb/libc.so

0c5d6000-0c5da000 r--p 000d5000 /vendor/lib/arm/nb/libc.so

0c5da000-0c5dc000 rw-p 000d9000 /vendor/lib/arm/nb/libc.so

...

0e094000-10000000 rwxp 00000000 [anon:Mem_0x20000000]

12000000-12100000 rwxp 00000000 [anon:Mem_0x10001000]

12100000-12122000 rw-p 00000000 [anon:Mem_0x10001000]

12153000-1218c000 rw-p 00000000 [anon:Mem_0x10001000]

e5502000-e598d000 r-xp 00000000 /vendor/lib/libhoudini.so

e598d000-e59bf000 r--p 0048a000 /vendor/lib/libhoudini.so

e59bf000-e59ff000 rw-p 004bc000 /vendor/lib/libhoudini.so

ecdb0000-eceaa000 r-xp 00000000 /system/lib/libc.so

eceaa000-eceae000 r--p 000f9000 /system/lib/libc.so

eceae000-eceb0000 rw-p 000fd000 /system/lib/libc.so

ee0da000-ee0dc000 rwxp 00000000 [anon:Mem_0x10000000]

ee1b5000-ee303000 r-xp 00000000 /system/bin/linker

ee303000-ee309000 r--p 0014d000 /system/bin/linker

ee309000-ee30a000 rw-p 00153000 /system/bin/linker

ff26d000-ffa6c000 rw-p 00000000 [stack]

Houdini Emulator — Execution

• State machine (switch inside while loop), fetch/decode/dispatch shown below

Houdini Emulator — Instruction Table

© NCC Group 2021. All rights reserved

Instruction bits 27-20 concatenated with

bits 7-4 is used as the offset into the table

uint32_t instruction = memory[state.pc];

uint8_t condition_code = instruction >> 24;

if(condition_code != 0x0E) goto 0x3100AD;

uint32_t offset =

((instruction >> 16) & 0xFF0) + \\ [20:27]

((instruction >> 4) & 0x00F); \\ [4:7]

void **instruction_table = 0x4BB9C0;

int (*instruction_handler)(uint32_t, struct proc_state*);

instruction_handler = instruction_table[offset];

instruction_handler(instruction, state);

Houdini Emulator — Processor State

© NCC Group 2021. All rights reserved

• Stores ARM registers, as well as other processor states

/* Processor state of libhoudini's emulated ARM */

struct proc_state {

unsigned int reg[16]; /* Register values for r0, r1, r2... */

unsigned char unk[300]; /* Unknown fields */

unsigned int isThumb; /* Whether in thumb mode or not */

unsigned int svcNumber; /* Pending SVC call number */

unsigned char unk2[40]; /* Unknown fields */

unsigned int pc8; /* PC + 8 */

unsigned int ldrstr; /* ?? (used for ldr/str instructions) */

unsigned char unk3[84]; /* Unknown fields */

};

• ARM registers can be read/written from both ARM and x86

Houdini Emulator — Syscall

© NCC Group 2021. All rights reserved

• ARM syscalls are handled by userland x86 code that issues x86 syscalls

Houdini Emulator — fork(2)/clone(2)

© NCC Group 2021. All rights reserved

• Intercepted and reimplemented by Houdini

• Houdini clones the process

• The child process handles the child fork/clone logic

• The parent process handles the fork/clone logic

• clone(2) child_stack not passed to the kernel

• Instead an empty RWX page is passed as child_stack

Houdini Emulator — Detection

© NCC Group 2021. All rights reserved

Java architecture checking

• System.getProperty("os.arch");

• /proc/cpuinfo

Memory mapping checking

• /proc/self/maps

• Dual x86/ARM shared libraries

Detection from noisy to quiet

The best implementation is one that issues

no otherwise discernable syscalls

• JNIEnv magic pointer detection

Houdini hides these

System.getProperty("os.arch") -> armv7l

$ cat /proc/cpuinfo

Processor : ARMv8 processor rev 1 (aarch64)

processor : 0

processor : 1

BogoMIPS : 24.00

Features : neon vfp half thumb fastmult edsp

vfpv3 vfpv4 idiva idivt tls aes sha1 sha2 crc32

CPU implementer : 0x4e

CPU architecture: 8

CPU variant : 0x02

CPU part : 0x000

CPU revision : 1

Hardware : placeholder

Revision : 0000

Serial : 0000000000000000

Houdini Emulator — Escape to x86

© NCC Group 2021. All rights reserved

• mprotect(2) + overwrite code

• Not subtle

• x86 stack manipulation

• Find and clobber x86 stack with ROP payloads

Security Concerns—RWX+Other Interesting Pages

© NCC Group 2021. All rights reserved

Multiple RWX

• We can write x86 code to these pages

and jump to it

• Shared memory, which means we can

write code from either x86/ARM

ARM JNIEnv

ARM stack

00008000-0000a000 rw-p [anon:Mem_0x10000002]

0e094000-10000000 rwxp [anon:Mem_0x20000000]

10000000-10003000 rw-p [anon:Mem_0x10002002]

10003000-10004000 ---p [anon:Mem_0x10002002]

10004000-10015000 rw-p [anon:Mem_0x10002002]

10015000-10016000 ---p [anon:Mem_0x10002002]

...

10128000-12000000 rw-p [anon:Mem_0x10002000]

12000000-12100000 rwxp [anon:Mem_0x10001000]

12100000-12122000 rw-p [anon:Mem_0x10001000]

1215a000-12193000 rw-p [anon:Mem_0x10001000]

ca6e8000-ca6e9000 ---p [anon:Mem_0x10000004]

ca6e9000-caae8000 rw-p [anon:Mem_0x10000004]

caae8000-caae9000 ---p [anon:Mem_0x10000004]

caae9000-cabe8000 rw-p [anon:Mem_0x10000004]

...

e4f99000-e4f9a000 ---p [anon:Mem_0x10000004]

e4f9a000-e4f9f000 rw-p [anon:Mem_0x10000004]

e8cb4000-e8cb6000 rwxp [anon:Mem_0x10000000]

Security Concerns — NX Ignored

© NCC Group 2021. All rights reserved

1 https://en.wikipedia.org/wiki/NX_bit

Houdini ignores the execute bit entirely

• ARM libraries are loaded without the execute bit on their pages

• No DEP/NX1 for ARM

• Trivial to abuse (write to anywhere writable, and jump/return to it)

Page Permissions—AMatter of Interpretation

© NCC Group 2021. All rights reserved

$ cat nx-stack.c

#include<stdio.h>

int main(){

unsigned int code[512] = {0};

code[0] = 0xE2800001; // add r0, r0, #1

code[1] = 0xE12FFF1E; // bx lr

printf("code(1) returned: %d\n", ((int (*)(int))code)(1)); // Normally, this causes a segfault

printf("code(5) returned: %d\n", ((int (*)(int))code)(5));

}

$ arm-linux-gnueabi-gcc nx-stack.c -static -Wl,-z,noexecstack -o nx-stack-static

$ file nx-stack-static

nx-stack-static: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), statically linked

7323f32a36, for GNU/Linux 3.2.0, not stripped

$./nx-stack-static

code (1) returned: 2

code (5) returned: 6

© NCC Group 2021. All rights reserved

DEMOS

Libhoudini-aware Malware

© NCC Group 2021. All rights reserved

• App stores and security researchers often run apps in sandboxed environments to

check for malicious behaviors

• Mainly 3 different environments for running/analyzing apps

• Real ARM devices

• Fully virtualized ARM environment (like QEMU)

• x86 Android emulators (VMs)

• Apps that express different behaviors depending on which environment it is running

on can, for example, be benign during analysis but malicious otherwise

• Harder to detect

• Inconsistent behavior is harder to analyze

Libhoudini-aware Malware (cont’d)

© NCC Group 2021. All rights reserved

1 Dissecting the Android Bouncer (Oberheide, J., & Miller, C. (2012, June).

SummerCON, Brooklyn, New York)

Using one of the detection methods discussed earlier, we can write JNI-loaded native

Android code that does different things based on whether or not it is running through

libhoudini

• x86 Android emulator VMs, such as ones based on Android-x86, may use libhoudini

for ARM compatibility

• This is one possible approach used by app stores, so any form of fingerprinting

can become a problem 1

• If you know that your apps are only going to be analyzed in such environments,

you could key malicious behaviors to the lack of libhoudini

Libhoudini-aware Malware (cont’d)

© NCC Group 2021. All rights reserved

Conversely, a malicious app could do bad things only when it detects the presence of

libhoudini, then abuse libhoudini to further obfuscate itself

• For example, while we don’t know what the Play Store actually uses these days, its

automatic app testing did not appear to run ARM APKs on x86 with libhoudini

Recommendations to Vendors and Platforms

© NCC Group 2021. All rights reserved

Drop RWX pages

• Where necessary perform fine-grained page permission control

Implement efficient NX/userland page table implementation

• Checking page permissions for each instruction would incur significant overhead

• Instead, keep track of mappings and permissions in-process

• Perform checks if instruction is from different page than the previous instruction’s

• e.g. jumps or serial instructions across a page boundary

Use virtualization

• And ensure that ASLR is implemented/used to protect sensitive structures

Recommendations (cont’d)—CustomNX Validation

© NCC Group 2021. All rights reserved

This could be done in a couple of ways

1. Trust only ARM .so .text sections on load

2. Check /proc/self/maps on each ”new” page that

hasn’t been added to the data structure

3. Instrument memory mapping-related syscalls

(e.g. mmap, mprotect) to track page permissions

An ideal solution combines 2 and 3, with the checks for 2 performed as a catch-all

• Supports dynamic .so loading via dlopen(3)

• Supports legitimate JITing

• And removes JIT pages when cleared/reset/freed to prevent page reuse attacks

This data structure acts as a page table and should be heavily protected (writeable only

when being updated, surrounded by guard pages, not accessible to ARM, etc.)

Recommendations (cont’d)

© NCC Group 2021. All rights reserved

For anyone doing analysis of Android applications

• Dynamic analysis should also run apps through libhoudini

• Static analysis should look for access to Houdini RWX pages and attempts to

execute from non-executable pages

• and anything scanning the JNIEnv function pointers

Conclusion

© NCC Group 2021. All rights reserved

• Houdini introduces a number of security weaknesses into processes using it

• Some of these impact the security of the emulated ARM code, while some also

impact the security of host x86 code

• These issues overall undermine core native code hardening

• Houdini not being well-documented publicly nor easily accessible may have

prevented wider security analysis and research into it that could have caught these

issues earlier

Disclosure — Timeline

© NCC Group 2021. All rights reserved

[04/24/21] Findings (discussed in this talk) sent to Intel PSIRT via secure@intel.com

[05/05/21] Intel PSIRT confirms receipt of findings, and sends a few questions

[05/07/21] NCC Group sends a response answering Intel's questions

[05/07/21] Intel PSIRT confirms receipt of the additional information

[05/17/21] Intel PSIRT provides an update that the product team is looking into the findings

[06/25/21] Intel PSIRT provides an update that a fix release is planned for the end of July

[07/16/21] Additional findings (not discussed in this talk) sent to Intel PSIRT

[07/19/21] Intel PSIRT confirms receipt of the additional findings and that they will be

sent to the Houdini team

[07/21/21] NCC Group previews this talk for Intel PSIRT

[07/30/21] Intel provides NCC Group with the following statement:

"Intel would like to thank the NCC Group for responsibly reporting their

findings to our PSIRT. The weaknesses identified in the research have been

addressed in the Intel® Bridge Technology (Intel® BT) hotfix release

Houdini_9.0.6b.51725. Updates were released at the end of July 2021."

Big special thanks to...

© NCC Group 2021. All rights reserved

• Jeff Dileo

• Jennifer Fernick

• Effi Kishko

© NCC Group 2021. All rights reserved

Questions?
brian.hong@nccgroup.com

@im_eningeer

	Title
	Introduction
	Houdini
	NativeBridge
	Houdini Emulator
	Security
	Recommendations to Vendors and Platforms
	Conclusion
	Conclusion
	Thanks
	Questions

