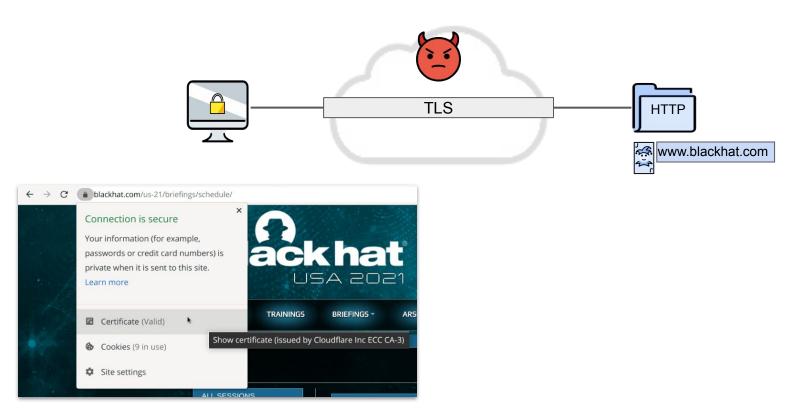


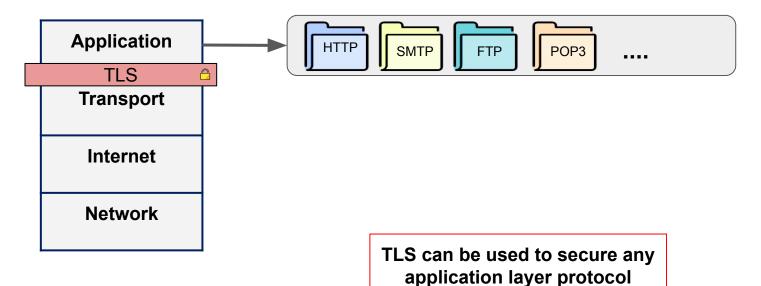
ALPACA: Application Layer Protocol Confusion

Analyzing and Mitigating Cracks in TLS Authentication

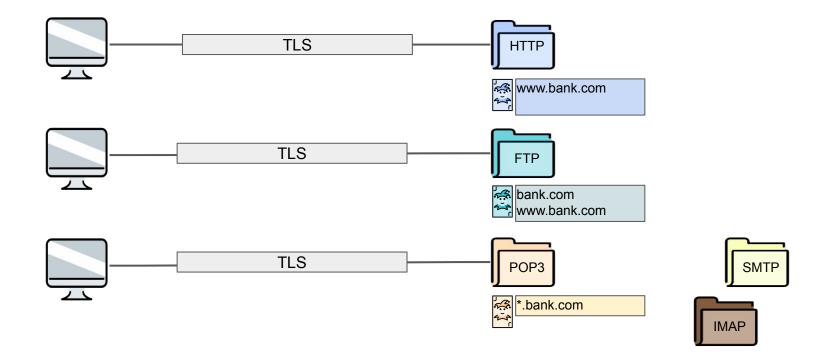
Black Hat USA Security Briefings 2021


<u>Marcus Brinkmann</u>,¹ Christian Dresen,² Robert Merget,¹ Damian Poddebniak,² Jens Müller,¹ <u>Juraj Somorovsky</u>,³ Jörg Schwenk,¹ Sebastian Schinzel²

¹ Ruhr University Bochum


² Münster University of Applied Sciences

³ Paderborn University


Transport Layer Security (TLS) and the WWW

Transport Layer Security (TLS)

Transport Layer Security (TLS) and Other Protocols

TLS Is Application Protocol Independent

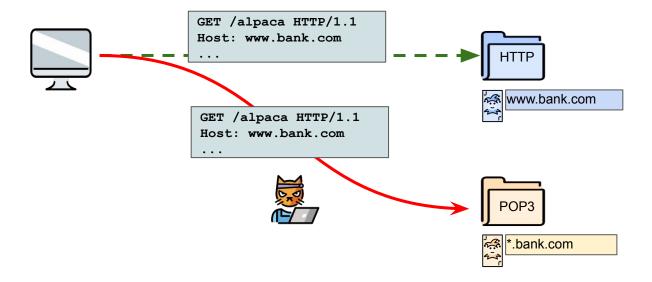
				0
	RFC 5246	TLS	August 2008	
				0
		is that it is application prot		-
		s can layer on top of the TLS		
		LS standard, however, does not		
		y with TLS; the decisions on h		
		o interpret the authentication		
	.	the judgment of the designers	<mark>s</mark> and implementors	0
	of protocols that rur	on top of TLS.		
1				

TLS Certificates in the Wild

	Field Value
Certificate Viewer: sni.cloudflaressl.com	Not Critical TLS WWW Server Authentication (OID.1.3.6.1.5.5.7.3.1) TLS WWW Client Authentication (OID.1.3.6.1.5.5.7.3.2)
General Details	
	Certificate Fields
This certificate has been verified for the following usages:	Certificate Subject Key ID
SSL Server Certificate	Certificate Subject Alternative Name
Issued To	OID 1 3 6 1 4 1 11129 2 4 2
Common Name (CN) sni.cloudflaressl.com	Field Value
Organization (O) Cloudflare, Inc. Organizational Unit (OU) <not certificate="" of="" part=""></not>	Not Critical DNS Name: sni.cloudflaressl.com
	DNS Name: *.blackhat.com
	DNS Name: blackhat.com

Certificate Fields

ceraneace publicer acernative marine


Extended Key Usage

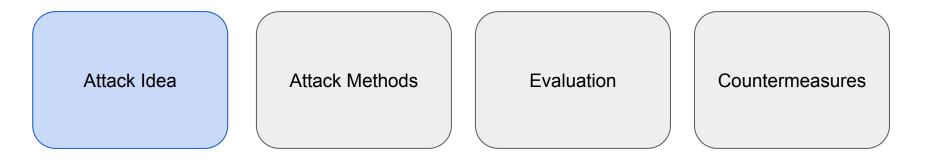
IP address and port are not protected by TLS!

.

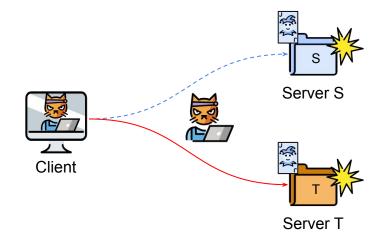
-

TLS-Based Cross-Protocol Attacks

Research Questions

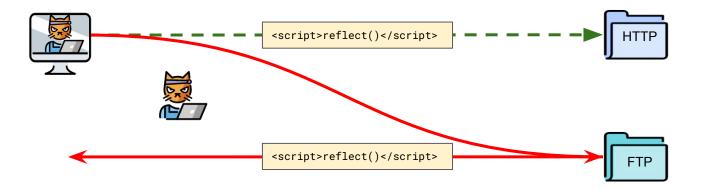


What is the impact of cross-protocol attacks today?

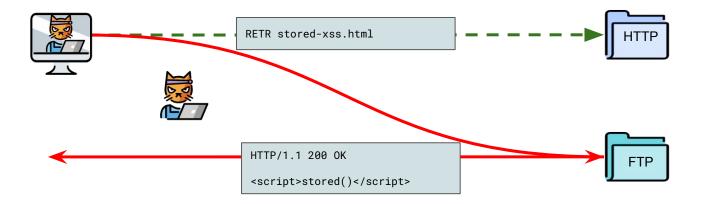

How many servers are affected by cross-protocol attacks?

How can cross-protocol attacks be prevented?

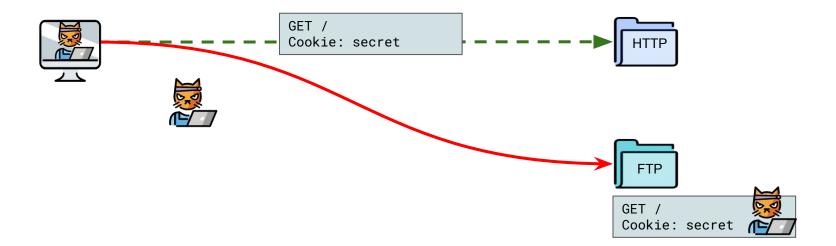
Overview



TLS-Based Cross-Protocol Attacks



There are three attack methods

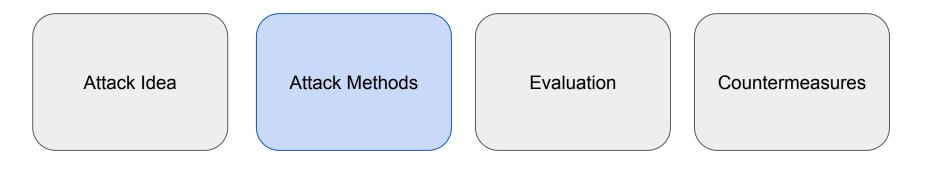

Reflection Attack (Reflected XSS)

Download Attack (Stored XSS)

Upload Attack (with Cookie Stealing)

Attack Obstacles

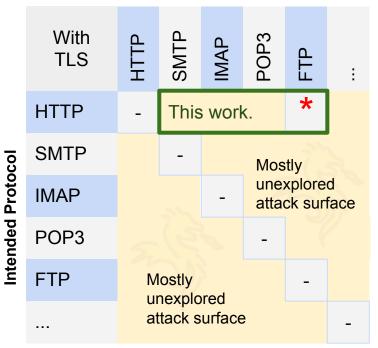
Certificate compatibility


TLS compatibility

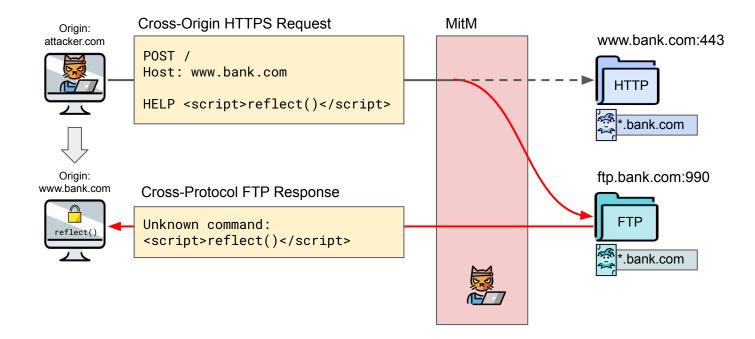
Application protocol needs to offer possibilities for upload / download / reflection

Protocol Noise

Overview



History and Potential of Cross-Protocol Attacks


HTTP (w/o TLS) Jochen Topf (2001), The HTML Form Protocol Attack

HTTPS (w/ TLS) * Jann Horn (2015), Two cross-protocol MitM attacks on browsers (With input from Michał Zalewski)

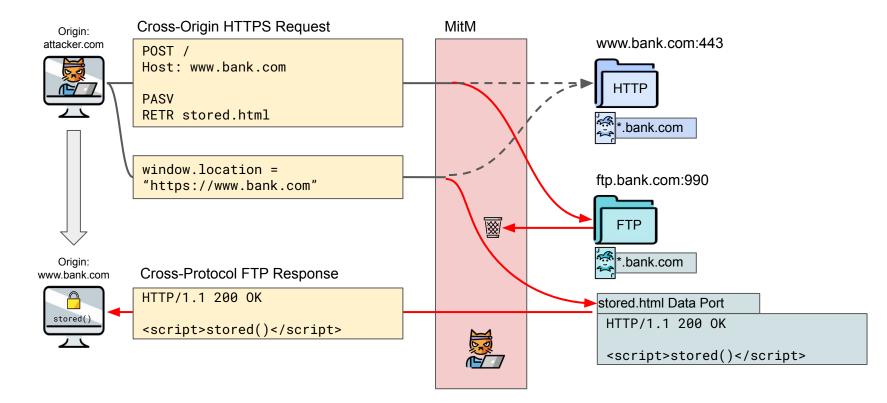
Substitute Protocol

Reflection Attack on HTTPS Exploiting FTP (Jann Horn, 2015)

Example Reflection Attacks

Microsoft FTP Server - IIS 10.0.19041.322 (Windows 10)

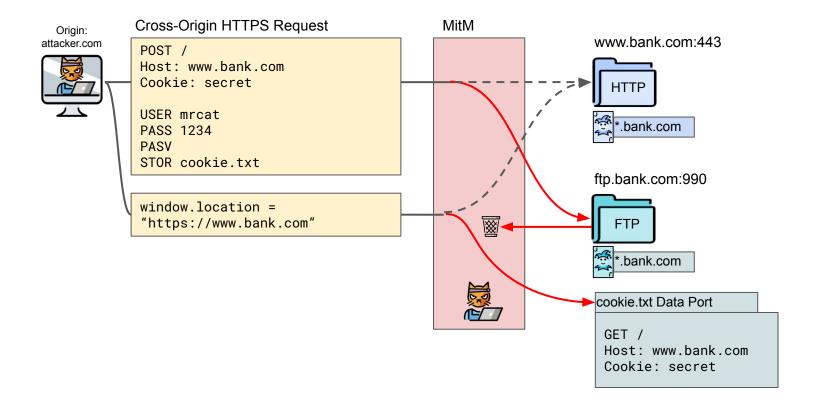
- LANG <script>alert("xss");</script>
- 4 502 Language <script>alert("xss");</script> not supported.


Kerio Connect IMAP Server 9.3.0

- x <script>alert`xss`</script>
- **A** x BAD Unknown command '<script>alert`xss`</script>'

Sendmail SMTP Server 8.15.2

- <script>alert(1);</script>
- 4 500 5.5.1 Command unrecognized: "<script>alert(1);</script>"


Download Attack on HTTPS Exploiting FTP (Jann Horn, 2015)

Example Download Vectors

FTP (Generic)	POP3	(Generic)		IMAP (Gen	eric)
USER attacker PASS S3cr3t TYPE I PASV RETR stored-xss.html	user attack pass S3cr3t retr 1			A1 LOGIN attacke A2 SELECT "INBO) A3 FETCH 1 rfc82	<"
<pre>stored-xss.html HTTP/1.1 200 OK <!DOCTYPE html> <html><head></head><body> <script>alert(1);</script> </body></html></pre>		From: a@example.c To: b@example.com Subject: none Date: Thu, 15 Oct MIME-Version: 1.0 Content-Type: tex Content-Transfer-	2020 t/hti	0 16:06:18 +0200 nl; charset=utf-8	
		<script>alert(1);</td><td></sc</td><td>ript></td><td></td></tr></tbody></table></script>			

Upload Attack on HTTPS Exploiting FTP

Example Upload Vectors

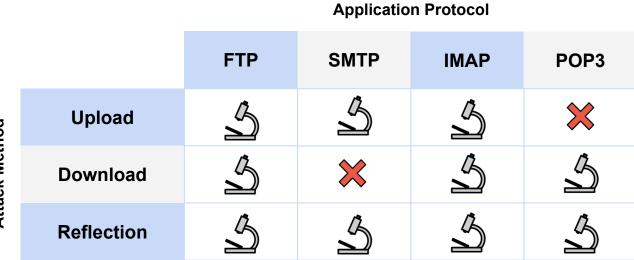
FTP (Generic)

USER attacker PASS S3cr3t TYPE I PASV STOR cookie.html

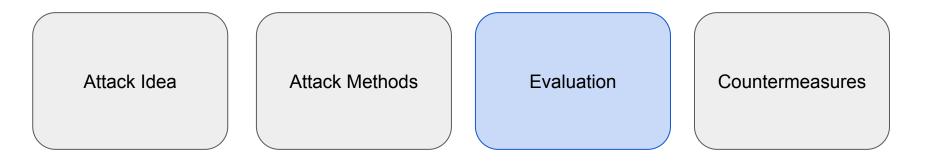
cookie.html

HTTP/1.1 GET / Cookie: **PHPSESSID=secret**

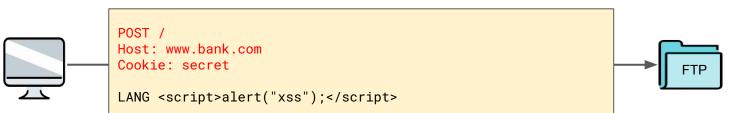
IMAP (Generic)

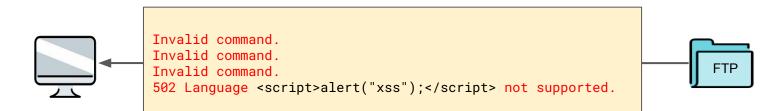

A1 LOGIN attacker S3cr3t A2 SELECT "INBOX" A3 APPEND "INBOX" (\Seen) {448+} From: alice@example.com To: bob@example.com Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST) Subject: afternoon meeting

INBOX


From: alice@example.com To: bob@example.com Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST) Subject: afternoon meeting

HTTP/1.1 GET / Cookie: PHPSESSID=secret


Attack Methods and Protocols (Summary)



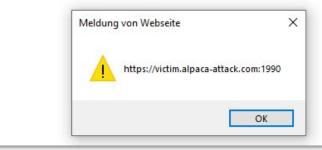
Overview

Protocol Noise

Noise Tolerance in Browsers

Not tolerant to protocol noise. Still possible:

- FTP Upload Attack
- FTP Download Attack

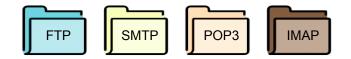

Tolerant to protocol noise ("content-sniffing").

• All attack methods possible.

220 ALPACA FTP Server (Debian) [::ffff:195.133.5.180] 500 POST not understo understood 500 REFERER: not understood 500 ACCEPT-LANGUAGE: not und not understood 500 CONTENT-TYPE: not understood 500 ACCEPT-ENCODIN not understood 500 CONTENT-LENGTH: not understood 500 CONNECTION: 1 CONTROL: not understood 500 Invalid command: try being more creative 500 X Password required for

Noise Tolerance in Servers

- Evaluated 24 application servers
- Tested tolerance for:
 - HTTP request methods
 - HTTP key:value pairs
 - Maximum number of syntax errors


	Server	H	TPR	equest T
	Postfix	0	\bigcirc	20
0	Exim	•	٠	3
Ξ	Sendmail	O ^a	۲	25
SMTP	MailEnable	•	•	15 ^b
	MDaemon	•	•	3
	OpenSMTPD	•	٠	8
	Dovecot	•	•	3
d	Courier	•	•	10 ^d
AP	Exchange	•	•	3
N	Cyrus	•	•	00
	Kerio Connect	•	•	00
	Zimbra	•	۲	00
	Dovecot	•	•	3 ^d
1000	Courier	•	•	∞
POP3	Exchange	•	•	3
PO	Cyrus	•	•	∞
	Kerio Connect	•	•	∞
	Zimbra	•	•	∞ ^e
	Pure-FTPd	$O^{\mathbf{f}}$	•	[∞]
	ProFTPD <1.3.5e	•	•	~
٥.	ProFTPD ≥1.3.5e	0	•	∞
FT	Microsoft IIS	•	•	00
H	vsftpd	•	•	8
	FileZilla Sever	•	•	∞
	Serv-U	•	•	∞

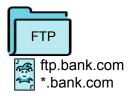
Exploitability of Servers

- 8 servers exploitable with browsers vulnerable to content sniffing (
)
- 4 servers exploitable in all browsers (■)
- 12 of 24 application servers can be exploited:
 - for at least one attack method
 - \circ with at least one browser

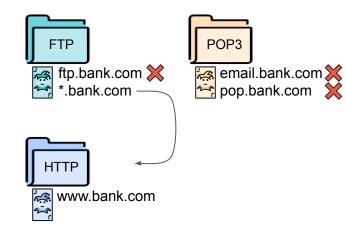
		1		Metho	
	Server	UT	load De	wnload Reffe	ction
	Postfix	$\bigcirc^{\mathbf{a}}$	-	Op	
•	Exim	\bigcirc^{a}	-	Ob	
SMTP	Sendmail	\bigcirc^{a}	-	Oe	
SIM	MailEnable	O^{a}		0	
-	MDaemon	\bigcirc^{a}	-	Ob	
	OpenSMTPD	$\bigcirc^{\mathbf{a}}$	5	$\bigcirc^{\mathbf{c}}$	
	Dovecot	$\bigcirc^{\mathbf{a}}$	Ob	Op	
120	Courier	\bigcirc^{a}	Ob	Ob	
AP	Exchange	\bigcirc^{a}	Ob	Ob	
IMA	Cyrus	Oa	•	•	
	Kerio Connect	\bigcirc^{a}	•	•	
	Zimbra	\bigcirc^{a}	•	•	
	Dovecot	-	Ob	Op	
	Courier	-	•	0	
POP3	Exchange	-	Op	0	
PO	Cyrus	-	٠	0	
	Kerio Connect	-	•	0	
	Zimbra	-	•	0	
	Pure-FTPd	Od	$\bigcirc^{\mathbf{d}}$	Od	
	ProFTPD <1.3.5e			•	
0	ProFTPD ≥1.3.5e	Od	Od	Od	
FTP	Microsoft IIS			•	
-	vsftpd			$\mathbf{O}^{\mathbf{f}}$	
	FileZilla Server			•	
	Serv-U			•	

28

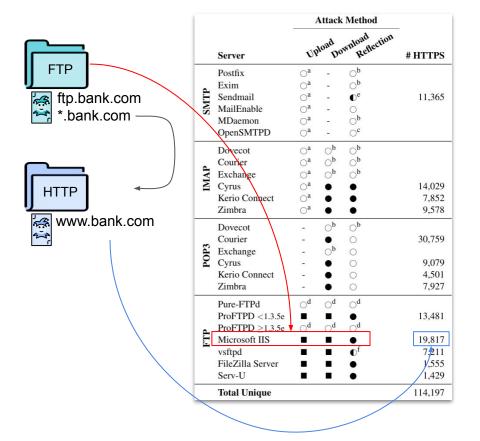
			Serve	r IPs with TLS	Certificate	Names (CN & SAN)
Protocol	Port	STARTTLS	Total	Valid Certificate	# Unique	# HTTPS
SMTP	25	Yes	3,427,465	1,744,052 (50,88%)	1,048,090	782,710 (74.68%)
SMTP	587	Yes	3,495,626	2,471,893 (70,71%)	1,176,078	821,534 (69.85%)
SMTPS	465	-	3,511,544	2,450,062 (69,77%)	1,045,990	724,557 (69.27%)
SMTP	26	Yes	565,672	514,425 (90,94%)	130,620	79,234 (60.66%)
SMTP	2525	Yes	231,009	139,536 (60,40%)	50,505	31,009 (61.40%)
IMAP	143	Yes	3,707,577	2,463,293 (66,44%)	1,103,216	782,410 (70.92%)
IMAPS	993	-	3,919,999	2,597,232 (66,26%)	1,287,053	926,313 (71.97%)
POP3	110	Yes	3,551,226	2,342,545 (65,96%)	983,720	690,111 (70.15%)
POP3S	995	-	3,828,411	2,580,379 (67,40%)	1,169,773	848,744 (72.56%)
FTP	21	Yes	4,826,891	2,130,271 (44,13%)	675,297	421,923 (62.48%)
FTPS	990	-	305,646	282,382 (92,39%)	115,070	95,197 (62.73%)
Total			31,371,066	19,716,070 (62,85%)	2,088,328	1,441,628 (69.03%)


Total number of application servers with TLS support (IPv4).

			Server	IPs with TLS	Certificate	Names (CN & SAN)
Protocol	Port	STARTTLS	Total	Valid Certificate	# Unique	# HTTPS
SMTP	25	Yes	3,427,465	1,744,052 (50,88%)	1,048,090	782,710 (74.68%)
SMTP	587	Yes	3,495,626	2,471,893 (70,71%)	1,176,078	821,534 (69.85%)
SMTPS	465	-	3,511,544	2,450,062 (69,77%)	1,045,990	724,557 (69.27%)
SMTP	26	Yes	565,672	514,425 (90,94%)	130,620	79,234 (60.66%)
SMTP	2525	Yes	231,009	139,536 (60,40%)	50,505	31,009 (61.40%)
IMAP	143	Yes	3,707,577	2,463,293 (66,44%)	1,103,216	782,410 (70.92%)
IMAPS	993	-	3,919,999	2,597,232 (66,26%)	1,287,053	926,313 (71.97%)
POP3	110	Yes	3,551,226	2,342,545 (65,96%)	983,720	690,111 (70.15%)
POP3S	995	-	3,828,411	2,580,379 (67,40%)	1,169,773	848,744 (72.56%)
FTP	21	Yes	4,826,891	2,130,271 (44,13%)	675,297	421,923 (62.48%)
FTPS	990	-	305,646	282,382 (92,39%)	115,070	95,197 (62.73%)
Total			31,371,066	19,716,070 (62,85%)	2,088,328	1,441,628 (69.03%)


Total number of application servers with valid certificates.

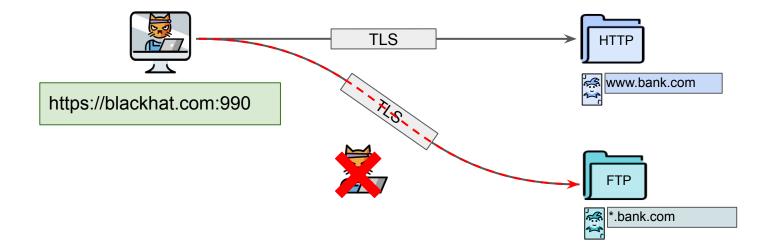
			Serve	r IPs with TLS	Certificate	Names (CN & SAN)
Protocol	Port	STARTTLS	Total	Valid Certificate	# Unique	# HTTPS
SMTP	25	Yes	3,427,465	1,744,052 (50,88%)	1,048,090	782,710 (74.68%)
SMTP	587	Yes	3,495,626	2,471,893 (70,71%)	1,176,078	821,534 (69.85%)
SMTPS	465	-	3,511,544	2,450,062 (69,77%)	1,045,990	724,557 (69.27%
SMTP	26	Yes	565,672	514,425 (90,94%)	130,620	79,234 (60.66%
SMTP	2525	Yes	231,009	139,536 (60,40%)	50,505	31,009 (61.40%)
IMAP	143	Yes	3,707,577	2,463,293 (66,44%)	1,103,216	782,410 (70.92%
IMAPS	993	-	3,919,999	2,597,232 (66,26%)	1,287,053	926,313 (71.97%
POP3	110	Yes	3,551,226	2,342,545 (65,96%)	983,720	690,111 (70.15%
POP3S	995	-	3,828,411	2,580,379 (67,40%)	1,169,773	848,744 (72.56%
FTP	21	Yes	4,826,891	2,130,271 (44,13%)	675,297	421,923 (62.48%
FTPS	990	-	305,646	282,382 (92,39%)	115,070	95,197 (62.73%
Total			31,371,066	19,716,070 (62,85%)	2,088,328	1,441,628 (69.03%


Unique hostnames in the Common Name (CN) and Subject Alternative Name (SAN) fields of all valid certificates.

			Serve	r IPs with TLS	Certificate	Names (CN & SAN)
Protocol	Port	STARTTLS	Total	Valid Certificate	# Unique	# HTTPS
SMTP	25	Yes	3,427,465	1,744,052 (50,88%)	1,048,090	782,710 (74.68%)
SMTP	587	Yes	3,495,626	2,471,893 (70,71%)	1,176,078	821,534 (69.85%)
SMTPS	465	-	3,511,544	2,450,062 (69,77%)	1,045,990	724,557 (69.27%)
SMTP	26	Yes	565,672	514,425 (90,94%)	130,620	79,234 (60.66%)
SMTP	2525	Yes	231,009	139,536 (60,40%)	50,505	31,009 (61.40%
IMAP	143	Yes	3,707,577	2,463,293 (66,44%)	1,103,216	782,410 (70.92%
IMAPS	993	-	3,919,999	2,597,232 (66,26%)	1,287,053	926,313 (71.97%
POP3	110	Yes	3,551,226	2,342,545 (65,96%)	983,720	690,111 (70.15%
POP3S	995	-	3,828,411	2,580,379 (67,40%)	1,169,773	848,744 (72.56%
FTP	21	Yes	4,826,891	2,130,271 (44,13%)	675,297	421,923 (62.48%
FTPS	990	-	305,646	282,382 (92,39%)	115,070	95,197 (62.73%
Total			31,371,066	19,716,070 (62,85%)	2,088,328	1,441,628 (69.03%

Total number of web servers on port 443 among unique names (*=www). **1.4M web servers are vulnerable to a general TLS cross-protocol attack** with at least one application server (SMTP, IMAP, POP3, or FTP).

Vulnerable Web Servers with Exploitable Application Servers



For the 1.4M web servers, we tried to identify the application servers with a banner scan to see they are exploitable based on our lab eval.

114,197 web servers can be attacked with at least one exploitable application server.

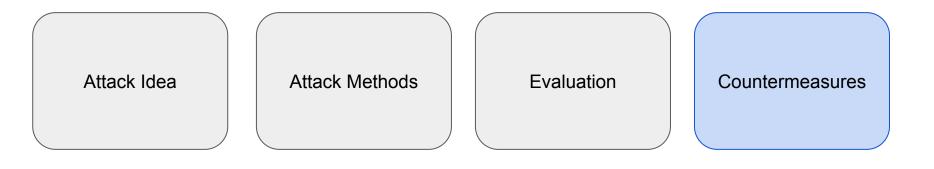
One more thing...

Do We Need a Man-in-the-Middle?

ALPACA Without Man-in-the-Middle

Requirements:

- Application server port is not blocked (e.g. FTPS 990).
- Hostname is the same.
- Browser ignores port in Same-Origin-Policy (e.g. Internet Explorer).


Fixed in IE with patch tuesday June 8, 2021:

- More blocked ports.
- HTTP content-sniffing disabled on non-standard port.

Other major browsers will also block more ports.

victim.alpaca-attack.com	× [
understood 500 REFERER not understood 500 CONT not understood 500 CONT	(Debian) [::ffff:195.133.5.180] 500 POST not unders : not understood 500 ACCEPT-LANGUAGE: not un ENT-TYPE: not understood 500 ACCEPT-ENCODI ENT-LENGTH: not understood 500 CONNECTION d 500 Invalid command: try being more creative 500
	Meldung von Webseite X
	https://victim.alpaca-attack.com:1990

Overview

Not Good Enough: Application Layer Countermeasures

Detect Protocols Limit Syntax Errors **Avoid Reflection** 220 smtp.bank.com ESMTP 220 smtp.bank.com ESMTP 220 smtp.bank.com ESMTP sendmail Postfix Exim > <script>alert(1);</script> ► GET / ► GET / ◀ 500 5.5.1 Command ✓ 221 2.7.0 Error: I can 500 unrecognized command unrecognized: break rules, too. Goodbye. ► Host: bank.com "<script>alert(1);</script>" Connection closed by 500 unrecognized command foreign host. Connection: keep-alive 500 unrecognized command Cache-Control: max-age=0 ◀ 500 Too many unrecognized commands Connection closed by foreign host.

Not Practical: Certificate-Based Countermeasures

Not Intended / Standardized: Key Usage Restrictions

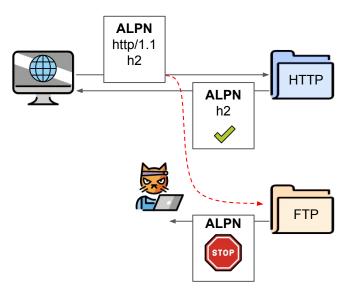
certificate subject internative manie	
Extended Key Usage	
ld Value	
eld Value Not Critical	
eld Value Not Critical TLS WWW Server Authentication (OID.1.3.6.1.5.5.7.3.1)	

RFC 5280:

id-kp-serverAuth	OBJECT IDENTIFIER ::= { id-kp 1 }
TLS WWW server authentica	ition
keyEncipherment or keyAgr	eement
	OBJECT IDENTIFIER ::= { id-kp 2 }
TLS WWW client authentica	ition
and/or keyAgreement	
id-kp-codeSigning	OBJECT IDENTIFIER ::= { id-kp 3 }
Signing of downloadable e	executable code
	OBJECT IDENTIFIER ::= { id-kp 4 }
Email protection	
nonkepudiation, and/or (k	eyEncipherment or keyAgreement)
id kn timeCtomping	OBJECT IDENTIFIER ::= { id-kp 8 }
Binding the hash of an ob	
and/or nonRepudiation	
id-kp-OCSPSigning	OBJECT IDENTIFIER ::= { id-kp 9 }
Signing OCSP responses	000E01 IDENTITIEN { Id-Kp 9 }
Signing USP responses	

-- and/or nonRepudiation

Only differentiates between client and server, no application protocol distinction possible.

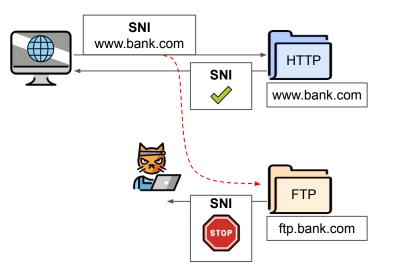

Recommended: Strict Application Layer Protocol Negotiation (ALPN)

Server implements strict ALPN:

- Not exploitable on clients with ALPN (e.g., browsers).
- Backwards compatible: servers can accept connections without ALPN.

Client and server implement strict ALPN:

• Prevents known and unknown cross-protocol attacks.


Recommended: Strict Server Name Indication (SNI)

Server implements strict SNI:

• Cross-hostname attacks are prevented.

Works if hostnames differ: www.bank.com vs. ftp.bank.com

Also mitigates virtual host confusion attacks, see Delignat-Lavaud et al. (2015), Zhang et al. (2020).

How to Mitigate ALPACA Attacks With ALPN and SNI

Here we give instructions and references how to implement strict verification of ALPN and SNI in common TLS libraries. We thank the maintainers of these libraries for their help in assembling these instructions, and apologize for any errors we made in editing. Please let us know if you find inaccuracies or areas for improvement.

- <u>Recommended Behavior for ALPN</u>
 - ALPN for Servers
 - ALPN for Clients
- <u>Recommended Behavior for SNI</u>
 - SNI for Servers
 - SNI for Clients
- ALPN and SNI Support in TLS Libraries
 - OpenSSL
 - o Oracle Java
 - GoLang (crypto/tls)
 - Windows TLS Stack (SChannel)
 - Mbed TLS
 - BoringSSL
 - BotanSSL
 - o BearSSL
 - WolfSSL
 - GnuTLS

https://alpaca-attack.com/libs.html

Conclusions

Cross-protocol attacks are still possible today!

We found 114k web servers with an exploitable FTP or Email server.

Strict ALPN and SNI can prevent these attacks.

More cross-protocol attacks? Binary protocols, DTLS, IPsec, ... Thank you for listening! Any questions?