
Can You Hear Me Now?
Remote Eavesdropping Vulnerabilities in
Mobile Messaging Applications

About Me

● Natalie Silvanovich AKA natashenka
● Project Zero member
● Previously did mobile security on Android and BlackBerry
● Messaging enthusiast

Group FaceTime Bug

● Allowed call to be connected without user
interaction

● Available through user interface
● Completely unprecedented

Group FaceTime Bug

● Allowed call to be connected without user
interaction

● Available through user interface
● Completely unprecedented

Goals

● Determine how this bug class works
● Investigate apps for similar bugs

What is WebRTC?

● RTC = Real Time Communication
● Audio and video conferencing library maintained by Google

○ Also a protocol with a specification
● Used by all major browsers
● Used by many mobile applications
● Alternatives have similar design

WebRTC Architecture

Call Signaling Flow

Caller

P2P media (PeerConnection)

SDP offer

SDP answer

SDP candidates

Callee

Tracks

● Tracks are input devices that can be streamed to a peer
○ Camera
○ Microphone

● Tracks need to be added to a PeerConnection and
enabled before input is streamed

● Can be done at any time during a call, but transmission
won’t work until a P2P connection has been established

What causes call connection vulnerabilities?

● Video conferencing applications require a state
machine to manage offers, answers, candidates
and tracks
○ Sometimes they have implementation bugs
○ Sometimes developers misunderstand these constructs
○ Sometimes WebRTC has bugs*

*I haven’t seen an example of a state machine bug
caused by this yet

Finding calling state machine vulnerabilities

● Understand state machine
● Think about possible problems
● Test problems

Understanding State Machines

● Some projects (Signal/Telegram) document their state
machines well
○ All projects should do this

● Otherwise used Frida to hook signalling on an Android
device
○ Logged offers, answers, candidates and tracks
○ Manipulated user interface

Understanding State Machines

● Occasional decompiled app with apktool to see when
WebRTC natives were called
○ Necessary for apps with threading

setLocalDescription
setRemoteDescription
addIceCandidate
addTrack
removeTrack
setEnabled

Possible Problems

● Send extra messages
● Drop messages
● Send messages in wrong order
● Send messages in wrong direction
● ‘Secret’ message types

Signal Messenger and Facebook Messenger Vulnerabilities

● Signal vulnerability reported and fixed in 2019
● Root cause is confusion between caller and callee state
● Facebook Messenger vulnerability reported and fixed in

2020
● Similar root cause involving state mismanagement
● Both allow audio to be transmitted without consent

Logic Vulnerability Example (Signal)

Caller Callee

SDP Offer

SDP Answer

SDP Candidates

P2P media

Connect message (adds track for caller)

User accepts
(adds track)

Logic Vulnerability Example (Signal)

Caller Callee

SDP Offer

SDP Answer

SDP Candidates

P2P media

Connect message (enables track on callee!!!)

JioChat/Mocha Vulnerability

● JioChat and Mocha had very similar vulnerabilities, reported and
fixed in 2020

● Root cause is not understanding that offers and answers can
contain candidates

● Allowed audio and video to be transmitted without consent

Logic Vulnerability Example (JioChat)

Caller

Callee

SDP Offer

SDP Answer

SDP Candidates

User accepts

Server

SDP Offer

SDP Answer

SDP Candidates

Accept

SDP Candidates SDP Candidates

P2P media

onIceConnect
enables
track

Logic Vulnerability Example (JioChat)

Caller

Callee

SDP Offer (with candidates)

SDP Answer

Server

SDP Offer (with candidates)

SDP Answer

P2P media

onIceConnect
enables
track

Google Duo Vulnerability

● Found and fixed in 2020
● Root cause is incorrect asynchronous logic (race condition)
● Allowed a few frames of video to be transmitted without

consent

Logic Vulnerability Example

Caller

Callee

P2P media

SDP offer

setLocalDescription

onSetSuccess

RTPSender.setParameters

SDP answer

SDP candidates

User accepts

RTPSender.setParameters

Logic Vulnerability ExampleLogic Vulnerability Example

Caller

Callee

P2P media

SDP offer

setLocalDescription

onSetSuccess

RTPSender.setParameters

SDP answer

SDP candidates

Testing Vulnerabilities

● Recompiled open source apps
● Otherwise, used Frida to change the state

machine call flow
● This was painful
● Required extra step of including fbthrift-py for

Facebook Messenger

Decoding fb-thrift

Decoding fb-thrift

Decoding fb-thrift

struct Extmap{
 1: i32 id
 2: optional i32 uri
}

Decoding fb-thrift

struct P2PMessageRequest{

1: WebrtcMessageHeader header
2: WebrtcMessagePayload payload

}

struct WebrtcMessageHeader{

1: optional i32 protocolVersion
2: optional i64 messageId
3: optional i64 callId
4: optional i64 sender
5: optional i64 receiver
6: optional i64 capabilities
7: optional i32 payloadType
8: byte retryCount
9: bool pranswerSupported
10: optional i32 ackMessageType
11: optional WebrtcMessageEndpoint source
12: optional WebrtcMessageEndpoint destination
13: optional string rtcHandle
14: optional i32 clientStack
15: optional i64 serverMsgTime

}

Root Causes

● Lack of knowledge of vulnerability type
○ Poor state machine testing

● Misunderstanding WebRTC features
● Setting up P2P connection before call is

answered

Conclusions

● Video conferencing signaling state bugs are common
● Some problems can be attributed to WebRTC design and

documentation, but many can’t
● Developers should be careful when designing calling state

machines
● This is an area that needs more research

Questions

http://googleprojectzero.blogspot.com/
@natashenka

natashenka@google.com

http://googleprojectzero.blogspot.com/

