
Chip Chop - Smashing the Mobile Phone
Secure Chip for Fun and Digital Forensics

Gunnar Alendal
Norwegian University of Science and Technology (NTNU)

@gradoisageek

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

Digital forensics (simplified)

Acquisition

Extract data to be analysed

=

Digital Forensics
Acquisition (DFA)

Analysis

Identify and analyse data
relevant to investigation

Report

Report on positive and
negative findings

Seize

Identifying and seizing, e.g.
devices, hard drives, ...

Digital Forensic
Acquisition (DFA)

pixabay.com

Before

pixabay.com

Now

pixabay.com

Android Security 101

Untrusted &
Trusted worlds

Towers preventing
DFA

<= Galaxy S10

“Breaking Samsung's Root of Trust: Exploiting Samsung S10 S-Boot”
Jeff Chao / Black Hat 2020

Towers preventing
DFA

>= Galaxy S20

#BHUSA @BlackHatEvents

1 + 1 = Digital Forensic Acquisition

Break REE + break => DFA

This talk

#BHUSA @BlackHatEvents

(embedded) Secure Element - eSE

● Model in Galaxy S20 (Exynos): S3K250AF *
● Separate HW chip
● Protects encryption key material
● Prevents brute force from compromised system (“root”)

● Break eSE => gain access to encryption key material

* Full paper presented @DFRWS USA 2021:
“Chip Chop - Smashing the Mobile Phone Secure Chip for Fun and Digital Forensics”

Android File-based
Encryption (FBE)

#BHUSA @BlackHatEvents

Android FBE States

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device off Power on / no unlock
Before-first-unlock (BFU)

Power on / first unlock
After-first-unlock (AFU)

#BHUSA @BlackHatEvents

Android FBE States & eSE

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device off Power on / no unlock
Before-first-unlock (BFU)

Power on / first unlock
After-first-unlock (AFU)

#BHUSA @BlackHatEvents

Attack phase 1: “root” REE

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device off Power on / no unlock
Before-first-unlock (BFU)

Power on / first unlock
After-first-unlock (AFU)

 E.g. break
secure boot

#BHUSA @BlackHatEvents

Attack phase 2: eSE: Force BFU to AFU

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device off Power on / no unlock
Before-first-unlock (BFU)

Power on / first unlock
After-first-unlock (AFU)

BFU => AFU:
Break eSE

BFU => AFU
w/ weaver

pw/pin/pattern

+

SALT (DE)

+

SECRET (eSE)

=

AFU

eSE

Brute force

pw/pin/pattern

=

BruteForce(SALT (DE)

+

CHALLENGE (eSE))

eSE

Attack Summary*

*Executive edition

#BHUSA @BlackHatEvents

Attacking the FBE (CE)
REE

1. Break REE: “root” / SALT

2. Attack eSE

3. Get CHALLENGE + (SECRET)

4. Off-device brute force pw/pin/pattern

#BHUSA @BlackHatEvents

Off-device brute force pw/pin/pattern
for pin in all_pins:

KDF(PIN, SALT)

computePasswordTokenRes = scrypt.hash(pin,SALT,N=scryptN,r=scryptR,p=scryptP,buflen=PASSWORD_TOKEN_LENGTH)

Generate CHALLENGE candidate

sha512 = hashlib.sha512(PERSONALISATION_WEAVER_KEY)

sha512.update(computePasswordTokenRes)

personalisedHash = sha512.digest()

Compare candidate CHALLENGE with stolen CHALLENGE

if personalisedHash[:stolenCHALLENGELen] == stolenCHALLENGE:

print("\n=================================\n")

print(" Correct pin is: %s"%pin)

print("\n=================================\n\n")

print(" pwdToken hash : " + computePasswordTokenRes.hex())

print(" weaver CHALLENGE hash : " + personalisedHash[:stolenCHALLENGELen].hex())

The eSE attack
from 0 to 0-day

#BHUSA @BlackHatEvents

Enter S3K250AF eSE!

● Introduced 2020 in Galaxy S20 models (Exynos)
● Black box IC
● ARM BE8 THUMB
● 252 kB on-board flash + 16 kB RAM
● CC EAL 5+ certification
● Designed to protect against HW attacks, like Side-Channel attacks
● Brute force protection

● Features: Weaver / SecNVM / Device Attestation / Keystore / ..

#BHUSA @BlackHatEvents

eSE = “Black box”
REE

● REE talks to eSE
○ hermesd process
○ Frida instrumentation
○ Reimplement in chip_breaker

● Talks APDU
○ Just like a SIM card
○ APDU handlers in eSE FW

● Reverse engineer REE commands
○ REE .so + small FW part
○ We can talk “dirty” to it!

● But no debug / info leak
○ Locate oracles!

Info leak
Oracles needed

#BHUSA @BlackHatEvents

Oracle 1
REE

● APDU handler error:
○ APDU response w/error code
○ Error = APDU SW (Status Word)

● APDU handler crash:
○ No APDU response!

#BHUSA @BlackHatEvents

Oracle 2
REE

● Promising eSE ADPU handlers:
○ APDU_readWeaver

Send CHALLENGE
○ APDU_writeWeaver

Set CHALLENGE / SECRET

nC nS CHALLENGE

SECRET

1 nC1

nS

#BHUSA @BlackHatEvents

Oracle 2 (simplified)

● APDU_writeWeaver

First: Set CHALLENGE / SECRET

32 32 f0b90d..1c1b

2bf11f..d582

1 32

1 255

“Secret”

Normally What if?

1

1

32

1 1 1

32

#BHUSA @BlackHatEvents

Oracle 2 (actual)

● APDU_writeWeaver

First: Set CHALLENGE / SECRET

1 40 “Secret” + 000..0

Footer overwrite trick

1

1 1 1 32

1 204

4 4

#BHUSA @BlackHatEvents

Oracle 2

● APDU_readWeaver

Second: Send CHALLENGE

32 f0b90d..1c1b

2bf11f..d582

Send: Send:

1

Receive:

“Secret” + stack dataaaaaaaaaaaaaaa

Receive:

1

32

20432

1 1 1

#BHUSA @BlackHatEvents

Oracle 2 - Stack leak!

0000 53 65 63 72 65 74 00 00 00 00 00 00 00 00 00 00

0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0020 00 00 00 01 00 00 00 D0 00 00 00 00 00 00 00 00

0030 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 05

0040 01 22 49 31 20 00 14 28 20 00 27 C0 00 00 00 00

0050 20 00 14 80 FF FF FF FF 00 02 85 F9 20 00 14 80

0060 20 00 27 C0 00 02 85 8B 00 00 00 00 20 00 0B 50

0070 00 00 00 00 FF FF FF FF 00 01 04 7F 00 00 00 00

“Secret”

Data addresses (RAM) Code addresses (flash) (ARM THUMB)

SECRET(32)

#BHUSA @BlackHatEvents

Oracle 2 features

● Leak RAM address range + pointers
● Leak CODE (flash) address range + pointers
● Stack layout of APDU_readWeaver
● Enable dynamic reverse engineering
● Further experimenting different APDU handlers
● BlindROP / DarkROP like testing

#BHUSA @BlackHatEvents

From Oracle to 0-day

● APDU_writeWeaver

Set CHALLENGE / SECRET

1 255

4141414141...41

1

1 1 1

255

==>

Oracle 1 hit!

APDU_writeWeaver crashed?

What if?

#BHUSA @BlackHatEvents

S3K250AF Attack so far

● Have stack leak, but only for APDU_readWeaver
● APDU_writeWeaver triggers Oracle 1 on nS > 84
● Back to skool:

○ “Smashing the stack for fun and profit” (Aleph One,1996)

● Next move, alternative 1:
○ secret[84:88] assumed code pointer?
○ Brute force => hit ROP gadget w/ no Oracle 1 trigger

● Next move, alternative 2:
○ Assume stack APDU_readWeaver ~= APDU_writeWeaver
○ Manual stack guesstimating

#BHUSA @BlackHatEvents

Alternative 2: stack guesstimating

● Partial S3K250AF FW found on Galaxy S20 filesystem
○ Most of FW is encrypted :(

● Contains unencrypted “dev” version of IWEA code
● IWEA is short for IWEAVER

○ APDU_readWeaver_dev disassembly possible
○ APDU_writeWeaver_dev disassembly possible

● We can “simulate” stack use, and hope it fits “prod” code on chip
○ <trial and error>

Stack layout found

#BHUSA @BlackHatEvents

Victory!

● Stack layout of APDU_writeWeaver guessed!
● Know position of return address (PC) POP’ed from stack!
● We can set R4-R7 and PC to return properly!

● Can now overflow stack and control execution on S3K250AF eSE!
● Pwned!

#BHUSA @BlackHatEvents

APDU_writeWeaver Stack smash!

secret[84:88]

APDU_writeWeaver

#BHUSA @BlackHatEvents

Next goal: Execute something useful

● One ROP to rule them all
○ Dumps 16 bytes from arbitrary address

MOVS R0, #0x10 ; size to read. Fixed size 0x10.

STR R7, [R4] ; R7 is address to read => We control R7!

STR R0, [R4,#4] ; Store size

MOVS R0, #0x90 ; SW1 => SW is just return code (Status Word). 0x90 == “Success”

STRB R0, [R4,#8] ; Store SW1

MOV R0, R5 ; SW2

STRB R5, [R4,#9] ; Store SW2

POP {R1-R7,PC} ; pop and return => We get 0x10 bytes from arbitrary address!

chip_breaker

● Dump CHALLENGE
● Remove “root” REE

requirement

#BHUSA @BlackHatEvents

Full eSE flash dump

● We dump all code + metadata
● We dump all sensitive data

○ “11: IWEAVER”:
CHALLENGE + SECRET

● Off-device brute force: Check!
● Digital Forensic Acquisition: Check!

Mission
accomplished!

#BHUSA @BlackHatEvents

But wait! Can we do more?

● We can achieve arbitrary code execution (ACE)
○ RAM/Stack is executable!
○ Return-to-APDU-buffer => ACE / (RCE)

shellcode

#BHUSA @BlackHatEvents

Arbitrary code execution

● We can read flash + RAM
○ Dump hardcoded AES key => Used for FW encryption
○ No more encrypted FW updates
○ No FW code or sensitive data safe

● We can write flash + RAM
○ No eSE Secure Boot!
○ Persistent(!) changes to any eSE feature
○ Set up C build env.

■ “Breaking Samsung firmware, or turning your S8/S9/S10 into a DIY
Proxmark” - Christopher Wade

Write persistent
changes => New
attack variant?

● eSE only attack
● Remove “root” REE

requirement

Towers preventing
DFA

>= Galaxy S20

#BHUSA @BlackHatEvents

Potential “HW Trojan” attack

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device
Encrypted
(DE)

Credential
Encrypted
(CE)

Device off BFU AFU

BFU => AFU:
Brute force

“HW Trojan”
attack PoC demo

● Rubber Ducky HID
simulation

● Send all PINs
● No timeouts!

Unpatched

Patched:
eSE brute force protection

removed

Music: @dubmood

https://docs.google.com/file/d/1rhkepV_TxUrBHisgxzyoaabifXli406x/preview

ToDo: Test actual chip
off, attack, chip on

Certification
⤋

Security?

"In theory, there is no difference between theory and practice, while in practice, there is"

- Benjamin Brewster

#BHUSA @BlackHatEvents

CC EAL 5+ AVA_VAN.5

● Security Goals in “Security Target”:
○ SG1 => Integrity of user data
○ SG2 => Confidentiality of user data
○ SG3 => Correct operation

● AVA_VAN.5:
○ “A methodical vulnerability analysis is performed by the evaluator to ascertain

the presence of potential vulnerabilities”
○ A certified stack smashing buffer overflow?

Broken by our attack

#BHUSA @BlackHatEvents

Intended vs. achieved security

● S3K250AF meant to protect against state level actors
○ Broken by 1 researcher, no special tools, ~1 month

● FW encryption AES key revealed
○ No encrypted OTA possible for fielded devices

● Can fielded S3K250AF devices regain trust?
○ Can we create undetectable / unremovable eSE FW modifications?

#BHUSA @BlackHatEvents

Black Hat Sound Bytes

● One old skool stack buffer overflow to break the S3K250AF eSE

○ Patched by Samsung (CVE-2020-28341 / SVE-2020-18632)

● CC EAL 5+ AVA_VAN.5 gives no guarantees of achieved security

● Digital Forensic Acquisition in 2021: Finding and exploiting 0-days

#BHUSA @BlackHatEvents

Thank you
(see full paper for details)

Gunnar Alendal
@gradoisageek

Thanks:
Geir Olav Dyrkolbotn, Stefan Axelsson, @zutle, @dubmood (music) and Samsung

