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Abstract
How can we identify active CnC servers? Answering this
question is critical for containing and combating botnets. Find-
ing CnC servers is not trivial because: CnC servers can change
locations expressly to avoid detection, use proprietary commu-
nication protocols, and often use end-to-end encryption. Most
prior efforts first "learn" a malware communication protocol,
and then, scan the Internet in search of live CnC servers. Al-
though useful, this approach will not work with sophisticated
malware that may use encryption or a communication proto-
col that is hard to reverse engineer. In this work, we propose
CnCHunter, a systematic tool that discovers live CnC servers
of IoT malware efficiently. The novelty of our approach is that
it uses real "activated" malware to search for live CnC servers,
with CnCHunter acting as a Man-In-The-Middle. As a result,
our approach overcomes the limitations of prior efforts. For
example, the malware binary knows how to communicate with
its server even if in the presence of encryption. We randomly
selected 100 IoT malware samples collected between 2017
and 2021, and found their CnC servers. CnCHunter could
activate 90% of the malware and automatically find the CnC
servers with a 92% precision. Additionally, we demonstrate
the potential of our system by activating old Gafgyt and Mirai
malware samples and enabling them to communicate with
live CnC servers for other recent samples of the same family.
This proves that an old malware binary of a family can be
used to scan the Internet and find live Cnc servers for that
malware family.

1 Introduction

In the battle against IoT botnets, identifying Command and
Control (CnC) servers is extremely important. Once the CnC
servers of a malware are known, we can start containing its
reach and power. For example, the defense could include
monitoring or blocking traffic to these destination addresses.
This is especially an effective defense in case of IoT devices,
because they don’t have enough computation power to have
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Figure 1: CnCHunter Overview

sophisticated on-device defenses like Antiviruses. In addition,
current breaches can be identified from the network trace
once CnC addresses are known. Finally, malware operations
can be entirely disrupted once Internet Service Providers and
Law Enforcement coordinate efforts to take down known CnC
servers.

Finding CnC servers that are currently live is a challenging
task. As we elaborate in section 2, CnC servers are very short
lived, and once the security analysts find malicious samples,
bot masters quickly move their servers and update the samples
to include new addresses. Henceforth, by the time a new
variant is publicly known, its CnC has already moved to a
new address allowing the botnet to survive or revive itself.

Prior work attempts to find CnC servers via active probing
using a learned communication protocol. In this approach,
one scans the Internet, and attempts to engage with endpoints
to confirm a pattern of communication. The main challenge
is knowing the details of malware communication protocols.
As we elaborate in section 2, IoT malware communication
protocols are diverse and hence there is no "one size fits all"
solution for active probing of all malware families. Related
work such as [19,23] try to automate the process of learning a
botnet communication protocol, however they fall short when
the communication protocol has some sort of encryption.
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Malware Communication Details
Gafgyt Custom PONG command is communicated via IRC, and others are text commands.
Mirai Custom All C2 commands are custom binary based.

Lightaidra IRC All C2 commands are wrapped inside IRC PRIVMSG (private) messages.
Linux.wifatch Custom All C2 commands are custom binary based.

Remaiten IRC Similar to Lightaidra but commands are different.
Lizkebab Custom Similar to Gafgyt but commands are different.
LuaBot Encrypted payload Uses MatrixSSL library for payload encryption.
Torlus Custom Similar to Gafgyt but commands are different.

Tsunami IRC All C2 commands are wrapped inside IRC NOTICE messages.
BASHLIFE Custom Similar to Gafgyt but commands are different.

Table 1: Application layer communication protocol of reputable IoT malware families.

In this work, we take a different direction. We exploit mal-
ware itself to communicate with live CnC servers. Our key
intuition is that the communication protocol of a malware
family barely changes from one sample to another; although it
would change from one family to another. Specifically, while
the CnC servers in the malware sample might not be alive,
the malware sample is capable of talking to a live CnC server
of its own family, if we redirect its traffic to the live CnC.
This implies that old malware samples can be used to scan
the Internet for new live CnC servers.

We present CnCHunter, an automated malware analysis
tool that takes as input a malware sample of a family and a list
of candidate addresses. CnCHunter automatically finds live
CnC servers among the input candidate addresses. Figure 1
illustrates an overview of our system. In summary, we make
the following contributions:

• We design and build CnCHunter that can automatically
find an IoT malware’s CnC servers dynamically.

• We propose a solution to identify live CnC servers of a
malware family using old samples if the family is still
operational but its new variants are not yet captured and
analyzed. We implement the solution and open-source
our tool for the community to use 1.

• We showcase the effectiveness of our tool by empirically
evaluating it. We show that 18% of live CnC servers that
CnCHunter can find are missed by VirusTotal. Further-
more, we show the MitM functionality of our tool by
redirecting the traffic of Gafgyt and Mirai samples to
live CnC servers of the same family.

2 Guiding Empirical-Derived Insight

Our work is guided by a few key observations in designing
CnCHunter. These observations are based on preliminary
analysis of malware samples. In the rest of this section, we
elaborate on these observations.

1please see https://github.com/adava/CnCHunter.

2.1 Diversity of Communication Protocols

We observe that while communication protocols change from
one family to another, they tend to remain nearly identical
from one sample to another within the same malware family.
We define a malware communication protocol as the appli-
cation layer protocol plus all the contracts that the malware
would have using the application layer protocol. For instance,
a malware might use HTTP (not HTTPS) but encrypts the
messages using RC4 encryption algorithm and expects a par-
ticular sequence of messages for a successful communication.

We analyzed the communication protocols of 10 IoT mal-
ware families. While there are some similarities, there is no
single protocol that can support all malware families or even
a majority of them. The result of our analysis is reported in
Table 1.

In addition, we evaluated the diversity of communication
protocols within a single malware family between 2017 and
2020. We analyzed 1951 samples from 3 different malware
families. We built a custom CnC server that imposters the
CnC behavior that the malware would expect. Our goal is to
measure how many samples from a single family can talk
to our imposter without any changes. The result is shown in
Table 2. The table shows that in majority of cases, the CnC
communication protocol barely changes.

Family from Virustotal Number of samples Success
Gafgyt 1451 99.5%
Mirai 402 100%

Tsunami 98 69.5%

Table 2: The percentage of samples that can talk to a single
CnC imposter for the malware family of the sample.

2.2 Frequency of Contacting CnC servers

We expect the malware to frequently contact its CnC server.
A malware might communicate with different endpoints for
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Figure 2: Frequency percentage of CnC connections that is
the number of CnC connections to the total number of victim
connections.

various reasons. For instance, a malware might open a connec-
tion to the google to check for internet connectivity. Another
example is scanning the internet for finding vulnerable targets.
Nevertheless, the malware needs to regularly communicate
with its CnC server. We believe that communication with
CnC is more frequent than other endpoints. Malware would
frequently try to communicate with its CnC even if the CnC
is not live.

We manually analyzed nearly 2% of malware samples
from our dataset. We randomly selected 40 samples from
our dataset for manual analysis. We statically and dynami-
cally analyzed the malware to find its CnC servers. We looked
for an IP address that the malware tries to receive a command
from and perform something on the victim machine. We fur-
ther cross examined the IP address with Virustotal to validate
that it is actually a CnC server. We looked for a history of
communication with malicious binaries, and confirmed that
all IP addresses except one have such a history.

Next, we measured the frequency of contacting CnC con-
nections relative to the total number of connections that the
victim machine would make. Figure 2 shows the result. On av-
erage, 18% of the infected machine’s communications is with
the CnC server. An exception is with Mirai family. This is be-
cause Mirai samples heavily scan the Internet, and hence the
number of CnC connections looks small in comparison to the
scanning activity. Nevertheless, the absolute value of number
of CnC connections would be still the largest in comparison
to other IP:PORT addresses even for Mirai family.

2.3 Short-Lived CnC servers

Malware CnC servers rapidly change their addresses. P.
Vervier and S. Yun observe that 90% of malware download
servers disappear after 5 days [22]. Similarly, R. Tanable et al.
report that bots lose the connection to their CnC servers within
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Figure 3: Percentage of malware samples with live CnC
servers categorized based on the sample age.

one or two days [21]. This is because malware intelligence
systems identify them and publish their addresses as mali-
cious that will result in the botnet communication disruption.
Henceforth, bot masters move their server to a new address
and ask the bots to accordingly talk to the new address, or
rebuild the botnet from scratch. Additionally, some malware
use DNS addresses that can quickly change the corresponding
IP address.

We measured the CnC liveness of the samples that are
publicly available (e.g. through malware databases like Mal-
wareBazaar [1]). We manually analyzed 100 random samples
collected between 2016 and 2021, and found their CnC servers
2. We define a CnC server live, if the malware can initiate a
successful connection and the messages exchanges match the
expected malware signature. We tried the malware connec-
tion from different source addresses using VPN connections.
We tried United States, Brazil, India and Romania as sources.
Figure 3 illustrates the percentage of samples that had a live
CnC server based on the age of the sample. Roughly, only
half of the samples have a live CnC server by the time the
sample is publicly known.

3 Malware Emulation

We emulate the malware execution and analyze it dynami-
cally. At the heart of every automated malware analysis is
malware execution. The malware execution is either emulated
or virtualized because there could be harm to the underlying
guest system. Furthermore, emulation and virtualization give
the analyst more control over the malware in contrast to a

2Our dataset is available upon request.
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real execution. Qemu [3] is a reputable emulator and is ex-
tensively used by the community for malware analysis tasks.
In this work, we focus on the malware emulation and Qemu
although the techniques discussed here are applicable to other
infrastructures.

Automated malware emulation is done with a set of goals
in mind. These goals might be collecting one or multiple of
the following: the instruction execution trace, the call stack
trace, the system call trace, the accessed files, the memory
snapshot(s) and the generated network traffic. The log of each
of the above items provide a different view on how the mal-
ware behaves. In this work, we are interested in the network
traffic, and the system call traces. The former provides us the
data for CnC communication analysis while the latter allows
us verify the correctness of the emulation.

3.1 Automated Analysis process
Our malware analysis process is fully automated. In general,
malware emulation process is very similar regardless of the
analysis goal. The process is as follows:

• Prepare the VM configuration: the architecture and
the platform that malware can execute on should be
determined. Based on the configuration, a VM should
be selected for the malware emulation.

• Logging setup: based on the analysis task, the logging
functionalities should be enabled. This could be a custom
code to record every executed instruction, or an off-the-
shelf tool like tcpdump to log the traffic.

• Copying the malware: the malware should be copied to
the VM for the emulation. Based on the setup, this could
be modifying the file system or uploading the sample to
the VM.

• Executing the malware: this step involves booting up
the operating system, and then executing the malware.
A common practice is to configure the OS to start the
malware execution at the startup stage. There should
be a timeout for the malware emulation, otherwise the
analysis never terminates.

• Collecting the logs: after the execution times out, the
generated log should be collected and stored for later
analysis.

• Clean up: finally, there should be a cleanup stage be-
cause the malware would likely corrupt the system. This
could be done either by entirely deleting a VM instance
or deleting the filesystem (entirely or partially).

3.2 RiotMan
We rely on RiotMan [6] for our malware emulation process.
RiotMan follows the same set of steps explained in subsec-

tion 3.1, and uses Qemu system level emulation. We further
explain how RiotMan performs each of the steps described
earlier.

For the VM configuration, RiotMan relies on an iterative
learning process. It starts by executing the malware with a
clean Linux Kernel. If the malware fails to successfully exe-
cute, RiotMan looks up the last system call and finds the file-
name (if any) that resulted in an error. RiotMan has a database
of different IoT firmware files, and searches for the file in
this database. It either retrieves this file from the database
or just creates a file with the expected name in the path that
the system call requested. RiotMan continues this process
by re-executing the malware until no system call results in
errors.

For logging, RiotMan uses strace and qemu traffic record
functionality. RiotMan executes the malware (in the VM)
with the strace logging:

/usr/bin/strace -ftttT -s999 /malware 2>
$RESULT_DIR/syscalls/$MALWARE_FILE.log >
$RESULT_DIR/log/$MALWARE_FILE.out

RiotMan enables Qemu network bridging functionality,
and records the traffic in pcap format via the following Qemu
option:

-object filter-dump,id=wan,netdev=wan,
file=$DIR_TO_PCAP/$NAME.pcap

RiotMan provides a separate file system for the emulated
VM. This file system is a clean "ext4" partition with all the
malware dependant files. RiotMan copies the malware binary
to the partition root, and updates /etc/rc.local to automatically
execute the malware binary after the startup. Finally, RiotMan
directs Qemu to use the staged partition as the file system:

-drive file=$PATH_TO_FILESYSTEM,index=0,
media=disk,format=raw

RiotMan terminates the Qemu process after 20 minutes
of execution. Then, it collects the VM system call log from
the VM filesystem. Afterwards, it cleans up by deleting the
filesystem. After the emulation, the system call log and the
recorded traffic will be available in an analysis folder for
further examinations.

4 CnCHunter Design and Implementation

CnCHunter exploits a malware sample to find live CnC
servers of its family. CnCHunter takes as an input a malware
binary. It also takes as input a list of IP and port addresses that
are potentially CnC servers; this list might be the result of a
massive scanning or based on the past reputation. CnCHunter
analyzes the network traffic that the malware generates. It
finds (A) the CnC servers that the malware tries to contact,
and (B) other live CnC servers that this malware sample can
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successfully communicate with. Figure 4 shows CnCHunter
system design.

CnCHunter starts by statically analyzing malware. First,
we determine the compatible binary architecture and platform.
Second, CnCHunter can be configured to look for hardcoded
IP addresses. These IP addresses might be CnC servers.

Next, the malware emulator component executes the mal-
ware. We use RiotMan as the Malware emulator because it
is lightweight and effective for IoT malware analysis3. The
emulation results in a traffic generation that the Traffic An-
alyst component would look into. This component finds the
CnC address from the traffic, and informs the Network Proxy
component about it. Network proxy replaces this address with
an item from the list of candidate CnC addresses and redirects
the traffic to those candidate nodes in the next iterations of
the emulation. Traffic Analyst analyzes the responses from
candidate addresses, and decides whether the address is a CnC
based on the success of the communication. In the rest of this
section, we expand on the details of the Network Proxy and
the Traffic Analyst components.

4.1 Network Proxy

Network proxy goal in our system is to redirect the malware
CnC traffic to some candidate addresses. The candidate ad-
dresses are inputs to the network proxy. Ideally, the candidate
addresses are the CnC servers of other samples (but not yet
publicly known) of the same family that the analyzed malware

3other malware malware analysis framework/emulators can be used as
long as they can record traffic in pcap format.

belongs too. Such a list can be compiled via a scanning phase,
and/or based on the past reputations that the IP blacklists
track. However, CnCHunter can still work even if the entire
IP space are inputted as the candidate addresses; it would only
slow down the system.

The CnC address of the malware is also an input to the
Network Proxy module. The CnC address of the analyzed
malware is not known beforehand, and network proxy ex-
pects the Traffic Analyst module to provide this address; we
will elaborate on this in the subsection 4.2. The malware ex-
changes traffic with the CnC ultimately through an IP address.
However, the malware might use a DNS address, in which
case there is a DNS resolution process. Our network proxy
module supports both DNS and IP based CnC addresses.

We use iptables for proxying IP based CnC traffic. A natu-
ral solution would be asking iptables to replace the given IP
and PORT destination with a candidate CnC address at the
network perimeter. If we wanted to do so, we should have
used the POSTROUTING chain of iptables. However, this
functionality is not supported and redirecting traffic to another
address is not allowed on iptables installed at network perime-
ters. That said, iptables can change a destination address if it
is installed on the source. In this case, one would need to use
the OUTPUT chain. For this reason, we rely on the guest’s
(infected machine) iptables to provide the redirection. We
add the following iptables OUTPUT chain rule to the guest
startup script, and we make sure it runs before the malware
executes:

iptables -t nat -A OUTPUT -p tcp -d $CNC_IP
--dport $CNC_PORT -j DNAT --to-destination
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$CANDIDATE_IP:$CANDIDATE_PORT

For DNS based addresses, we take a different approach.
Operating systems use different DNS resolution methods.
Proprietary operating systems like Linux start by looking up
the DNS address in a host file that maps DNS names to IP
addresses. They use other methods only if this method fails4.
We take advantage of this process, and modify the host file
of the guest machine that would map DNS addresses to IPs.
We simply add an entry that maps the CnC DNS address to
the candidate address, similar to the IP case, the CnC DNS
address is found by the traffic analyst module. Doing so, the
traffic would automatically be redirected to the candidate
address that we desire. The above can be done using the
following:

echo "$CnC_DNS_ADDR $CANDIDATE_IP" >>
/etc/hosts

Additionally, Network Proxy taps the traffic for analysis
by the Traffic Analyst. We use Qemu bridging functionality.
The following shows the option we provide to Qemu for the
network bridging:

-netdev bridge,id=wan,br="$BR_WAN,
helper=$Qemu_bridging_HELPER"

Finally, to communicate with the candidate addresses, the
guest should have internet connection, so we activate forward-
ing on the Linux host that is the network proxy:

sudo sysctl -w net.ipv4.ip_forward=1
sudo sysctl -w net.ipv4.conf.
"$BR_WAN".proxy_arp=1
sudo iptables -t nat -A POSTROUTING
-o "$IF_INET" -j MASQUERADE

4.2 Traffic Analyst
Traffic Analyst component of CnCHunter accomplishes two
tasks. First, it finds the CnC address that the analyzed mal-
ware tries to contact within the traffic that the infected virtual
machine would generate. We look at the VM traffic instead of
the malware process traffic so the malware evasion techniques
wouldn’t affect our analysis; regardless of malware efforts,
the VM traffic has to go through our proxy.

The generated traffic by the malware is an input to our Find-
CnC Algorithm illustrated in algorithm 1. FindCnC analyzes
every destination address and assigns a score that shows the
likelihood of being a CnC server for that address. An address
is either an IP and PORT tuple or a DNS address. In lines
5-10, we analyze each packet and count the number of times
addresses (IP:PORT or DNS) and ports are contacted.

For TCP connections, we count the failure or success to
the target IP address. Malware keeps trying to contact its

4This order can be modified.

CnC even when the TCP handshake fails. We build upon
this observation and count the number of times connection
to an IP address fails by looking at the TCP RST or SYN
flags. Otherwise, if there is no failure, we count the number
of successful connections.

For DNS based addresses, we count the number of times
the DNS queries fail. This is based on the observation that
a blocked CNC DNS address would not resolve, and hence
there will not be a connection to an IP address. We filter out
the traffic from unrelated protocols: icmp, dhcp, arp and ntp.

After processing all packets and pre-processing the number
of connections and ports, we can assign a score to each address
(lines 11 to 16 of algorithm 1). For DNS based addresses, we
check the reputation of the domain. We whitelist the top X
(X is 1000 but is configurable) number of domains based
on the Alexa ranking. This is to avoid false positives. Note
that we check the entire DNS address rank, and not only the
second level domain (Microsoft ranking is different than its
subdomains). This means that a cloud based CnC address (e.g.
hosted on Microsoft or Amazon) would not have a good Alexa
ranking. If the DNS address passes the reputation check, the
score is the number of times it was queried.

For IP and Port based addresses, the score is proportional to
the number of times it was contacted. Additionally, the score
is inversely proportional to the number of times the port was
used in the entire traffic. This is based on the observation that
the traffic to CnC is through a unique destination port while
other malware activities such as scanning for vulnerable hosts
target the same port. Henceforth, to calculate the score, we
can simply divide the number of connections to the number
of times the port was used; we found that this simple formula
works well in practice. We use Python pyshark library [15] to
implement the algorithm 1.

Second, Traffic Analyst component finds whether a con-
nection to a candidate CnC address has been successful. The
success of a connection could mean different behaviors for
different protocols. Furthermore, encryption and checksums
make differential analysis hard; looking at whether a pair of
messages is different than before. Therefore, we rely on an
analysis that is protocol agnostic and does not rely on lack of
encryption.

We find that a simple analysis of the number of synchro-
nizations between an address and the malware is a reliable
indicator. To illustrate the concept, we make an analogy to
the human communication. If two persons do not understand
each other’s language, they restart the conversation and repeat
themselves. Similarly, if a candidate address listens on our
contacted port but would not speak our malware application
layer protocol, it assumes the connection was not properly
established and would ask for a synchronization. This allows
us to find successful connections by looking at those candi-
date addresses that respond by much fewer SYN flags on. To
find these addresses, we run a simple outlier analysis on the
number of times SYN has been set for the candidate address.
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Algorithm 1 FindCnC
Input: Packets
Output: Addresses_Analysis

1: Addrs_Analysis←{} . A hashtable tracking the
number of connections to each address (ip:port or DNS).

2: Ports←{} . A hashtable tracking the number of times
a destination port is seen.

3: Scores← [] . A list of tuples storing addresses with their
CnC likelihood score

4: i← 0
5: while i < len(Packets) do
6: pkt← Packets[i]
7: analysis_res← Analyze_Address(pkt)
8: if analysis_res! = NULL then
9: U pdate_Addresses(analysis_res,Addrs_Analysis)

10: U pdate_Ports(analysis_res,Ports)
11: while j < len(Addrs_Analysis) do
12: addr← Addrs_Analysis[ j]
13: if IS_DNS(addr) and Alexa_rank(addr) then
14: Scores[ j] =Calculate_DNS_Score(addr)
15: if IS_IP(addr) then
16: Scores[ j] = Calculate_IP_Score(addr,Ports)
17: Sort_Desc(Scores)
18: return Scores

5 Evaluation

We empirically evaluate CnCHunter. Our goal is to answer
the following questions:

1. Can CnCHunter accurately identify a sample’s CnC ad-
dress?

2. Can a live CnC server of a malware family serve the
requests of the malware family’s old samples with dead
CnCs?

3. How can we use CnCHunter in practice to find live CnC
servers using old samples?

We answer the first question by comparing CnCHunter’s
results with the ones compiled from manually finding CnC
servers of 100 samples. All these samples are for MIPS archi-
tecture since it is, reportedly, the least explored architecture by
the security community [6] and more specifically is a target
for IoT devices. We elaborate more on this in subsection 5.1.
Next, we answer the second question by using CnCHunter
to redirect the traffic of an old gafgyt sample’s traffic to a
recent live CnC server (please see subsection 5.1 for more
details). Finally, we answer question 3 by showing how we
use CnCHunter to find a live Mirai CnC server that can not
be detected by analyzing the publicly available samples.

5.1 CnC finding precision

Our approach is prone to both false positives and false nega-
tives because it is general; in contrast to a signature matching
approach that might be false positive free but at a much higher
false negative rate. We need a ground truth in order to evaluate
the CnCHunter’s CnC finding functionality. Such a ground
truth does not exist even though finding CnC address of IoT
malware has been conducted in previous work [21, 22].

We start by compiling such ground truth manually. We
randomly selected 100 MIPS architecture samples collected
between 2016 to 2021. The samples were collected daily from
VirusTotal. We expect at least 5 engines to identify the sample
as malicious. We collect all elf samples. Later, in our static
analysis stage, we only analyze MIPS samples. The reason is
the focus of our work that is IoT malware, and MIPS samples
are all IoT malware according to our dataset. Our query is:

fs:1d+ type:elf positives:5+

We observe samples of Mirai, Gafgyt, Tsunami, Remaiten,
LightAidra and VPNFilter in our dataset. That said, majority
of samples are from Gafgyt and Mirai. This follows the trend
previously reported that Mirai is the largest malware family
[2, 11], and Gafgyt is the second largest malware family [20].

We manually identified the CnC servers of these samples.
Our manual analysis involved both Static and Dynamic anal-
ysis. Statically, we try to find hardcoded IP addresses and
dynamically we look at the generated traffic by the malware.
In the traffic, we look for known patterns of CnC commu-
nication. We further cross examine our analysis’ results by
checking the reputation of the addresses from VirusTotal. We
find that 91% of samples have IP based CnC addresses and
9% have DNS based addresses. Furthermore, 29 samples had
live CnC servers.

We measured CnCHunter’s CnC finding functionality pre-
cision based on our manually crafted ground truth of 100
MIPS samples. CnCHunter was not able to activate 10% of
the samples. We define activation as execution of the mal-
ware to the point where traffic is generated from the malware
process. The failures were mainly due to "illegal instruction
error" that is a Qemu emulation limitation.

CnCHunter has a precision of 92% on the activated samples.
Out of the live CnC servers that CnCHunter finds, 18% are
missed by VirusTotal and are reported as not malicious. This
shows that there is room for improvement when it comes
to identifying CnC addresses by Antivirus engines. Table 3
shows a summary of our results.

Samples Activated Precision Missed live CnCs by VT
100 90% 92% 18%

Table 3: CnCHunter CnC finding precision
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Figure 5: Malware sample first packet with its CnC

5.2 Case Study: MitM functionality
In this case study, we present a proof of concept that shows
how an old malware sample can successfully be exploited to
communicate with a live CnC server of a recent sample. More
precisely, we show:

• How CnCHunter automatically identifies the malware
CnC from its traffic.

• How CnCHunter automatically Man-In-The-Middles the
malware and make it talk to another CnC server.

To this end, we find a live CnC server for a recently found
malware and examine whether an old sample from the same
family can talk to it. As we explained in the subsection 2.3,
finding a live CnC server is an extremly hard task. Most IoT
CnC servers are very short lived because bot masters move
them to stay hidden. To address this problem, we rely on
CnCHunter itself to find a live CnC server through analysis.

Recent Gafgyt malware sample: We took one of the sam-
ples in our dataset that has a live Cnc server that would com-
municate with the malware and receives commands from the
CnC. Below at Table 4 is the malware hash and the CnC
address that was live on Mar 30, 2021.

Hash CnC Address
785f781c4bbd96b207e4d0c77a5afe36a1
3126cf9a9c33f7afda6ed12103ea6b

50.115.174.102:
666

Table 4: Gafgyt malware sample with live CnC server

Figure 6 shows the first packet that the infected machine
would send to CnC after the successful TCP handshake. After-
wards, CnC sends a "Scanner On" and a "Fat Cock" message
to the infected machine. The communication continues with
a series of Pings and Pongs messages.

Figure 6: Old Malware sample receiving the "Scanner On"
command from another CnC server of the family.

Old Gafgyt sample: We randomly selected an old Gafgyt
sample from the dataset we mentioned at subsection 2.1. This
sample has been submitted to Virustotal on 2017-04-05. The
sample hash and the CnC address found by CnCHunter is
reported in Table 5. The malware can not communicate with
its CnC because it is not live anymore. As we mentioned
earlier, we aim to redirect its traffic to the live CnC server for
another sample from the same family.

Hash CnC Address
9ad3a408bd09e45a68408aa25caecda695
693d49b741c694c076190a6b86284f

138.197.104.187:23

Table 5: Gafgyt malware sample with a dead CnC server

Result: We find that the old sample can successfully com-
municate with the live CnC server. Originally, the old malware
sample (with the dead CnC) generates around 30KB of traf-
fic and the connection to the CnC address terminates; the
handshake wouldn’t complete. However, with the live CnC
server, the old sample would generate around 6MB of traffic
in a few minutes and successfully exchanges packets with the
CnC. Similar to the new sample, the malware receives the
"Scanner on" command from the CnC server. Figure 6 shows
this message from the CnC.

5.3 Case Study: Active Probing
As we explained in the introduction, proactively finding
CnC servers is really an important step towards defending
against Zero-Day malware. In order to evaluate the efficacy
if CnCHunter in active probing, we aim to accomplish the
following goals:

• Finding some candidate addresses for active probing

• Using CnCHunter to probe the candidate addresses

It has been previously demonstrated that some IP subnets
tend to be used for malicious activities [7]. We build on this
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Figure 7: Mirai Sample exploited to active probe and find a
live hidden CnC server.

observation, and probe IP subnets from our malware dataset
that had hosted more than one CnC server. We found 4 such
IP subnets with CIDR5 24.

Next, we used masscan [10] to scan these IP subnets for
frequent appearing ports in our dataset. We conducted this ex-
periment on July 16, 2021. We found two candidate addresses
in 156.96.156.0/24 subnet on ports 45 and 7854.

Finally, we used CnCHunter to MitM a malware sample and
probe these IP addresses. According to our dataset, the afore-
mentioned subnet was hosting Mirai CnC servers. Henceforth,
we used the following Mirai sample for the probing:

15c48d1133f994942a1fbe17bc955356893197783875ec15b
9677229cfe2a543

Result: CnCHunter found that 156.96.156.220:45 is host-
ing a Mirai CnC server. On the same day, we downloaded
MIPS samples from Malware Bazaar [1] and used CnCHunter
to find the samples’ CnC servers. According to our analysis,
no sample was communicating with this CnC address. Fur-
thermore, we queried VirusTotal, and even after 4 days, the IP
address is reported benign. However, by manually analyzing
the traffic we can confirm this address was indeed hosting a
CnC server that is hidden in the wild. Figure 7 shows the CnC
traffic and the CnC server Mirai signature bytes response.

6 Related work

There are several categories of related work to our research.
Below, we discuss each category and explain how this re-
search is different.

6.1 IoT Malware Behavior Analysis
Studying the behavior of IoT malware has become a hot topic
both for Academia and Industry. Prior work on this topic
can be grouped to two categories. The first category focuses

5Classless Inter-Domain Routing

on characterizing the behavior of a single Malware [2, 11,
14]. [2, 11] employ static and dynamic analysis, and Internet
scanning to study the echo system of Mirai malware. They
characterize the infected IoT devices, the infection vectors
and the evolution through Mirai’s life cycle. S. Herwig et al.
study the echo system of the Hajime IoT botnet [14]. While
these prior work provide a deep insight into a single malware
family life cycle, we are interested in a general method to
study CnC servers of all malware families.

The second group of prior work in this category charac-
terize the behaviors of several malware families at the same
time [5, 6, 18, 20]. Authors of [5] employ static analysis tech-
niques to analyze 10 malware families and find the evolution
of the malware within a family as well as comparing to other
families. In contrast, E. Cozzi et al. [4] employ dynamic anal-
ysis techniques to characterize behaviors of different malware
families and their similarities. A. Darki et al. [6] not only char-
acterize different behaviors of 8 malware families but also
provide a tool that can automatically configure the dynamic
analysis environment for a malware sample. In contrast to
the aforementioned work, [18] proposes a generic method to
direct a malware sample attack to a compatible IoT device.

Finally, several work target the CnC communication as-
pect of the IoT malware [20–22]. [20] proposes a framework
to study the IoT malware from 5 perspectives including the
C&C Infrastructure while [21, 22] analyze the CnC traffic
of the malware. Although these prior work provide details
about different behaviors of malware, none would address the
problem of dissecting C&C communication protocol auto-
matically and generally when the CnC server of a malware
sample is not live that is a common case.

6.2 Active Probing

The closest category to CnCHunter are the prior work on
active probing. Active probing is the practice of actively scan-
ning Internet in pursuit of finding live targets; in our case,
live CnC servers. Such efforts require an understanding of
the malware communication protocol and the encryption al-
gorithm, if any. Henceforth, searching for CnC servers of a
single malware family is a much easier task [2,9]. [9] actively
scans the Internet searching for Dark Comet Trojan servers,
while [2] scans the Internet for Mirai CnC servers and the
commands it would issue. In addition, there are prior work
that took the first steps in automating the active probing for
a more widespread group of malware families [19, 23]. The
main problem with these two prior work is that they can not
handle the communication protocol when there is encryption.
In contrast, in our case, the malware knows the encryption
protocol and can communicate with its CnC without our med-
dling.
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6.3 Malware Network Trace Analysis
Studying the network trace of malware has been the subject of
many related work [8,12,13,16]. These work try to find botnet
traffic from a network trace. Although these approaches don’t
occupy bandwidth and are lightweight since they don’t require
Internet scanning, they are limited to the network trace that
they have access to. In other words, they can not find the
CnC communications that have not been made yet to their
sample network. [16] reports that the network traffic is the
best indicator of malicious activity, usually weeks before a
binary is reported malicious; a finding that was previously
reported by [17]. We build on this finding by proposing an
approach that can find malicious connections without the
particular binary that is still a zero day.

7 Conclusion and Future work

We showed that finding live CnC servers is a challenging task
particularly because they are short-lived and the malware com-
munication protocols are diverse. We presented CnCHunter,
an automatic malware analysis tool that can find live CnC
servers using a malware binary sample and a set of candidate
addresses. We showed how an old Gafgyt sample is capable
of finding a live CnC server for a recent Gafgyt sample.

In future, we plan to extend our work in two ways. First,
we plan to automate the task of finding candidate addresses.
Currently, CnCHunter relies on a list of addresses provided
as an input. We vision to use publicly available malware
intelligence data and find networks with a high likelihood
of having the target CnC server. CnCHunter would start the
search by giving priority to networks with a higher likelihood
of having the CnC servers.

Second, we plan to extensively evaluate our system using a
variety of malware family samples. We hope we can provide
an online system that can report the live CnC servers based
on the output of CnCHunter. We believe this would largely
benefit the security community and Internet users.
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