
Everything has Changed in iOS 14,
but Jailbreak is Eternal 

#BHUSA @BlackHatEvents 

Zuozhi Fan (@pattern_F_)



#BHUSA @BlackHatEvents 

• Fan, Zuozhi (@pattern_F_)
• Ant Security, Tianqiong Lab
• Started macOS/iOS security from the second half of 2019
• speaker of Black Hat ASIA 2021

About me



#BHUSA @BlackHatEvents 

• ModernPwner released the first workable iOS 14 kernel exploit. 
Opened a new chapter of iOS 14 jailbreak.

• I published a stable kernel r/w primitive firstly
• I will show how to run unauthorized code on iOS 14
• This talk is about my iOS 14 learning journey

About the talk



#BHUSA @BlackHatEvents 

iOS 14 vs iOS 13



#BHUSA @BlackHatEvents 

• New mitigations introduced in iOS 14
kernel heap hardening
data PAC
userspace PAC hardening
tfp0 hardening
ipc_kmsg hardening
etc.

• Some works on the vulnerability stage
• Some works on the exploit stage

Why it’s so hard to pwn iOS 14



#BHUSA @BlackHatEvents 

• kheap isolation is not new, but is hardened massively
• try to stop UAF (overlap freed object with different objects)

• kalloc heap is split into 4 types
• kernel objects and kext objects can’t see each other

kernel heap isolation



#BHUSA @BlackHatEvents 

• OSData & OSString contents are moved into DATA heap (no pointer 
or offset). Reduce the risk to build fake object.

• More and more kobjects are moved into dedicate zones (they are 
disappeared in common heap)

• kheap in iOS 14 is fine-grained

kheap isolation hardening



#BHUSA @BlackHatEvents 

• Data PAC: newly introduced in iOS14
• Signing strategy: discriminator(string hash) + memory address

• can’t touch any bits of the data pointers
• can’t use the pointer in other places

• code PAC - control-flow integrity
• data PAC - data integrity

data PAC



#BHUSA @BlackHatEvents 

• Using DB key to sign uint32

• Using GA key to sign blob (multi bytes)
• ptrauth_utils_sign_blob_generic

• PAC is a victory for black-box

data PAC, not only pointers



#BHUSA @BlackHatEvents 

• In iOS 13, attackers can forge A-key protected function pointers 
in other process
• The A keys are used for primarily "global" purposes. These keys are 

sometimes called process-independent.

• Apple decides to break the definition of A keys. Now IA key also 
becomes process-dependent.
• Try to stop cross-process attack

• PAC document leaked?
• xnu-7195.60.75/doc/pac.md
• xnu-7195.81.3/doc/pac.md [deleted]

• But jailbreak also need to control other process, i.e. amfid
• With kernel r/w, it is possible to bypass it

userspace PAC hardening



#BHUSA @BlackHatEvents 

• tfp0, the most convenient way to achieve kernel r/w
• With Ian Beer’s fake port technique, almost every kernel exploit tries to 

build a tfp0 

• For PAC(A12+) devices, add PAC to protect kernel_task
• For pre-A12 devices, add checks to prevent userspace to resolve 
kernel_task / to use kernel_pmap

• We must find alternatives of tfp0 to achieve kernel r/w

tfp0 hardening



#BHUSA @BlackHatEvents 

• Not only heap spray
• With kmsg, you can convert a two-byte heap overflow (in
kalloc_large area) to a full exploit

• characteristics of ipc_kmsg
• variable-sized
• link pointer (self location ability)

• key idea
• modify ikm_size to free more memory

• kmsg lives in
• zone ipc.kmsgs (size 256)
• kalloc.288 ~ (size > 256)

kmsg, an exploit-friendly kobject



#BHUSA @BlackHatEvents 

• ipc_kmsg was hardened in iOS 14.2
• control part went to zone
• data part went to KHEAP_DATA

• Apple's smart idea, destroy the essential exploit primitives

• RIP my first iOS kernel bug.😢
• Without ipc_kmsg, I’m not able to exploit it. It only works on iOS 14.1.

• I can’t find an alternative to kmsg yet

exploit based on kmsg is dead



#BHUSA @BlackHatEvents 

• CVE-2021-1782: A race condition in user_data_get_value() leading 
to ivac entry UAF

• Fixed in iOS 14.4，Jan 26, 2021
• Synacktiv’s blog post details this vuln, Feb 10 [link]
• ModernPwner published a workable exploit cicuta_virosa, with 
kernel r/w, Feb 10 [link]

the first public iOS 14 kernel exploit

https://www.synacktiv.com/publications/analysis-and-exploitation-of-the-ios-kernel-vulnerability-cve-2021-1782
https://github.com/ModernPwner/cicuta_virosa


#BHUSA @BlackHatEvents 

• Why pktopts? Why not OSData, or kmsg to lay out kheap? - kheap isolation
• limitation 1: The kernel r/w relies on free-realloc operation to fill the 

memory hole. That’s not very stable. You can’t use this frequently.

r/w primitives by cicuta_virosa



#BHUSA @BlackHatEvents 

• write_20 failed sometimes, why?
• bsd/netinet6/ip6_output.c
• ipi6_ifindex < if_index

• limitation 2: write_20 writes
16-byte data plus 4-byte 0

write_20 limitation of cicuta_virosa



#BHUSA @BlackHatEvents 

• We must build stable & unlimited kernel r/w primitives
• Before, we had tfp0, the perfect kernel r/w

• mach_vm_read_overwrite / mach_vm_write
• mach_vm_allocate / mach_vm_deallocate

• Now bye bye tfp0 - tfp0 hardening
• Let’s find new r/w primitives, not write limited, and stable
• Key idea: transform other kernel object that can be easily 
accessed from userspace

we need new r/w primitives



#BHUSA @BlackHatEvents 

• "Exploiting IOSurface 0”, by Chen Liang [link]
• IOSurface is a good candidate
• IOSurface is frequently used in kernel exploit

• heap spray, leak memory info, or forge kobjects

• lots of external methods

IOSurface

https://powerofcommunity.net/poc2019/Liang.pdf


#BHUSA @BlackHatEvents 

• userspace: surface ID
• IOSurface.dylib: IOSurfaceSetValue(IOSurfaceRef, ...)

IOSurface in userspace



#BHUSA @BlackHatEvents 

• If we control ptr IOSurface.field_360, we get an 8-byte write
• write address: IOSurface.field_360
• call chain: does not touch any other class field, no side effect
• I think write_20 (16-byte data + 4-byte 0) is ok

s_set_indexed_timestamp



#BHUSA @BlackHatEvents 

• If we control ptr surface, we get an 4-byte read
• read address: IOSurfaceClient.surface + 0xb4
• call chain: does not touch any other class field, no side effect
• I think write_20 (16-byte data + 4-byte 0) is ok

s_get_ycbcrmatrix



#BHUSA @BlackHatEvents 

• If it’s possible, I choose shared memory to modify kernel data. Convenient!

shared memory with kernel



#BHUSA @BlackHatEvents 

• convert read_20/write_20 to stable kernel r/w
• use it as the alternative of tfp0
• share the kernel r/w with other process, libkrw by Siguza [link]

stable kernel r/w primitive

https://github.com/Siguza/libkrw


#BHUSA @BlackHatEvents 

• Let’s do the “jailbreak” thing
• my goal - execute unauthorized code (binary)
• Just porting FreeTheSandbox, by ZecOps [link], to cicuta_virosa
• Solve the troubles I met in the porting progress

post-exploit

https://github.com/ZecOps/FreeTheSandbox_LPE_POC_13.7


#BHUSA @BlackHatEvents 

• Just nullify the sandbox slot
• fork()/execve(), posix_spawn()

• a “flaw” in data PAC
• nullptr is not signed or checked
• It is safe to null any data 

pointer (in most cases)
• For performance considerations -

memset(kobject, 0) & .bss

disable sandbox



#BHUSA @BlackHatEvents 

• CoreTrust's purpose is to thwart the common technique of "fake-signing" (known 
to jailbreakers as "ldid -S" or "jtool --sign"), which is often used to deploy 
arbitrary binaries to a jailbroken device. - iOS internals

• Sign stuff with a cert (it could be any kind of cert, free, paid, expired or 
revoked, as long as it comes from Apple it’s good) - Jake James’s paper

• For real jailbreak tools, it’s better to bypass CoreTrust, or you need to sign 
the binaries immediately after you installed a package

• We need kernel PAC bypass to do the kcall things, or PPL bypass

TrustCache? CoreTrust?



#BHUSA @BlackHatEvents 

• task port + task_set_exception_ports
• Let’s write a debugger for amfid!

amfid bypass



#BHUSA @BlackHatEvents 

• task_for_pid needs entitlement "task_for_pid-allow”
• FreeTheSandbox borrows p_ucred from other process, then we have 
the same entitlements with that process.

• /usr/sbin/spindump has that entitlement

entitlements hack



#BHUSA @BlackHatEvents 

• But, almost everything is protected by PAC!
• Let’s lock at the low-level data structure
• Entitlements are stored in OSDictionary. dictEntry is not PAC’d!

data PAC everywhere?



#BHUSA @BlackHatEvents 

• Entitlements of MAC label is stored in OSDictionary
• Properties attached to IOSurface is stored in OSDictionary too
• So, we can put all the entitlements we need into the IOSurface
values in advance

• IOSurface is really a treasure!

build entitlements library



#BHUSA @BlackHatEvents 

• We got task port of process amfid
• task_set_exception_ports - install an exception handler (I’m a debugger)
• vm_write - check and modify amfid’s memory
• thread_set_state - control amfid’s registers

• Steps to bypass amfid
• Redirect MISValidateSignatureAndCopyInfo to invalid address
• Catch the exception
• Calculate the right CDHash to satisfy AMFI check
• thread_state_t.__opaque_pc = pacia < return address >, resume amfid

• iOS 13 - OK, iOS 14 - fail!

amfid bypass, the last trouble



#BHUSA @BlackHatEvents 

• operations behind thread_set_state

• thread_set_state will use target thread’s jop_pid to decode the 
pc we specified

• PAC IA key: jop_pid
• amfid uses a different IA key - userspace PAC hardening
• So amfid got an invalid pc (signed by our own IA key), then it 
crushes again

• We must sign the pc register with amfid’s IA key

userspace PAC magic



#BHUSA @BlackHatEvents 

• operations behind thread_get_state

• So,
• thread_set_state - auth pc register
• thread_get_state - sign pc register

• If we steal amfid’s IA key... 💡
• With kernel r/w, we know what amfid’s IA key (machine.jop_pid) is. 
Let’s use some tricks to calc a correct (amfid) signed pc.

userspace PAC hack (1)



#BHUSA @BlackHatEvents 

• Sacrifice a dummy thread. No side effect if we suspend it.

userspace PAC hack (1)



#BHUSA @BlackHatEvents 

• I found a mig call by accident - thread_convert_thread_state
• A perfect “bypass”
• No kernel r/w required, if you can get target’s thread port

userspace PAC hack (2)



#BHUSA @BlackHatEvents 

• This “bypass” is simple.

• This API is useless, except that you debug a process that doesn’t 
belong to you

userspace PAC hack (2)



#BHUSA @BlackHatEvents 

• Steps to bypass amfid
• Redirect MISValidateSignatureAndCopyInfo to invalid address
• Catch the exception
• Calculate the right CDHash to satisfy AMFI check
• thread_state_t.__opaque_pc = pacia(amfid) < return address >, resume amfid

• iOS 14 - OK!

amfid bypass, done



#BHUSA @BlackHatEvents 

Put them all together

source code: https://github.com/pattern-f/TQ-pre-jailbreak

https://github.com/pattern-f/TQ-pre-jailbreak


#BHUSA @BlackHatEvents 

• Maybe iOS 14 is the most secure iOS ever
• kheap isolation - kill vulnerabilities
• data PAC - kill exploit primitives

• Jailbreak is unstoppable, but high-quality bugs are required
• I learned everything from the community. cicuta_virosa gives me 
the opportunity to contribute to iOS hack community.

• TQ-pre-jailbreak is fully open source now. Hope this is helpful 
to researchers.

Summary



#BHUSA @BlackHatEvents 

Thanks~

Find the code on https://github.com/pattern-f
email: pattern_f[at]163.com

https://github.com/pattern-f

