
Fixing a Memory Forensics Blind Spot: Linux

Kernel Tracing

Andrew Case and Golden G. Richard III

andrew@dfir.org, golden@cct.lsu.edu

July 16, 2021

1 Introduction

Servers running Linux power the majority of important websites [1] and cloud
instances [2], and are routinely used for internal services across government,
military, and industry. The data and access provided by these servers make
them a prime target for attackers, and, as such, makes research into detection of
threats against these platforms essential. Unfortunately, defensive research has
not kept pace with advances in Linux kernel development, leaving blind spots for
attackers to remain undetected. In this paper, we document our research effort
to close a significant blind spot - the Linux kernel’s tracing infrastructure. As
shown later, these features are installed and enabled by default on essentially all
Linux distributions. These features, particularly eBPF, are also heavily utilized
across a significant number of cloud-centric organizations, such as Facebook,
Netflix, Google, GitLab, and Adobe [3, 4, 5].

These tracing features provide developers and systems administrators sig-
nificant insight into the performance and behaviour of applications and system
components, as the tracing APIs allow programs in userland as well as mod-
ules in the kernel to observe and modify key portions of the operating system.
Unfortunately, these APIs are also ripe for abuse by malware as they provide
direct support for hooking kernel subsystems and hardware features, such as
the networking stack, system call table, and file system drivers. They also allow
placing traditional API hooks at arbitrary places within the kernel, as well as
disrupting the control flow of kernel functions.

Current memory forensics techniques provide no means to analyze these trac-
ing features, leaving a significant number of malware capabilities to potentially
go undetected. In this paper, we document the internal data structures and
algorithms of these tracing features along with new memory forensic techniques
that can analyze the various tracing subsystems. These new analysis techniques
are embodied in Volatility plugins, as Volatility is the mostly commonly used
analysis framework in the field. To provide capabilities that are useful both now

1



and well into the future, we implemented each technique as a plugin for both
Volatility 2 and Volatility 3.

Volatility 2 is currently the stable version used in investigations throughout
the world, whereas Volatility 3 is the next major version of the framework and
will eventually replace Volatility 2. Beyond providing long term value, developing
for both versions allowed us to create modern examples of what the API and
plugin-level differences are between the major versions. It is our hope that these
will be useful examples for researchers learning to develop Volatility plugins. Our
team plans to contribute all the new plugins to the public Volatility repositories
upon publication of this paper.

2 Kernel Tracing Infrastructure

The tracing infrastructure in the kernel is comprised of a number of different
components, many of which are interconnected. At the lowest levels of are the
ftrace, kprobes, and tracepoints facilities. These allow direct hooking of kernel
functions, on both entry and exit, as well as modification of arbitrary kernel
data and code. Until kernel version 4.19, the jprobes facility was also available,
but given its removal 3 years ago, we do not discuss it further in this paper.

The highly popular perf events and eBPF subsystems leverage these low-level
facilities to provide the insight needed to monitor system operations. XDP is
built on top of eBPF and allows both monitoring and manipulation of high
performance networking operations. XDP allows programs to inspect, modify,
redirect, and drop network packets before other software on the system examines
them. Example programs that accomplish this can be found at [6, 7].

Section 4 fully explores these tracers, including a discussion of how they
are implemented, how userland and the kernel interface with them, and how
memory forensics algorithms can be developed to detect when they are used.
Readers who are completely new to the kernel tracing infrastructure may wish
to read the introduction written by Julia Evans [8]. There is also substantial
kernel documentation for many of the features [9]. The Awesome eBPF page
also tracks a large number of presentations, code projects, and examples for
eBPF [10].

2.1 Prevalence of the Tracing Facilities

To begin our research of the tracing infrastructure, we first measured the percent-
age of kernels which have the required kernel options present and enabled. This
has an obvious and significant effect on the actual, real-world threat posed by
these features. To perform the calculations, we analyzed all Linux kernels that
have been shipped by major distributions within the last few years. Engineers
at Volexity maintain this database and provide an API that allows querying the
configuration options present in each kernel.

The kernels covered by this database include those from:

2



• Debian 6+

• Ubuntu 14.04+

• Red Hat 6+

• CentOS 6+

• Suse (SLES) 11, 12, and 15

• Amazon (AWS) Linux

At the time of writing and calculation of the statistics listed in this section,
the database held a total of 14,762 distribution-released kernels.

The list of kernel requirements necessary to support all the tracing features
was gathered from the install documentation of bpftrace [11]. As discussed in
Section 4.6, this suite of tools uses eBPF to monitor a wide range of system
activity. The documentation stated that only kernel versions 4.9 and higher
should be used as this is when all the needed features were added. This series of
kernels was released in 2016, so limiting our study to these versions and newer is
not unrealistic when aiming to match versions of production systems.

The kernel configuration options listed as required in the install documenta-
tion are:

• CONFIG BPF

• CONFIG BPF SYSCALL

• CONFIG BPF JIT

• CONFIG HAVE EBPF JIT

• CONFIG ARCH SUPPORTS UPROBES

• CONFIG FTRACE SYSCALLS

• CONFIG FUNCTION TRACER

• CONFIG HAVE DYNAMIC FTRACE

• CONFIG DYNAMIC FTRACE

• CONFIG HAVE KPROBES

• CONFIG KPROBES

• CONFIG KPROBE EVENTS

• CONFIG BPF EVENTS

• CONFIG UPROBES

• CONFIG UPROBE EVENTS

• CONFIG DEBUG FS

After filtering to only kernel versions 4.9 and greater, we were left with 5,386
kernels. We then calculated the percentage of these that had all of the previously
listed options present. We discovered that 4,468 kernels (82.9%) had all options
present. We then investigated the kernels that were missing at least one option
to determine which option(s) were missing and if we could learn why they were
missing. This revealed that kernels versioned 4.9.x and 4.10.x were missing
CONFIG UPROBE EVENTS and CONFIG KPROBE EVENTS. Consulting
the Linux Kernel Driver Database, we learned that these configuration options
were not actually added until kernel version 4.11 [12, 13]. We then modified our
statistics script to filter out checking for these two options in kernel versions
4.9.x and 4.10.x. This new calculation method showed that 5,191 of the kernels
(96.3%) supported all configuration options needed.

Of the 195 kernels that were still missing at least one option, all were
Ubuntu-packaged kernels and all of them were kvm variants. These variants are
stripped down kernels meant to provide only what is needed to run as a KVM
virtual machine guest [14]. This is obviously not a configuration found in most
enterprises or cloud providers.

As our calculations show, the kernel tracing infrastructure is enabled on
essentially all modern Linux distributions kernels. This means the majority of

3



production systems have the tracing features enabled, making them a necessary
target of defensive research.

2.2 Malicious Uses

The power provided by the tracing infrastructure has led to several projects that
leverage these features for malicious purposes. The potential for abuse of kprobes
is documented in Phrack issue 67 from 2010 [15]. The ebpf project from NCC
Group contains a number of utilities showing how a variety of abuses can be
achieved [16]. The conjob utility intercepts and modifies reads to /etc/crontab.
obie-trice-conjob achieves the same goal, but uses raw tracepoints as a method to
bypass AppArmor. glibcpwn injects a shared library into systemd using eBPF-
based kprobes. unixdump saves all data sent through UNIX domain sockets to
disk. uprobe-ulose allows setting arbitrary uprobes in running processes. Besides
the source code for these utilities, the referenced GitHub project also has several
PDFs from presentations on the tool suite.

These examples showcase just some of the immense power that abuse of
the tracing facilities gives to malware authors. In Section 4, we discuss even
more malicious examples as we detect them with our newly developed Volatility
plugins.

3 Current Memory Analysis Capabilities

Unfortunately, existing memory forensic techniques do not detect the artifacts
generated by the tracing facilities. Current techniques are able to find modifica-
tions to the system call table, but only under two conditions. The first is when
indexes in the table are changed to point to malicious handlers, and the second
is when the reference to the system call table address is changed in the system
call handling function. The tracing facilities we discuss in this paper use neither
of these approaches to hook functions.

Similarly, existing techniques attempt to detect when function prologues
(beginning instructions) are hooked, but these techniques are not useful when the
kernel’s tracing facilities place a hook. These facilities use one of two methods
when placing API hooks. The first writes a debug trap instruction (int3) at
the beginning of the target function to trigger a debug trap upon future calls.
Existing analysis techniques do not check for int3 instructions, but even if they
were updated to do so, the results would offer nothing in terms of knowledge
about which module is handling the hook and why the hook is present. All that
would be available to be reported is that a particular function has been hooked
by a tracing facility. The second hooking method places a CALL instruction to
a special kernel code buffer that then determines which handler to call. This
again means that traditional API hook techniques would only be able to report
that a function is hooked, but nothing about the module handling the hook.

As shown in Section 4, by performing structured analysis of the tracing
facilities, we can determine not only which functions are hooked, but also provide
information about the hook’s handler. This allows for deeper analysis and

4



extraction of the malicious code region(s) and hosting kernel module, assuming
the module is still present in kernel memory.

4 Detecting Tracers

In this section, we document our research effort against each active tracer in
mainline kernels. For each tracer, we document how it works, describe the
Volatility plugins we created to detect abuse of the tracer, and show output of
our plugins after they are executed against memory samples from computers in
which malicious modules were using the tracing facilities.

4.1 Test Environment

For our test environment we used several Linux virtual machine guests. These
included a Debian 10 system running kernel version 4.19, an Ubuntu 18.04 system
running kernel version 4.15, an Ubuntu 20.04 system running kernel version 5.4,
and a Kali Linux system running kernel version 5.10.

To acquire memory, Surge Collect Pro from Volexity as well as virtual machine
snapshots were used. Both of these acquire memory in a stable and quick manner
and allowed us to rapidly gather samples with particular tracers active.

4.2 ftrace

4.2.1 Kernel Implementation

ftrace is nicely documented in the kernel documentation tree [17]. To register a
callback with ftrace, a kernel module has to first define a ftrace ops structure
whose func member points to the callback handler. The ftrace set filter function
can be then be used to associate the ftrace ops structure with one or more
functions based on their name. The ftrace set filter ip function can also be used
to set the filter on a specific address. Finally, register ftrace function is used to
activate the filter within the kernel.

The registration function adds the operations structure to the global ftrace ops list
data structure. This list holds all of the system’s active operations structures.
To associate a callback with a particular hooked function, a set of embedded data
structures and hash tables are used. To start, the func hash member of type
ftrace ops hash references the hash table of filters for the particular operations
structure. The elements of this hash table are of type ftrace func entry and store
the address being hooked in the ip member. The use of these data structures
allows the kernel to efficiently map a hooked address (function start) to its
registered ftrace callback(s).

4.2.2 Volatility Plugin Implementation

To enumerate the ftrace callbacks present in a memory sample, we developed the
linux ftrace plugin. This plugin begins by locating and enumerating ftrace ops list.
This is accomplished using existing Volatility APIs. For each operation element,
the plugin then walks the hash table of registered callbacks, if any. For each

5



callback, the plugin gathers the data structure address, callback handler address,
name of the module that registered the callback, the symbol name of the callback,
and the name of the function hooked.

The address of each callback handler is discovered via its func member. The
module hosting the callback is found through first enumerating the kernel code
ranges and the ranges of each kernel module in the active module list, and, then
determining which, if any, the callback fits within. If a module is found, then
the symbol address is searched within the module’s symbol table using standard
ELF parsing techniques. If a module is not found, then it means the callback is
within a non-file backed region or within a hidden kernel module - both of which
standout in the plugin output. The name of the hooked function is gathered by
mapping the ip member of each ftrace func entry to its symbol name using the
same method as for func.

The end result of linux ftrace is a complete listing of all registered ftrace
callbacks, including the address and symbol name of all symbols involved. This
can be used to immediately inform the investigator of any malicious callbacks.

4.2.3 Detection Example

To illustrate the usefulness of our plugin, we analyzed a POC-rootkit that abuses
ftrace [18]. The full source code to the rootkit can be found on GitHub at the
link in the bibliography. This rootkit operates by using ftrace to hook the clone
and execve system calls. In its implementation, both hooked system calls are
redirected to the same callback, named fh ftrace thunk.

Figure 1 shows the output of linux ftrace against a memory sample with the
POC rootkit loaded. In the output of the plugin, the address of the callback
function is listed in the second column (Function) along with the symbol name
(fh ftrace thunk) and kernel module name (ftrace hook) in the Symbol column.
The Traces values correspond to the functions that are hooked, which are the
handlers for the execve and clone system calls, as expected.

Figure 1: Output of linux ftrace

4.3 tracepoints

4.3.1 Kernel Implementation

The tracepoints feature allows hooking functions that define tracepoint entries
at compile time, and, in modern kernels, a significant number of functions define
these. Illustrating this is that our test systems had thousands of functions
available as tracepoint targets. Each tracepoint is tracked by a tracepoint

6



structure, and the set of tracepoints are referenced in a compile-time built array
of pointers to these structures. This array is placed in a boundary defined by
the start tracepoints ptrs and stop tracepoints ptrs global variables.

By default, each tracepoint has no callbacks, referred to as probes, attached.
To register a probe for a particular tracepoint, a kernel module must call trace-
point probe register. This registration API takes two parameters, the first being
a pointer to the tracepoint to attach the probe and the second being the function
pointer to the probe handler. The kernel provides the for each kernel tracepoint
macro that enumerates all of the tracepoint instances. This macro simply walks
the array stored between start tracepoints ptrs and stop tracepoints ptrs.

To associate the probe with a particular tracepoint, the registration function
builds a dynamically sized array of tracepoint func structures, which are refer-
enced from the tracepoint’s funcs member. Each probe corresponds to one entry
in this array, and the func member points to the probe handler.

After this registration process is finished, all calls to the probed function will
first be redirected to the registered probe handler.

4.3.2 Volatility Plugin Implementation

We developed a new Volatility plugin, linux tracepoints, that is able to enumerate
all registered tracepoint probe handlers. These handlers are then mapped back to
their owning module and symbol, if present. The plugin begins by enumerating
each tracepoint in the same manner as the for each kernel tracepoint macro.
The plugin then walks each array of probe handlers referenced by a tracepoint’s
funcs member. The func member is then used to extract the probe handler’s
address as well as map it back to a kernel module and symbol. We note that the
plugin only lists tracepoints that have at least one probe attached, otherwise
thousands of lines with no forensic use would be displayed on each plugin run.

4.3.3 Detection Example

To demonstrate this plugin, we used an open source example [19]. This example
registers probe handlers for the sched switch and sched wakeup functions. These
were not present in our tested kernels though (the POC code is from 2016), so
we changed the code to instead probe mm page alloc and mm page free.

Figure 2 shows the output of linux tracepoints against the memory sample
with the modified POC active. As can be seen, the plugin correctly determines
the two functions that are being probed and successfully maps them back to
their handler symbol inside of the my module POC kernel module.

Figure 2: Output of linux tracepoints

7



4.4 kprobes/kretprobes

4.4.1 Kernel Implementation

kprobes allows function hooking by kernel modules. The API for kernel modules
to register a kprobe is register kprobe. This function takes a kprobe structure
as a parameter and activates the kprobe on the system. On modern kernels,
this structure provides two fields that can be used to specify the target of the
kprobe: an addr field and a symbol name field. Only one of these may be used
and specifying values for both symbol name and addr will result in an error.
The symbol name field was introduced in 2.6.13; prior to this, only the addr
field was available. If the addr field is used to specify the function that should
be probed, it should be populated with the kernel function’s address. The
symbol name provides a more streamlined approach, since the kprobe author can
specify a string identifying the function to probe and this string is automatically
resolved to a kernel address via kallsyms lookup name. The kprobes structure also
contains function pointers for a pre-handler, post-handler, and fault handler. The
pre-handler runs before the first instruction in the probed function is executed
and the post-handler runs after the first instruction has executed. The fault
handler is used to handle faults within the other two handlers or when kprobes
single steps inside a handler.

To ensure a function is hooked, the kprobes subsystem places a software
breakpoint instruction (e.g., an int3 on x86/x86-64) at the function’s first byte.
This forces a debug trap whenever the function is called. kprobes will then
activate any registered hook handlers, as appropriate.

The set of active kprobes is stored in the kprobe table hash table. Each
element of the table represents one active kprobe and is of type kprobe. Inside
each kprobe are references to two lists. The first stores all of the kprobes that
have hooked the same function, and the second is the current structure’s position
within the hash table bucket. The structure also contains the name of the symbol
it has hooked as well as the offset into the function. The function pointers for
the pre-, post- and fault handlers are also stored in this structure.

Importantly, the post-handler for registered kprobes does not execute after
the function has completed, but rather after the first instruction in the function
has executed. To access or modify the return address requires a kprobe variant
called a kretprobe, which are registered using the function register kretprobe(),
which takes a kretprobe structure that contains an embedded kprobe structure.
Two handlers are specified in the kretprobe structure, a handler that is invoked
when the function completes (which offers a chance to read or modify the return
value of the probed function) and a kprobes pre-handler, invoked on function
invocation. The kretprobes mechanism is implemented using kprobes, with a
pre-handler saving and then modifying the return address of the function so that
the exit handler can gain control as the function returns.

8



4.4.2 Volatility Plugin Implementation

Our new Volatility plugins, linux kprobes and linux kretprobes, are capable of
enumerating all active kprobes on a system. They do so by locating and parsing
all of the elements of kprobe table. For each kprobe found, the plugin reports the
name of the hooked symbol as well as the address and name, if present, for each
of the hook handlers. The address to symbol mappings uses the same techniques
as described for linux ftrace.

4.4.3 Detection Examples

For our open source POC that abuses kprobes, we chose the example kprobe
module from Spotify’s GitHub repository [20]. This module hooks do fork by
default, but we modified it to hook proc sys open instead as the do fork hook
did not register correctly. We then loaded the module and acquired memory.

Figure 3 shows the output of the plugin run against the memory sample from
the infected virtual machine. As can be seen, the target symbol, proc sys open,
was correctly identified as well as the pre-operation handler pointing to the
handler pre function inside of the kprobe example module.

Figure 3: Output of linux kprobes

Figure 4: Output of linux kretprobes

Figure 4 illustrates the new plugin that detects kretprobes running against a
memory sample in which both a ret handler and a entry handler were registered,
to monitor both function invocation and completion. Both of the handlers are
correctly identified.

4.5 Trace Events

4.5.1 Kernel Implementation

Trace events provide users the ability to write to files under /sys/kernel/debug/
tracing/ and hook functions both in userland applications (CONFIG UPROBE
EVENTS [21]) as well as the kernel address space (CONFIG KPROBE EVENTS
[22]). These in turn become uprobe (userland) or kprobe (kernel) events in the
kernel. The set of active trace events is stored within the ftrace events list. Each

9



element of this list is of type trace event call, and has members that store the
name of the function being hooked as well as the format of the trace string.
These trace strings specify which parameters to a function should be logged and
how they should be inspected (as a number, string, etc.). In Section 4.5.3, we
show an example of this by hooking the kernel function do sys open to then
record the paths of all files accessed on the system.

4.5.2 Volatility Plugin Implementation

We developed a new Volatility plugin, linux trace events, that enumerates each
element of ftrace events. It then prints the the function hooked along with the
format for each event handler. We note that there is no kernel module associated
with these userland-created hooks, so there is nothing we can key in on from that
perspective. Instead, by alerting to the precense of these hooks, investigators
can then use existing memory analysis techniques to recover commands and
executables run on systems in an attempt uncover back the related activity.

4.5.3 Detection Example

Figure 5 shows the creation and enabling of a kprobe named testopen by writ-
ing to files under /sys/kernel/debug/tracing. In particular, this kprobe hooks
do sys open and extracts the filename parameter to the function. This will
effectively gather the file paths of all files opened on the system. As shown, after
the kprobe was activated, there was an attempt made to read a non-existent
file. Searching this filename across the trace file afterwards showed that the
testopen kprobe recorded that the cat command was used to access the file. As
mentioned previously, kprobes registered through this userland interface can be
used to record the parameters sent to any exported kernel function.

Figure 5: kprobe Hooking from Userland

Figure 6 shows the output of linux kprobes against a sample taken after
testopen was activated. The kprobe dispatcher function in the kernel is used to
handle these tracing-based probes, and, as such, the only information gained
from examining the kprobes table is that do sys open is hooked.

To gain complete information, linux trace events can be used as shown in
Figure 7. This information includes the name of the probe as well as the argument
printing format. These output strings would make for ideal candidates to search
across all of a memory sample in an attempt to gather related activity.

10



Figure 6: Output of linux kprobes

Figure 7: Output of linux trace events

4.6 eBPF

4.6.1 Kernel Implementation

eBPF is a significant subsystem of Linux that provides an in-kernel JIT engine to
execute a variety of eBPF-program types. These program types allow observing
and changing significant portions of the kernel’s control flow and operation. To
avoid re-inventing the wheel, eBPF re-uses previously discussed facilities when
possible to implement features.

The usual method to use eBPF is through programs. These programs can
be written in a language similar to C and there are also a number of convenient
wrappers and APIs. Before being allowed to execute, programs are verified to
ensure they do not perform illegal operations [23]. The bpftrace suite provides
a very simple-to-use API and a number of eBPF programs that implement a
wide range of system monitoring features [24], including monitoring of network
connections, program execution, and file system access. This project provides a
well-documented introduction to the (ab)use of eBPF programs and features.

Internally, the kernel stores the set of active ePBF programs in the prog idr
radix tree and each instance is of bpf prog. Each program tracks its type, attach
type, name, and set of instructions. Since the programs can be JIT’d, the
instructions can be either in the native eBPF format or already converted to
raw assembly instructions.

eBPF is also tightly coupled with the perf event subsystem of Linux [25].
This subsystem allows monitoring of essentially all operations of the kernel and
userland, and has built-in support for tracepoints, software events, and hardware
events. The main userland interface to these features is through the perf utility
maintained as part of the kernel itself [26], but bpftrace and other eBPF programs
also leverage these features.

Performance events are tracked on a per-process or per-CPU basis depend-
ing on the event type and target. The per-process events are tracked in a

11



doubly linked list of perf event structures that are referenced from a process’
perf event list member. The perf event structure tracks the name of the event
as well as associated information, such as the tracepoint reference (tp event) or
the eBPF program reference (prog). This structure ties a performance event to
its owning context as well as the subsystem and handlers used to implement it.

4.6.2 New Volatility Plugins

While studying the kernel internals related to eBPF we learned that the crash
utility from RedHat has a fairly robust parser for the associated data structures
[27]. Like WinDbg for Windows, this utility is meant to help developers analyze
kernel dump files after a system crash, but it is also certainly usable in many
memory analysis tasks. The crash extension is able to list loaded eBPF programs
as well as other metadata not relevant to our work. This existing extension
helped guide our kernel source study and plugin implementation.

Our newly developed linux ebpf plugin analyzes all eBPF programs active
in a memory sample. It begins by enumerating prog idr and then lists the
metadata for each active program. It also has the ability to optionally extract
the instructions of a program. These can then be analyzed with the llvm suite
of tools.

We also developed the linux perf events ebpf plugin that lists information
related to eBPF-related performance events. This plugin operates by walking the
list of active processes and then determining which have executed eBPF programs.
These processes are found by attempting to enumerate the list referenced from
the perf event list member. If any elements are found on this list, then the
metadata of each program is reported.

4.6.3 Detection Example

To showcase these plugins, we executed the execsnoop utility of bpftrace [28].
This utility registers a tracepoint through eBPF that monitors the execve system
call. This system call is used for program execution and includes the command
line arguments passed to the program.

Figure 8 shows us executing execsnoop in one terminal, and then after it
loaded we ran cat /etc/passwd in another. As can be seen, our cat command is
reported by execsnoop along with the process ID.

Figure 8: Loading execsnoop and running cat

Figure 9 shows the output of linux ebpf against the memory sample with
execsnoop active. As can be seen, it correctly reports that the system call

12



handler for execve, sys enter execve, is being targeted with a tracepoint by an
eBPF program.

Figure 9: Output of linux ebpf

To determine the specific process that executed the eBPF program, we use
the linux perf events ebpf plugin as show in Figure 10.

Figure 10: Output of linux perf events ebpf

As the output illustrates, the bpftrace program that we used to launch
execsnoop is correctly tied to the sys enter execve hooks. We also note that the
BEGIN program is an artifact of how the bpftrace tool works, as described in
the documentation [29]. A careful look at the output also shows that it correctly
extracts the program addresses which match the previous linux ebpf output.

5 Conclusion

The prevalence and power of the Linux kernel tracing infrastructure necessitates
that defenders have proper toolsets to detect abuse of these features. In this paper,
we have presented our research effort to deeply examine the core components
of this infrastructure. The results of this effort are a number of new Volatility
plugins that investigators can immediately use to detect abuse of these features
within analyzed memory samples. These plugins were developed for both the
Volatility 2 and Volatility 3 frameworks to allow for immediate use in the field
with Volatility 2 and to provide fully-commented and documented plugins that
showcase a number of Volatility 3 features and APIs. These Volatility 3 plugins
can now serve as a basis for future researchers to understand how to parse and
present a wide variety of in-memory artifacts. Our paper has also documented
a number of open-source utilities and proof-of-concept tools that will allow
defenders to examine the behaviour of these tracing features within their own

13



environments. This is the most direct way for defenders to discover what these
behaviours look like and how the most effective detections be can built in specific
environments.

References

[1] B. With, “Web Server Usage Distribution in the Top 1 Million Sites,”
https://trends.builtwith.com/web-server, 2021.

[2] ZDNet, “Microsoft Developer Reveals Linux is Now More Used on Azure
than Windows Server,” https://www.zdnet.com/article/microsoft-develop
er-reveals-linux-is-now-more-used-on-azure-than-windows-server/, 2019.

[3] Cilium, “eBPF - The Future of Networking and Security,” https://cilium.i
o/blog/2020/11/10/ebpf-future-of-networking, 2020.

[4] Facebook, “Open-sourcing Katran, a Scalable Network Load Bal-
ancer,” https://engineering.fb.com/2018/05/22/open-source/open-sourcin
g-katran-a-scalable-network-load-balancer/, 2019.

[5] Cilium, “BPF: A New Type of Software,” http://www.brendangregg.com
/blog/2019-12-02/bpf-a-new-type-of-software.html, 2019.

[6] Jesper Brouer and Andy Gospodarek, “A Practical Introduction to
XDP,” https://www.linuxplumbersconf.org/event/2/contributions/71/atta
chments/17/9/presentation-lpc2018-xdp-tutorial.pdf, 2018.

[7] XDP-project, “Tutorial: Packet02 - Packet Rewriting,” https://github.com
/xdp-project/xdp-tutorial/tree/master/packet02-rewriting, 2019.

[8] Julia Evans, “Linux Tracing Systems and How They Fit Together,” https:
//jvns.ca/blog/2017/07/05/linux-tracing-systems/, 2017.

[9] Kernel Development Community, “Linux Tracing Technologies,” https:
//www.kernel.org/doc/html/latest/trace/index.html, 2021.

[10] awesomeebf, “Awesome ebpf,” https://github.com/zoidbergwill/awesome-e
bpf, 2021.

[11] BPF Trace Team, “bpftrace Install,” https://github.com/iovisor/bpftrace/
blob/master/INSTALL.md, 2021.

[12] Linux Kernel Driver Database, “CONFIG KPROBE EVENTS: Enable
kprobes-based Dynamic Events,” https://cateee.net/lkddb/web-lkddb/K
PROBE EVENTS.html, 2021.

[13] ——, “CONFIG UPROBE EVENTS: Enable uprobes-based Dynamic
Events,” https://cateee.net/lkddb/web-lkddb/UPROBE EVENTS.html,
2021.

14



[14] Ubuntu, “Ubuntu Kernel Variants from Canonical,” https://ubuntu.com/k
ernel/variants, 2021.

[15] ElfMaster, “Kernel Instrumentation Using kprobes,” vol. 14, 2010.

[16] epbf Project, “Miscellaneous eBPF Tooling,” https://github.com/nccgrou
p/ebpf, 2019.

[17] Kernel Development Community, “Using ftrace to Hook to Functions,”
https://www.kernel.org/doc/html/latest/trace/index.html, 2021.

[18] ilammy, “ftrace-hook,” https://github.com/ilammy/ftrace-hook, 2019.

[19] Hugo Guiroux, “Hooking into the Kernel: Real-time Code Execution at
Kernel Level,” https://hugoguiroux.blogspot.com/2016/01/hooking-into-k
ernel-real-time-code.html, 2016.

[20] Spotify, “kprobes Example,” https://github.com/spotify/linux/blob/mast
er/samples/kprobes/kprobe example.c, 2008.

[21] Kernel Development Community, “Uprobe-tracer: Uprobe-based Event
Tracing,” https://www.kernel.org/doc/html/latest/trace/uprobetracer.ht
ml, 2021.

[22] ——, “kprobe-based Event Tracing,” https://www.kernel.org/doc/html/la
test/trace/kprobetrace.html, 2021.

[23] Alan Maguire, “BPF In Depth: The BPF Bytecode and the BPF Verifier,”
https://blogs.oracle.com/linux/notes-on-bpf-5, 2019.

[24] IO Visor Project, “bpftrace,” https://github.com/iovisor/bpftrace, 2017.

[25] ——, “perf Examples,” http://www.brendangregg.com/perf.html, 2020.

[26] Kernel Development Community, “perf: Linux Profiling with Performance
Counters,” https://perf.wiki.kernel.org/index.php/Main Page, 2020.

[27] David Anderson, “bpf.c in the Core Analysis Suite,” https://github.com/c
rash-utility/crash/blob/master/bpf.c, 2018.

[28] IO Visor Project, “Trace new processes via exec() syscalls,”
https://github.com/iovisor/bpftrace/blob/master/docs/reference\ g
uide.md#13-beginend-built-in-events, 2021.

[29] ——, “bpftrace Reference Guide: BEGIN / END events,”
https://github.com/iovisor/bpftrace/blob/master/docs/reference\ g
uide.md#13-beginend-built-in-events, 2021.

15


