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Everyone knows the brand impersonation story

NETFLIX

Please Update Your Payment Method
Hello,

Sorry for the interruption, but we are having trouble authorising your Credit Card.
Please visit www.netflix.com/YourAccountPayment to enter your payment
information again or to use a different payment method. When you have finished,
we will try to verify your account again. If it still does not work, you will want to
contact your credit card company.
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Source: Bing Images



Human process for identifying brand impersonation

Task 1: Identify the spoofed brand (easy)
Task 2: Check "other” details to see if it aligns with the brand

- Domain names
- URLs
- Tone of the message...etc

- An automated filter would need to do both.

- This project focuses on training a machine learning model to
perform task 1, a pre-requisite for task 2.



Data

- Detonation service screenshots of known malicious brand
Impersonations.

USER AUTHENTICATION

] Office 365

- 50K + images with over 1.3K unique brands
- How can we succeed in classification without non-malicious content?



Underlying Assumption

- The best brand impersonation content will look identical to the true brand
content.

- The best we can hope to do using visual attributes alone is identify brands, not
conduct a benign/malicious classification.

- This is fundamentally a multi-class classification problem



Possible approaches

- Image Hashing
- Too many variations on the same brand

- Traditional classification (i.e. feed forward neural networks)
- Too many classes with too few observations per class

- "Few-shot” learning
- Siamese Networks



What is an Embedding?
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Siamese Networks with Contrastive Loss

- For inputs of the same brand:
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Siamese Networks with Contrastive Loss

- For inputs of the different brands:
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Result
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Outcome-Motivated Metrics

True Predicted True  Predicted
- Know Hit Rate =. — =. « Unknown Misclassification ? —>=.
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Architecture

Parameters between two Pretrained Model are shared.

Parameters between two Classification FC are shared.

Final loss is the weighted sum of the 3 sub-losses.
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Classification
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Which brand does
Image Abelong?

Are Image A and
Image B sharing the
same brand?

Which brand does
Image B belong?



Swin Transformers

A local window to
perform self-attention

A patch

1. Split image into 4px*4px patches
2. Observe patches with shifted windows
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Training Parameters

. 80/20 Split

- >50k images with >1.3k unique brands
+ ~500 brands with only one screenshot, all in test set

- Three separate evaluations:

- Test Set
- Alexa Top 33k (hit/miss only)
- Known bad (hit/miss only)



Results on Held Out Set
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Hits and Miss Rate ~30k most trafficked websites
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0.8 These are known benign home pages so

we would expect a good algorithm to not
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Unlabeled Malicious Sites

B Image Finger Print (loose)
B Image Finger Print (tight)

I Siamese Deep Learning
0.8
0 Hits and miss rate of known
' malicious log in pages without
i brand labels. We would
expect a good classifier to
0.2 have a high hit rate
0.0

Hit Rate (1) Miss Rate (1)



Calibration

We showed examples where the Siamese Network is the best on all metrics. However, it is tunable.
With a modest 2% increase in the hit rate in the Alexa dataset, we can achieve a 90% hit rate.
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Possible Extensions

- Expanding to other contexts

- Testing for robustness/adversarial perturbation
- Interpreting classification outputs

- Explicitly incorporating logo detection



Thank you!



