

BRIEFINGS

Siamese Neural Networks for Detecting Brand Impersonation

Justin Grana (Presenter)

Yuchao Dai

Jugal Parikh

Nitin Kumar Goel

#BHUSA @BlackHatEvents

Everyone knows the brand impersonation story

to me 💌

Source: Bing Images

Human process for identifying brand impersonation

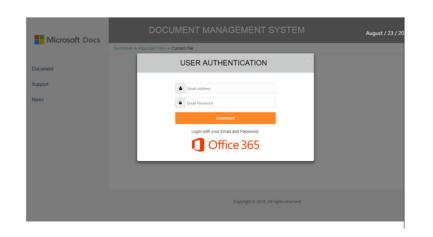
Task 1: Identify the spoofed brand (easy)

Task 2: Check "other" details to see if it aligns with the brand

- \cdot Domain names
- \cdot URLs
- Tone of the message...etc
- \cdot An automated filter would need to do both.
- This project focuses on training a machine learning model to perform task 1, a pre-requisite for task 2.

Data

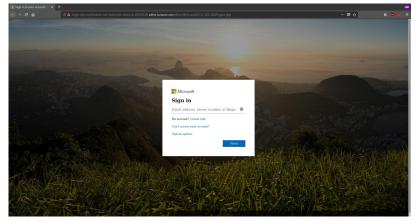
• Detonation service screenshots of known malicious brand impersonations.



- \cdot 50K + images with over 1.3K unique brands
- \cdot How can we succeed in classification without non-malicious content?

Underlying Assumption

• The best brand impersonation content will look identical to the true brand content.

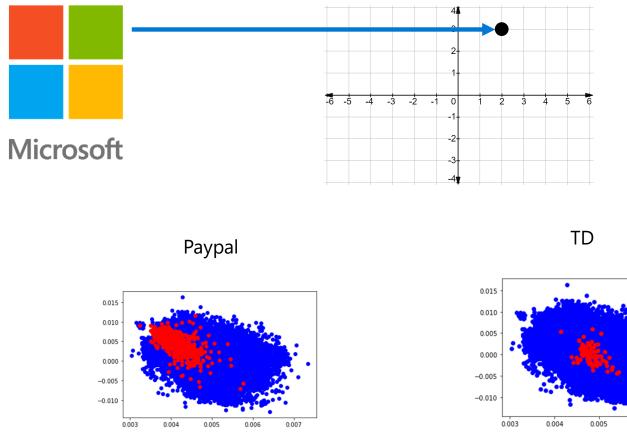


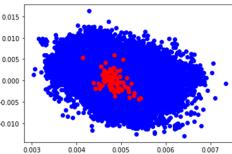
- The *best* we can hope to do using visual attributes *alone* is identify brands, not conduct a benign/malicious classification.
- This is fundamentally a **multi-class classification problem**

Possible approaches

- · Image Hashing
 - $\cdot\,$ Too many variations on the same brand
- · Traditional classification (i.e. feed forward neural networks)
 - $\cdot\,$ Too many classes with too few observations per class
- "Few-shot" learning
 - · Siamese Networks

What is an Embedding?





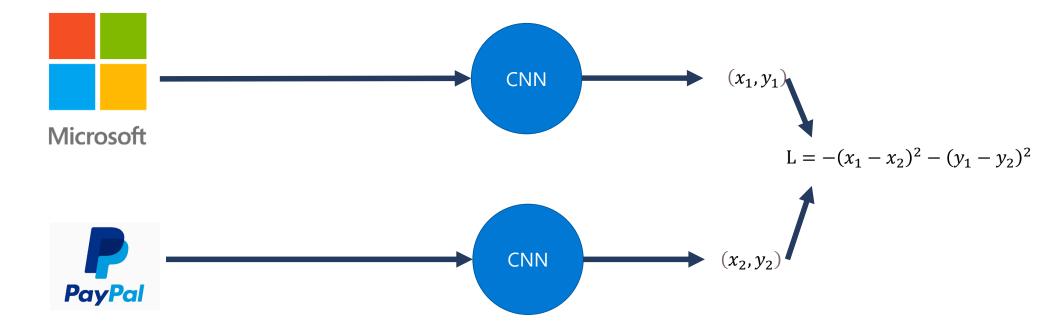
Siamese Networks with Contrastive Loss

• For inputs of the same brand:

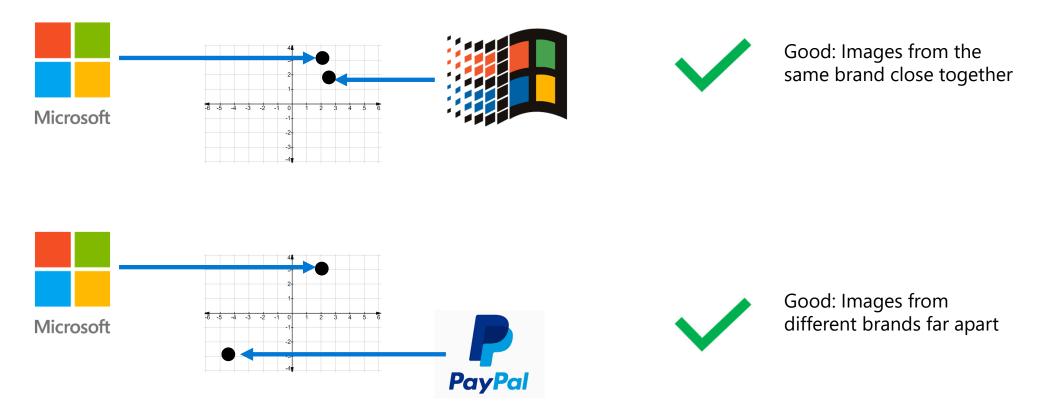


Siamese Networks with Contrastive Loss

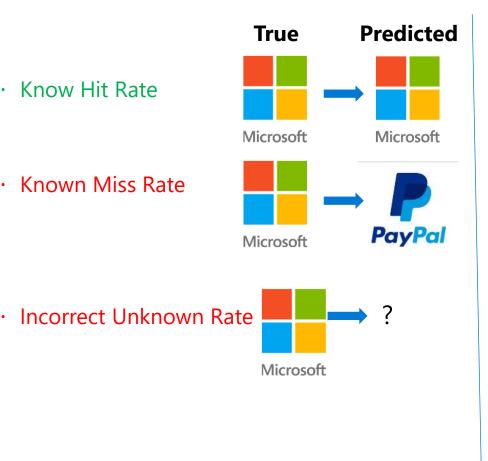
• For inputs of the different brands:

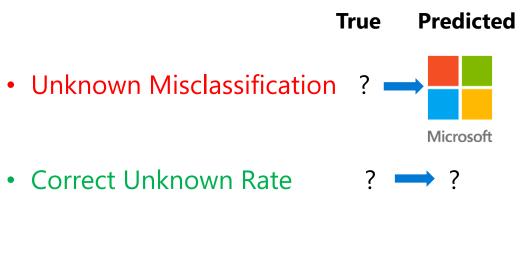


Result



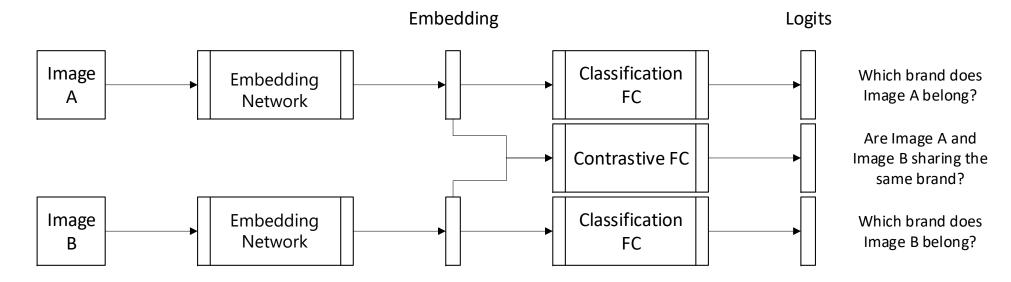
Outcome-Motivated Metrics



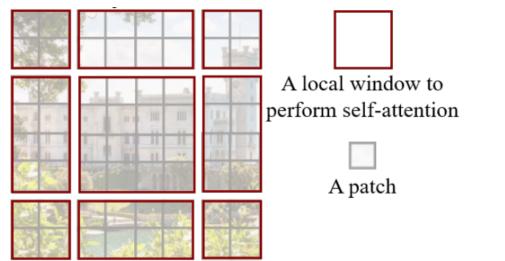


Architecture

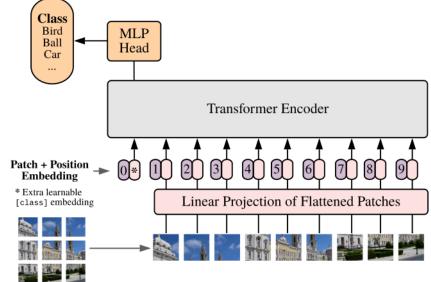
Parameters between two Pretrained Model are shared. Parameters between two Classification FC are shared. Final loss is the weighted sum of the 3 sub-losses.



Swin Transformers



- 1. Split image into 4px*4px patches
- 2. Observe patches with shifted windows



- 1. Embed patches with linear projection
- 2. Feed patches to transformer

13

Training Parameters

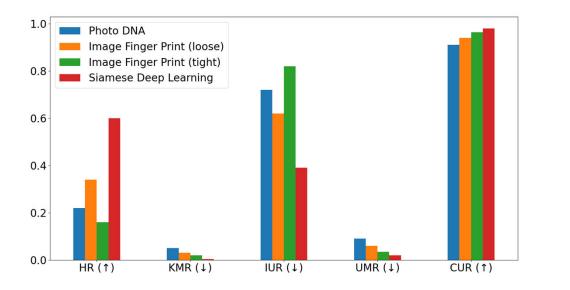
• 80/20 Split

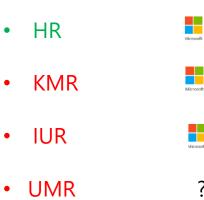
- \cdot >50k images with >1.3k unique brands
- · ~500 brands with only one screenshot, all in test set

\cdot Three separate evaluations:

- · Test Set
- · Alexa Top 33k (hit/miss only)
- · Known bad (hit/miss only)

Results on Held Out Set



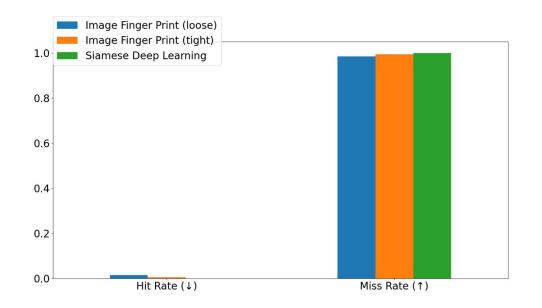


• CUR



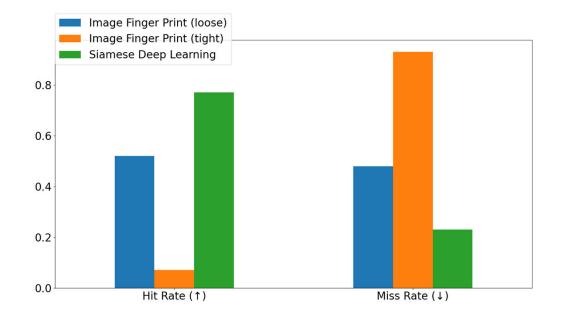
Hicrosoft

Hits and Miss Rate ~30k most trafficked websites



These are known benign *home pages* so we would expect a good algorithm to *not* detect these as a brand impersonated *log-in page*

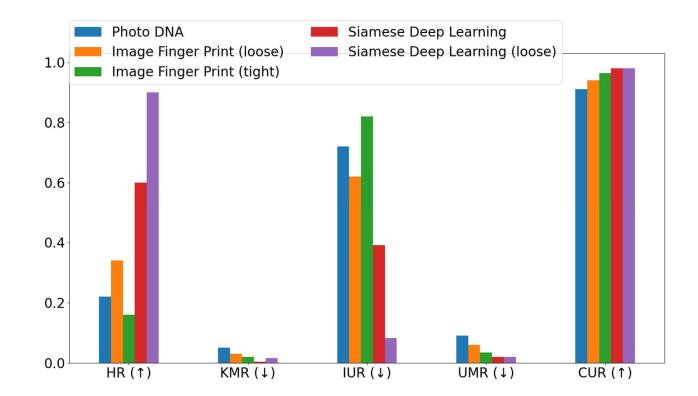
Unlabeled Malicious Sites



Hits and miss rate of known malicious log in pages without brand labels. We would expect a good classifier to have a high hit rate

Calibration

- We showed examples where the Siamese Network is the best on *all* metrics. However, it is tunable.
- With a modest 2% increase in the hit rate in the Alexa dataset, we can achieve a 90% hit rate.



Possible Extensions

- Expanding to other contexts
- \cdot Testing for robustness/adversarial perturbation
- \cdot Interpreting classification outputs
- \cdot Explicitly incorporating logo detection

Thank you!