
MFA-ing the Un-MFA-ble

Protecting Auth Systems' Core Secrets

#BHUSA @BlackHatEvents

👋 Hi, I’m Tal Be’ery

● Co-Founder, R&D @ ZenGo
● 20 years of cyber security experience
● Former EIR Innov8 VC, VP Research Aorato

(acquired by Microsoft)
● @talbeerysec

https://twitter.com/TalBeerySec

👋 Hi, I’m Matan Hamilis

● Cryptography Research @ ZenGo
● 8 years of cybersecurity experience.

Easy and Secure crypto experience:
all from your mobile device

Founded
in 2017

VC backed
since 2018

30
employees

We’re hiring!

Agenda
● SunBurst Incident: The role of persistence
● Golden SAML persistence attack

○ How SAML works
○ Golden SAML attack

● Solving Golden SAML
○ MFA (Multi-Factor Authentication) as reference
○ Current solutions and their limitations
○ Novel solution: Solving with modern crypto

● Distributed SAML: Threshold Signatures applied to SAML (+demo!)
● Takeaways + Q&A

SunBurst: Breach of the year

SunBurst APT
● Advanced Persistent Threat (APT):

○ Russian intelligence services
● Targets:

○ High profile US GOV agencies (+others)
● Most focus on “Advanced” initial

access:
○ Supply chain compromise
○ Rogue version update to SolarWinds

Orion to create a backdoor
● We want to focus on “Persistent”

Persistence: APT vs. APT
● Persistence is often a two way street
● Advanced Persistent Threats often meet

Advanced Persistent Targets
● Both sides are advanced
● Both side are persistent

○ Attackers are on a long term campaign
○ Defenders find attackers and clean the environment
○ No party has the luxury of doing something else
○ They must continue fighting each other

● The game is never over!

Persistence in practice
● MITRE ATT&CK tactic: “Persistence consists of techniques that adversaries

use to keep access to systems”
● A popular way for attackers to maintain persistence is by targeting the

targets’ long term secrets:
○ Single factor passwords

■ MFA mostly eliminates that, especially in APT targets
○ Keys used to generate access tokens:

■ Kerberos KRBTGT: “Golden Ticket”
■ SAML private key: “Golden SAML”

https://attack.mitre.org/tactics/TA0003/

Golden SAML

What is SAML
● Modern corp environment is comprised of many web

services, served by different vendors
● Each service has its own authentication solution

○ No SSO, many passwords to remember (or re-use), different
MFA, users on-boarding / off-boarding / chane is a mess, etc.

● With SAML (Security Assertion Markup Language)
○ User management is removed from Service Providers (SPs)

and centralized in Identity Provider (IdP)
● SAML analogies:

○ Corp version of “Sign in with …”
○ Web version of Kerberos

SAML logon step 1: Service Provider (SP)
● Users browses SP
● SP identifies that this user is using SAML

○ E.g. tal @ zengo.com
○ ZenGo configured SAML information beforehand

■ ZenGo SAML public key
● Sends user to IdP

SAML logon step 2: Identity Provider (IdP)
● Authenticates the user

○ Can use any Multi Factor Authentication (MFA)
○ Single-Sign-On (SSO)

● Generates a SAML token (XML with Security Assertions)
○ User’s identity: email, name, etc.
○ User’s attributes: e.g. admin / user

● Signs that SAML with its private key
● Send SAML token to user
● Sends user back to SP

SAML token example

SAML logon step 3: Back to Service Provider
● When SP gets the IdP’s signed SAML (via user)

○ Verifies the signature (with pre-configured public key)
○ Acts according to the security assertions

SAML flow: In high level

SAML is all about decoupling
● Authentication and Directory is decoupled from Service

○ Single Sign On
○ MFA
○ Users details in one place

■ Easy on-boarding / off-boarding
■ Updates to details

● SP and IdP do not talk directly, only through user
● The key pair is the only “glue”

○ IdP signs with private key
○ SP verifies with public key

● What happens if attackers steal private key?

Golden SAML: In high level

Golden SAML
● When attackers steal IdP’s private key
● They become an alternative rogue IdP:

○ Can generate arbitrary access SAML tokens.
○ In an offline manner, within the attacker’s environment

● Allow attackers to access all target’s SPs
○ as any user
○ as any role

● Bypass original IdP security policies
○ Bypassing MFA
○ Bypassing access monitoring, if access is only monitored by IdP

● Golden SAML: coined by CyberArk in 2017 (@shakreiner)
● SunBurst: First publicly known use of the technique in the wild

https://www.cyberark.com/resources/threat-research-blog/golden-saml-newly-discovered-attack-technique-forges-authentication-to-cloud-apps
https://twitter.com/shakreiner?lang=en

Solving Golden SAML

Problem definition
● We want to solve Golden SAML, a persistence technique
● We want to solve the “offline” use of IdP private key

○ Attackers get a time limited access to IdP
○ Attackers get a long-term “offline” access to target’s assets

● Solving an “online” attacks on IdP is out of scope
○ Should be handled with our usual blue team methods against online, active attackers

■ XDR, process whitelist, etc.

MFA as a good solution reference
● MFA largely solved passwords as a persistence mechanism

○ “MFA can block over 99.9 percent of account compromise attacks” (Microsoft)
○ Bothers APTs enough to bypass them

● What makes MFA a good solution
○ Composability: Password is no longer a single point of failure
○ Orthogonality: The extra factors are actually different, i.e. not “2 passwords”
○ Scalability: we can add more factors if needed (SMS, retina, fingerprint, USB key)
○ Short-lived: The added factor value keeps rotating

● Can we apply MFA principles to solve Golden SAML?

https://www.microsoft.com/security/blog/2019/08/20/one-simple-action-you-can-take-to-prevent-99-9-percent-of-account-attacks/

Hardware based solution
● CISA advisory on ”Detecting Abuse of Authentication Mechanisms”

recommends HSM (Hardware Security Module)

● In theory, HSM can sign yet prevent direct access to private key

https://media.defense.gov/2020/Dec/17/2002554125/-1/-1/0/AUTHENTICATION_MECHANISMS_CSA_U_OO_198854_20.PDF

HSM for SAML: Scorecard
● Composability: Private key is still a single point of failure
● Orthogonality: Does hardware residing in the same compromised

environment provide enough resistance?
○ according to CISA only if it is “aggressively updated”
○ See Ledger’s BHUSA 19 talk on hacking HSM

● Scalability: Does not scale. We had gone from soft-ware to hard-ware, but
what’s next? Harder-ware?

● Short-lived: Does not help with that

https://i.blackhat.com/USA-19/Thursday/us-19-Campana-Everybody-Be-Cool-This-Is-A-Robbery.pdf

What if we can have multiple signers?
● Each token needs be signed by multiple parties
● These parties should be orthogonal

○ E.g. customer network and a 3rd party
● Success Criteria:

○ Composability: no single point of failure
○ Orthogonality: environments are orthogonal
○ Scalability: Scales
○ Short-lived: Still not so

● However this requires changes
○ IdP: that’s relatively easy and interests are aligned
○ Standards and SPs

● Can we have multiple signers and change IdP only?

Threshold Signature Scheme (TSS)
● Modern cryptography magic
● Private key is created in a truly distributed manner
● Signing is done in a truly distributed manner
● Public key and signature verification remains the same,

○ Only signer (IdP) needs to be updated and nothing more (SPs)
● More reading on TSS for ECDSA

○ High level
■ Concepts
■ Use in blockchains
■ technical explanation

○ The papers Lindell 17, Genarro Goldfeder 18
○ ZenGo’s TSS repository “Awesome TSS”

https://academy.binance.com/en/articles/threshold-signatures-explained
https://academy.binance.com/en/articles/threshold-signatures-explained
https://medium.com/cryptoadvance/ecdsa-is-not-that-bad-two-party-signing-without-schnorr-or-bls-1941806ec36f
https://eprint.iacr.org/2017/552.pdf
https://eprint.iacr.org/2019/114.pdf
https://github.com/ZenGo-X/awesome-tss

Tribute to Dan Kaminsky

https://twitter.com/dakami

https://twitter.com/dakami/status/1024237236617805824

EC-DLP
● Every asymmetric crypto-system requires a hard problem

○ Hard to solve without the private key (Sk)
○ Easy to solve with the private key
○ Can be verified with public key (P)

● EC DLP: P=Sk×G

EC-DLP as a billiards game
● Bizzaro billiards analogy (Nick Sullivan)

○ Addition in EC algebra is like a billiards’ ball bouncing
● EC-DLP (P=Sk×G) is a Billiards game!

○ The ball is placed on point G
○ The ball is shot Sk times and ends on point P
○ No one can tell how many times the ball was shot (Sk)
○ Although they know start point (G) and end point (P)

https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/

Distributed EC-DLP: Doubles’ billiards game
● Bizzaro doubles’ billiards analogy

○ The ball is placed on point G
○ The ball is shot Sk1 times and ends on point P1

■ P1=Sk1×G
○ No one can tell how many times the ball was shot (Sk1)

■ Although they know start point (G) and end point (P1)
○ If someone else now shoots Sk2 times from P1, EC-DLP is still a hard problem

■ P= (Sk2)×P1= (Sk2)×(Sk1×G)=(Sk1·Sk2)×G;
● EC DLP is still hard with multiple players

○ P=Sk×G
○ P= (Sk1·Sk2)×G; Sk = Sk1·Sk2

● Additionally now the shares (Ski) can be rotated
○ Sk = Sk1·Sk2 = (a·Sk1)*(a^-1·Sk2)

ZenGo makes crypto zen.
Buy, store, trade, and earn crypto in a tap.

Threshold Signatures (TSS): 1 becomes 2
● Private key becomes distributed: no longer a Single-Point-of-Failure
● Distributed protocols: back and forth messages exchange between parties

○ Key generation: each party creates a “Share” (which is not “half of the key”)
○ Signing: using the Shares, parties sign together

● The signature looks the same!
● When 1 (private key) becomes 2 (shares):

○ Harder for attackers to steal: needs to compromise both parties
○ Easier to backup: each share is meaningless by itself

SAML flow: In high level

TSS SAML flow: In high level

TSS for SAML: Scorecard
● Composability: Private key becomes decentralized and no longer a single

point of failure
● Orthogonality: Each share resides on a totally different environment
● Scalability: Number of parties is scalable. If 2 are not enough, why not 3? Or

4?
● Short-lived: Shares can be rotated without changing the main secret

TSS for SAML IdP

Demo Architecture
- Architecture is composed of:

- Identity Provider.
- Service Provider (agnostic of the TSS nature of the signature).
- A multiparty TSS-ECDSA implementation.

- The code can be found at:
- https://github.com/ZenGo-X/saml-demo

https://github.com/ZenGo-X/saml-demo

Demo Architecture
- IDP and SP by SimpleSAMLPhp.

- Added support for the http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256 algorithm
for the ds:SignatureAlgorithm element at the IdP codebase.

- The handler for this signature algorithm at the IdP calls for the multi-party signing routine.
- The IdP and the SP will run in two different containers, each running the SimpleSAMLPhp

codebase with the appropriate configuration.

https://simplesamlphp.org/
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256

Demo Architecture
- Multiparty TSS-ECDSA by ZenGo-X/multi-party-ecdsa.
- Demo signature scheme: 3-out-of-3.
- Signature algorithm used: Gennaro and Goldfeder - Fast Multiparty Threshold

ECDSA with Fast Trustless Setup (AKA GG18).
- Each signer runs in a separate container.
- One of the containers is controlled by the IdP.

- The rest are independent.
- While at the demo all containers run on the same PC, a “real-world” implementation of this

will comprise cosigners running within orthogonal, independent environments.
- The demo includes a distributed key generation (DKG).

https://github.com/ZenGo-X/multi-party-ecdsa/
https://eprint.iacr.org/2019/114.pdf
https://eprint.iacr.org/2019/114.pdf

Demo Architecture - Setup Phase
- Upon setup, we start all the signer containers.
- They run a DKG for a 3-out-of-3 multiparty ECDSA scheme.
- From the generated public key, we generate an X.509 certificate.

- Private key isn’t required to generate a self-signed certificate.
- This certificate is automatically passed to the SP.

- The SP must hold a certificate of the IdP to verify the assertions.

Demo Architecture - Signing-in Phase
- When a user wishes to sign-in:

- The SP redirects the client to the IdP.
- The user fills-in a form and sends it to the IdP.
- The IdP verifies the credentials.
- If the verification succeeds, the IdP generates an unsigned assertion.
- The assertion is sent to its controlled signer node.
- The IdP control signing node initiates a signing session by sending its peers the assertion

to be signed.
- The containers cooperatively sign the assertion.
- The signed assertion is sent back to the IdP.
- The IdP redirects the client to the SP alongside its signed assertion.

Demo Architecture - Signing Phase
Co-signers

Multiparty Signing

https://docs.google.com/file/d/1iSuQ9zunmPTNTi-MAbx2LO855W_nK9M4/preview

Takeaways

Takeaways
● APTs are targeting long term secrets for persistence

● Advanced Persistent Targets must solve

● Current hardware solutions are not perfect

● Using modern crypto (TSS) & relevant architecture

enable better solutions

Generic Takeaways: Infosec ❤ Cryptocurrency
● Cryptocurrency projects are solving hard security problems
● The Infosec community should embrace that

https://twitter.com/dinodaizovi/

https://twitter.com/dinodaizovi/status/1383820014805929985

www.zengo.com

twitter.com/zengo

medium.com/zengo

 github.com/zengo-x

contact@zengo.com

https://twitter.com/zengo?lang=en
https://medium.com/zengo
https://github.com/ZenGo-X
mailto:contact@zengo.com

