blgc’:khaf
LISA 20021

ALguUsSE 4-5, 2021
BRIeFINGS

Rope: Bypassing Behavioral Detection
of Malware with Distributed
ROP-Driven Execution

Daniele Cono D’Elia, Lorenzo Invidia

BBBBBBBBBBBBBBBBBBBBB

SAPIENZA

UNIVERSITA DI ROMA

'WHO ARE WE

» Post-doc @ Sapienza » MSc graduate @ Sapienza
» Software and systems security » Windows internals and reversing
» A few Black Hat talks on malware

, @dcdelia @mattless_

' MALWARE DETECTION

P Flag untrusted software as malicious on end machines

P AV/EDR solutions rely on behavioral analyses to forestall new
threats. What are the limits of current approaches?

e Workflow
- = * monitor execution units
* match actions against «dynamic» signatures

e * raise an alert

"IN THIS TALK

» WHAT WE DID

» ROPE CONCEPT

» PROTOTYPE (+ NEW BYPASSES)
» RESULTS

P OUTLOOK

' BEHAVIORAL 101

Approach

» attempt initial controlled execution
* monitor once running unleashed

How? -> user-space hooks, mini-filters

WHO? -> process (w/ children)

'DISTRIBUTED MALWARE

IDEA

 dilute temporal and spatial footprint
* multiple cooperating entities

» and no single entity alerts AV/EDRs!

DISTRIBUTED MALWARE

Create ad-hoc processes?
very high number required
correlation is easy

Abuse existing processes?
injecting code is noisy
conspicuous regions

HARDENING MITIGATIONS

Windows now offers means for applications to
«reduce the attack surface against next-generation malware>

WINDOWS DEFENDER EXPLOIT GUARD
* Arbitrary Code Guard (ACG)
* Code Integrity Guard (CIG)

» Export & Import Address Filtering (EAF, |IAF)
* and more...

' DESIRED PROPERTIES

v flexible delivery of payload

v~ small footprint of distributed runtime

v/ comply with hardening mitigations

v keep code and data hidden as much as possible

WHAT WE DID

Gadget1 Gadget1

2,
Q!II' GadgetN GadgetN3

Payload Chunk1 Chunk2 Chunk3

Rope Header
Victiml

Program data

Loader E (global, heap)

component Bootstrap

component \

s
&

/7

Victim2 ROP-TXF

WHAT WE DID

Key #1: Return-Oriented N\

Programming

« encode distributed payload

« get around WDEG mitigations ROPE: distributed
> ROP-driven Execution

Key #2: Transactional NTFS

* non-inspectable covert channel
« payload sharing + communications /

'DESIGN OF ROPE

Goals
* encode distributed payload
« get around WDEG mitigations

With code reuse we avoid any RWX memory! We borrow ROP
gadgets from a shared library that all victims have loaded...

' DESIGN OF ROPE

Goals
* non-inspectable covert channel

» payload sharing + communications

Thanks to TxF, only processes with the TxF handle can see the
transient contents of the shared file. And ROP code is data!

'ROPE: LOADER

TASKS

 pick victim processes

» create ROP-TxF on some file
 clear it, then fill with chains & metadata
» duplicate TxF handle for victims
* inject bootstrap component

'ROPE: BOOTSTRAP

TASKS

* make victim load ROP-TxF

» schedule execution of ROP code
 solve needed APIs covertly

» coordinate with other victims (if needed)

'ROPE: ROP-TXF

STRUCTURE & CONTENTS
* ROP payload arranged in chunks
e a victim executes one or more chunks

e ROP-TxF hosts:

» chunks + program memory e Heater
» metadata for runtime (e.g., APIs, handles) :

Chunk2 E (global, heap)

Chunk3

ROP-TxF

ROPE: EXECUTION

Mode 1: continuous
* any victim can execute any chunk
* Rope brings explicit coordination for chunks

Mode 2: staged
« sequences of chunks run by specific victims
» coordination may be also external

' ADVANTAGES OF ROPE

no need to allocate/modify executable memory
in-memory inspection harder for AV/EDRs (ROP adds indirection)

single shared medium for code and data
compliance with ACG & CIG

NIENIENIEN

 CHALLENGES

1 inject the bootstrap component
1 find suitable gadget source
1 comply with ROP mitigations

1 encode the payloac

1 look up APIs in hardened victim

 CHALLENGES

1 inject the bootstrap component (bypass #1)
1 find suitable gadget source
1 comply with ROP mitigations

1 encode the payloac

1 look up APIs in hardened victim (bypass #2)

'INJECTION STAGE

P We have to deliver the bootstrap component to victims

P And Rope also needs a shared source of gadgets...

Restrictions

« can only use/load signed modules

e cannot use RWX memory

* Rope runtime should not spook AV/EDRs

' PHANTOM DLL HOLLOWING

HANDLE hSection, hFile, hTransaction;
NtCreateTransaction(&hTransaction)
hFile = CreateFileTransactedW(dllPath, ..., hTransaction)
< parse file for suitable insertion region >
WriteFile(hFile);

NtCreateSection(&hSection, ..., SEC IMAGE, hFile);

NtMapViewOfSection(hSection, hVictimProcess, ...); [Alerts AV/EDRs!

PHANTOM DLL HOLLOWING

SR AR

\-—/

e e ¥

0xC0000428
(STATUS_INVALID_IMAGE_HASH) for
NtCreateSection when CIG enabled...

= roa (e et} = " - =

-
7

-— 2

BYPASS #1: ACG/CIG

create with a Windows DLL
create Section on it
duplicate TxF-ed Section for victims

inject ROP chain on victim’s stack
» map view of Section handle
> Yyield control to desired address

A WIN -

'BYPASS #1: ACG/CIG

THE ROP CHAIN
* host CONTEXT for resuming victim’s activities
» set up arguments for NtMapViewOfSection

» add RVA of entrypoint to base address from loading
* run the desired code

» upon return, call NtContinue with CONTEXT

INJECTION STAGE

P The bypass just brought multiple advantages:
v/ we can add gadgets to DLL-TxF
v bootstrap component in DLL-TxF (as ROP chain or shellcode)
v victim will spawn payload with own means (no remote threads)

P Rope can work with other injection primitives. Our bypass
just offers an implementation shortcut...

 CHALLENGES

V' inject the bootstrap component (bypass #1)
v/ find suitable gadget source
1 comply with ROP mitigations

1 encode the payloac

1 look up APIs in hardened victim (bypass #2)

ROP MITIGATIONS

Rope chunks use standard means against WDEG
» StackPivot => make API calls from native stack

» CallerCheck & SimExec (32-bit)

= gadgets that break analyses (Néemeth’15, Borrello’19)
= Rite of Passage (Yair @ DEF CON 27)
= jssue calls from shellcode

As for the injection, WDEG ignores NtMapViewOfSection...

'ROP ENCODING

Payload Chunk1 Chunk2 Chunk3

Some automation?
manual writing doesn’t scale
ROP tools meant for exploits

ROP ENCODING - B E

Payload Chunk1 Chunk2 Chunk3

Some automation!
1. promote stack variables to globals

2. globals as fields of a single struct
3. MSVC with optimization/canaries off

Output resembles a shellcode. Delimit
chunks as basic blocks, look up gadgets,
produce a chain skeleton...

Future work: use raindrop (DSN’21) for fully automated ROP binary rewriting
(«Hiding in the particles: When return-oriented programming meets program obfuscation»)

 CHALLENGES

V' inject the bootstrap component (bypass #1)
v/ find suitable gadget source
v' comply with ROP mitigations

v encode the payloac

1 look up APIs in hardened victim (bypass #2)

' API LOOKUP

Locate APIs needed for boostrap & chunks
» GetProcAddress spooks AV/EDRs

» as imports of Rope loader would be suspicious

» manual search conflicts with WDEG defenses
1 Export Address Filtering
O Import Address Filtering

'EAF/IAF POLICY

EAF and IAF implement a simple policy:

» monitor Export/Import Address Table of PE modules
» guard page handler shepherds offending access

» allowed if instruction is from legit module...

SOJLEGHT: VERNJMODULE

BYPASS #2: EAF/IAF

1. Locate .text of any loaded Windows DLL
2. Find gadget to make an arbitrary read

3. Adapt your GetProcAddress-like code
> list of loaded PE modules is not guarded by EAF/IAF

> wrap accesses to guarded regions so as to use the
gadget when dereferencing memory
// 8b 00 mov eax, dword ptr [eaX]

// c3 ret kernel32.dl -

We may also use JOP gadgets, or a write gadget for IAT hijacking...

BYPASS #2: EAF/IAF

DWORD readp(LPBYTE target, DWORD GADGET read){
DWORD res = NULL;
__asm A mov eax, target ;
call |GADGET read| ;
mov res, eax ; }

return res;

PDWORD pNames = (PDWORD) ((LPBYTE)hModule + readp((LPBYTE)pExportDirectory +
FIELD OFFSET(IMAGE_EXPORT DIRECTORY, AddressOfNames), GADGET read));

“EVALUATION

We evaluated Rope on 10 commercial solutions (6 AVs, 4 EDRs)

SETUP

* ACG, CIG, EAF, IAF, ROP mitigations + OS defaults
 victim applications running with medium integrity level

« write in Rope payloads that alert AV/EDRs when run standalone
« compare with D-TIME (WOOT’19)

“EVALUATION

We evaluated Rope on 10 commercial solutions (6 AVs, 4 EDRs)

DETAILS OF SETUP
 WDEG mitigations: audit mode, different combinations (incompatibilities)

« two victims (from: Chrome, Skype, Telegram, Dropbox, Reader DC, ...)

* one PoC payload per execution mode
» Mode 1: modify registry for persistence / play with bcdedit

» Mode 2: download PS script, make another victim execute it

ENPECTATIONS

EXPECTATIONSTEVERYWHERE

EVALUATION

We evaluated Rope on 10 commercial solutions (6 AVs, 4 EDRs)

RESULTS
v no WDEG mitigation triggered

v Rope completely deceived 8 out of 10 products

» two products block OpenProcess (Access Denied)
and provide rogue outputs also to DuplicateHandle
=> not a real detection, may be evaded...

D-TIME detected by 7 products

' AFTERMATH

P Rope looked like a blind-side hit to AV/EDRs

P Evading user-mode API hooks useful only for injection
(unnecessary for 7 products, 1 deceived with WOW64 APIs)

® EAF/IAF promising but gullible

OPPORTUNITIES

The architecture of Rope is extensible
» other code reuse flavors
» other covert medium than TxF

> other self-dispatch methods
(e.g., APC, IAT hijacking)

> fileless paradigms

We may need defenses that see Rope & distributed malware as a whole....

DEFENSES

P Behavioral analyses that correlate execution units
tracking execution units faces scalability issues
new injection techniques keep appearing

v suggestion: follow duplication and sharing of objects

P Code reuse-aware analyses for in-memory contents
ROPDissector, ROPMEMU

P Reliable means to intercept sensitive APIs

(we followed a responsible disclosure process for our bypasses)

'BLACK HAT SOUND BYTES

P Distributed malware poses a tough challenge to AV/EDRs
P ROP is a Swiss-army knife. Also, it helps in many bypasses

P Legit OS features (TxF, handle duplication) need close monitoring

There is a White Paper available!
(and an upcoming ESORICS'21 paper) @dcdelia ¥

REFERENCES

J

L L

L L

L U

Rope: Covert multi-process malware execution with return-oriented programming (to
appear in ESORICS 2021)

malWASH: Washing malware to evade dynamic analysis (WOOT 2016)

D-TIME: Distributed threadless independent malware execution for runtime obfuscation
(WOOT 2019)

The Naked Sun: Malicious cooperation between benign-looking processes (ACNS 2020)

ROPInjector: Using return oriented programming for polymorphism and antivirus evasion
(Black Hat USA 2015)

ROPMEMU: A framework for the analysis of complex code-reuse attacks (ASIACCS 2016)
Static analysis of ROP code (EUROSEC 2019)

Hiding in the particles: When return-oriented programming meets program obfuscation
(DSN 2021)

