
Timeless Timing Attacks 

by
Tom Van Goethem & Mathy Vanhoef

Hello!

Tom Van Goethem

Researcher at DistriNet -  
KU Leuven, Belgium

Fanatic web & network  
security enthousiast

Exploiter of side-channel attacks in
browsers & the Web platform

Mathy Vanhoef

Postdoctoral Researcher at  
NYU Abu Dhabi 

Soon: professor at KU Leuven

Interested in Wi-Fi security, software
security and applied crypto

Discovered KRACK attacks against
WPA2, RC4 NOMORE

Timing attacks…

if secret condition:
 do_something()
continue

for el in arr:
 if check_secret_property(el):
 break

if len(arr_with_secret_elements) > 0:
 do_something()

Remote Timing Attacks
• Step 1: attacker connects to target server

• Step 2: attacker sends a (large) number of requests to the server

• Step 3: for each request attacker measures time it takes to receive a response

• Step 4: attacker compares timing of 2 sets of requests (baseline vs target)

• Step 5: using statistical analysis, it is determined which request took longer

• Step 6: SUCCESS?

Remote Timing Attacks Success
• Performance of timing attacks is influenced by different aspects:

• Network connection between attacker and server

• higher jitter → worse performance

• attacker could try to move closer to target, e.g. same cloud provider

• Jitter is present on both upstream and downstream path

• Size of timing leak determines if attack can be successful

• Timing difference of 50ms is easier to detect than 5µs

• Number of measurements (more → better performance)

ServerAttacker

ServerAttacker

00:03:27

ServerAttacker

00:03:27

ServerAttacker

00:03:27
00:04:48

...

Number of requests required to determine 
timing difference (5-50µs) with 95% accuracy

based on measurements between university network and AWS 
imposed maximum: 100,000

EU US Asia

50µs 333 4,492 7,386

20µs 2,926 16,820 -

10µs 23,220 - -

5µs - - -

Timeless Timing Attacks

Timeless Timing Attacks
• Absolute response timing is unreliable, as it will always include  

jitter for every request

• Let’s get rid of the notion of time (hence timeless)

• Instead of relying on sequential timing measurements,  
we can exploit concurrency and only consider response order  
 => no absolute timing measurements!!

• Timeless timing attacks are unaffected by network jitter

ServerAttacker

ServerAttacker

Timeless Timing Attacks: 
Requirements

1. Requests need to arrive at the same time at the server

2. Server needs to process requests concurrently

3. Response order needs to reflect difference in execution time

Requirement #1: simultaneous arrival

• Two options: multiplexing or encapsulation

• Multiplexing:

• Needs to be supported by the protocol (e.g. HTTP/2 and HTTP/3 enable  

multiplexing, HTTP/1.1 does not)

• A single packet can carry multiple requests that will be processed  

concurrently

• Encapsulation:

• Another network protocol is responsible for encapsulating multiple streams  
(e.g. HTTP/1.1 over Tor or VPN)

HEADERS

GET /a

HEADERS

GET /b

1 TCP packet

HTTP/2 
(multiplexing)

HTTP/1.1 + Tor 
(encapsulation)

GET /a GET /b

TCP src: 45212 TCP src: 45214

Tor cell 1 Tor cell 2

1 TCP packet

Requirement #2: concurrent execution

• Application-dependent; most can be executed in parallel 
possible exception: crypto operations that rely on sequential operations

Requirement #3: response order
• Most operations will generate response immediately after processing

• On TLS connections, response is decrypted in same order as it was  

encrypted on the server. 
TCP sequence numbers or (relative) TCP timestamps can also be used

EU US Asia LAN localhost

50µs 333 4,492 7,386 20 14

20µs 2,926 16,820 - 41 16

10µs 23,220 - - 126 20

5µs - - - 498 42

Smallest
diff 10µs 20µs 50µs 150ns 150ns

Sequential Timing Attacks Timeless Timing Attacks

(anywhere)

50µs 6

20µs 6

10µs 11

5µs 52

Smallest
diff 100ns

Internet

How many requests/pairs are needed?

Attack Scenarios

1. direct timing attack 2. cross-site timing attack

3. Wi-Fi authentication

Cross-site Timing Attack
• Victim user lands on malicious website (by clicking a link, malicious

advertisement, urgent need to look at cute animal videos, …)

• Attacker launches attack from JavaScript to trigger requests to targeted web
server

• Victim’s cookies are automatically included in request; request is processed
using victim’s authentication

• Attacker observes response order (e.g. via fetch.then()), and leaks
sensitive information that victim shared with website

• Real-world example: abuse search function on HackerOne to leak information
about private reports

Cross-site Timeless Timing Attack
• Attacker has no low-level control over network; browser chooses how to send

request to kernel

• Need another technique to force 2 requests in single packet

• TCP congestion control to the rescue!!

• Congestion control prevents client from sending all packets at once  
needs ACK from server before sending more

• When following requests are queued, they are merged in single packet !

fetch(target_bogus_url, {
"mode": "no-cors",
"credentials": "include",
"method": "POST",
"body": veryLongString

});

fetch(target_baseline_url, {
"mode": "no-cors",
"credentials": "include"

});

fetch(target_alt_url, {
"mode": "no-cors",
"credentials": "include"

});

Victim’s TCP packet queue

fetch(target_bogus_url, {
"mode": "no-cors",
"credentials": "include",
"method": "POST",
"body": veryLongString

});

Victim’s TCP packet queue

fetch(target_baseline_url, {
"mode": "no-cors",
"credentials": "include"

});

Victim’s TCP packet queue

fetch(target_alt_url, {
"mode": "no-cors",
"credentials": "include"

});

Victim’s TCP packet queue

Victim’s TCP packet queue

Attack Scenarios

1. direct timing attack 2. cross-site timing attack

3. Wi-Fi authentication

Exploiting Wi-Fi authentication 
(WPA2 w/ EAP-pwd)

WPA2 & EAP-pwd
• WPA2 is one of the most widely used Wi-Fi protocols

• Authentication can be done using certificates (e.g. EAP-PEAP), or using passwords,
relying on EAP-pwd

• Authentication happens between client and authentication server  
(e.g. FreeRADIUS), access point forwards messages

• Communication between AP and authentication server is typically protected using TLS

• EAP-pwd uses hash-to-curve to verify password

• A timing leak was found! "

• “Fortunately” small timing difference, so considered not possible to exploit #

Access Point

Client 1

Client 2

Client 3

FreeRADIUS

Access Point

Client 1

Client 2

Client 3

FreeRADIUS

<associate>

<associate>

Access Point

Client 1

Client 2

Client 3

FreeRADIUS

EAP-id request

EAP-id request

Access Point

Client 1

Client 2

Client 3

FreeRADIUS

EAP-id response

EAP-id response RadSec frames

Access Point

Client 1

Client 2

Client 3

FreeRADIUS

PWD-id request

PWD-id request RadSec frames

Access Point

Client 1

Client 2

Client 3

FreeRADIUS
ReAuth request

RadSec frames

Access Point buffer

Access Point

Client 1

Client 2

Client 3

FreeRADIUS

RadSec frames

Access Point buffer

PWD-id

PWD-id

Single A-MPDU frame

Access Point

Client 1

Client 2

Client 3

FreeRADIUS

RadSec frames

Access Point buffer

Access Point

Client 1

Client 2

Client 3

FreeRADIUS

RadSec frames

PWD-id request

PWD-id request

Bruteforcing Wi-Fi passwords
• Timing side-channel in hash-to-curve method is exploited

• Response order is enough information to perform bruteforce attack

• Probability of incorrect order only 0.38%

• Example RockYou password dump

• 14M passwords

• 40 measurements needed

• ~86% success probability

• Costs less than $1 to bruteforce password on cloud

Overview

1. direct timing attack 2. cross-site timing attack

3. Wi-Fi authentication

DEMO

$documents = textSearch($query);

if (count($documents) > 0) {
 $securityLevel = getSecurityLevel($user);

 // filter documents based on security level...
}

url_prefix = 'https://vault.drud.us/search.php?q=BLACKHAT_PASSWORD='
r1 = H2Request('GET', url_prefix + char)  
@ is not part of the charset so serves as baseline
r2 = H2Request('GET', url_prefix + ‘@')

async with H2Time(r1, r2, num_request_pairs=15) as h2t:  
 results = await h2t.run_attack()
 num_negative = len([x for x in results if x < 0])
 pct_reverse_order = num_negative / len(results)

if pct_reverse_order > threshold:
 print('Found next character: %s' % char)

attack.py

Conclusion

• Timeless timing attacks are not affected by network jitter at all

• Perform remote timing attacks with an accuracy similar to an attack against 

the local system

• Attacks can be launched against protocols that feature multiplexing 

or by leveraging a transport protocol that enables encapsulation

• All protocols that meet the criteria can be susceptible to timeless 
timing attacks: we created practical attacks against HTTP/2 and EAP-pwd (Wi-Fi)

Thank you!

@tomvangoethem @vanhoefm

https://github.com/DistriNet/timeless-timing-attacks Demo sources:

