
Typhoon Mangkhut: One-click

Remote Universal Root Formed

with Two Vulnerabilities

Hongli Han, Rong Jian, Xiaodong Wang, Peng Zhou

360 Alpha Lab

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

 More than 400 vulnerabilities acknowledged by top vendors

 Won the highest reward

- in the history of the ASR program in 2017

- in the history of Google VRP in 2019

 Successful pwner of several Pwn2Own and Tianfu Cup events

Security Researchers at 360 Alpha Lab

 Hongli Han (@hexb1n)

 Rong Jian (@__R0ng)

 Xiaodong Wang (@d4gold4)

 Peng Zhou (@bluecake)

About us

360 Alpha Lab

#BHUSA @BlackHatEvents

Agenda

 Remote Attack Surface of Android Devices

 Overview of the Exploit Chain

 Detail the vulnerabilities

 Demonstration of remotely rooting Pixel 4

#BHUSA @BlackHatEvents

Compromise

render

SBX to
untrusted_app/p

rivileged
process

LPE to root

Launch Attack over the InternetEntry Points

#BHUSA @BlackHatEvents

Typhoon Mangkhut

#BHUSA @BlackHatEvents

About the Typhoon Mangkhut exploit chain

 Remotely rooting Android by chaining only 2 vulnerabilities

 Affects a wide range of devices running multiple versions of Android system (9 / 10 / 11)

 The first reported exploit chain to remotely rooting pixel 4 acknowledged in Google's
official vulnerability reward program annual report

Compromise render Sandbox escape to Root

V8(Promise.allSettled)

CVE-2020-6537

Kernel(Binder)

CVE-2020-0423

#BHUSA @BlackHatEvents

RCE in Chrome Render Process

CVE-2020-6537

#BHUSA @BlackHatEvents

Promise.allSettled API

Input

 An iterable object

Output

 A Promise

 Fulfilled with an array only after all the given
promises have settled

 Contains objects that each describes the
outcome of each promise

Promise.allSettled([
Promise.resolve(1),
Promise.reject(2)
])
.then(results => console.log(results));
// output:
// [
// {status: "fulfilled", value: 1},
// {status: "rejected", reason: 2},
//]

#BHUSA @BlackHatEvents

Promise.allSettled Implementation

 The result JSArray is managed by V8 for storing the outcome of each input promise

 User could get the JSArray only after all the given promises have settled

V8

Promise 0 Promise 1 Promise 2

{status:fulfilled,
value:1} pending

{status:rejected,

reason:2}

Fulfilled Rejected

Iterable obj

FixedArray User Javascript Code

JSArray
[{status:fulfilled, value:1}, ...]

#BHUSA @BlackHatEvents

Promise.allSettled Implementation

remainingElementsCount

 Initialized with the number of input promises

 Decreased by 1 when an input promise is settled

 When it becomes to 0, V8 would return the result JSArray

#BHUSA @BlackHatEvents

Promise.allSettled Implementation

A promise is said to be settled if it is either fulfilled or rejected

resolveElementFun

rejectElementFun
PromiseAllResolveElementClosure

#BHUSA @BlackHatEvents

transitioning macro PromiseAllResolveElementClosure < F: type > {

//...

const nativeContext = LoadNativeContext(context);

function.context = nativeContext;

//...

let remainingElementsCount =

UnsafeCast<Smi>(context[PromiseAllResolveElementContextSlots::

kPromiseAllResolveElementRemainingSlot]);

remainingElementsCount = remainingElementsCount - 1;

context[PromiseAllResolveElementContextSlots::

kPromiseAllResolveElementRemainingSlot] = remainingElementsCount;

if(remainingElementsCount == 0) {

const capability = UnsafeCast<PromiseCapability>(

context[PromiseAllResolveElementContextSlots::

kPromiseAllResolveElementCapabilitySlot]);

const resolve = UnsafeCast<JSAny>(capability.resolve);

Call(context, resolve, Undefined, valuesArray); // return JSArray to user

}

return Undefined;

}

#BHUSA @BlackHatEvents

The Bug

A promise is said to be settled if it is either fulfilled or rejected

What if we could call resolveElementFun and rejectElementFun both ?

 remainingElementsCount would be decreased by 2 when an input promise is settled

 Become to 0 when only half of input promises are settled

 User would get the result JSArray at an earlier time !

#BHUSA @BlackHatEvents

PoC

V8

JavaScript

Get resolveElementFun and rejectElementFun

#BHUSA @BlackHatEvents

Type Confusion

 V8 believes that the backing store is a FixedArray

 Because we have already got the result JSArray, we can change it to a NumberDictionary

 Type confusion between FixedArray and NumberDictionary

Promise 0

Promise 1

arr[0x10000] = 1Read / Write as FixedArray

Change to NumberDictionary

#BHUSA @BlackHatEvents

Exploit

1 const valuesArray = UnsafeCast<JSArray>(

2 context[PromiseAllResolveElementContextSlots::

3 kPromiseAllResolveElementValuesArraySlot]);

4 const elements = UnsafeCast<FixedArray>(valuesArray.elements); // Type confusion here

5 const valuesLength = Convert<intptr>(valuesArray.length);

6 // Use the JSArray length (not the backing store length) to perform bounds check

7 if (index < valuesLength) {

8 elements.objects[index] = updatedValue; // index can be out-of-bound

9 }

#BHUSA @BlackHatEvents

Limitations

 There exists another out-of-bounds check when Torque compiler generates
code like elements.object[index] = value

 The data to be written cannot be controlled precisely. It is always the
address of a JSObject like { status : fulfilled, value : 1 }

#BHUSA @BlackHatEvents

Exploit

Corrupt the meta data fields of NumberDictionary

Unpredictable read / write

#BHUSA @BlackHatEvents

Exploit

Corrupt the meta data fields of NumberDictionary

#BHUSA @BlackHatEvents

Exploit

 MaxNumberKey indicates the maximum valid index of

NumberDictionary

 Its least significant bit indicates whether there exists

special elements, such as accessors

let arr = []

arr[0x10000] = 1

Object.defineProperty(arr, 0, {

get : () => {

console.log("accessor called")

return 1

}

})

#BHUSA @BlackHatEvents

Exploit

 LSB of MaxNumberKey is 1: No special element

 Corrupt this field with the address of a JSObject

 LSB of any HeapObject address in V8 is exactly 1

Make the special array not that special !

#BHUSA @BlackHatEvents

Convert Type Confusion to OOB

Array.prototype.concat

[1] Bypass the check with our special array

[2] Trigger the JS callback during the iteration

[3] OOB read

bool IterateElements(Isolate* isolate, Handle<JSReceiver> receiver,
ArrayConcatVisitor* visitor) {

/* skip */
if (!visitor->has_simple_elements() ||

!HasOnlySimpleElements(isolate, *receiver)) {// ---> [1]
return IterateElementsSlow(isolate, receiver, length, visitor);

}
/* skip */
FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, {

Handle<Object> element_value(elements->get(j), isolate);// ---> [3]
if (!element_value->IsTheHole(isolate)) {

if (!visitor->visit(j, element_value)) return false;
} else {

Maybe<bool> maybe = JSReceiver::HasElement(array, j);
if (maybe.IsNothing()) return false;
if (maybe.FromJust()) {
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, element_value,

JSReceiver::GetElement(isolate, array, j), false);// ---> [2]
if (!visitor->visit(j, element_value)) return false;

}
}

});
/* skip */
}

#BHUSA @BlackHatEvents

Exploit

1. Leak the address of an ArrayBuffer’s backing store

2. Fake a double JSArray in this ArrayBuffer

3. Trigger OOB read to retrieve the reference of the fake array in JavaScript codes

4. Use the fake array to modify a victim ArrayBuffer’s memory layout for arbitrary read/write

5. Write shellcode to WASM code area

6. Call the WASM function to execute shellcode

The rest of work …

#BHUSA @BlackHatEvents

Escape From Sandbox to Root

CVE-2020-0423

#BHUSA @BlackHatEvents

 Binder Driver

 The UAF Bug

 From untrusted_app Domain to Root

 Escape from Sandbox to Root

 Demonstration of Remotely Rooting Pixel 4

Content

#BHUSA @BlackHatEvents

Binder driver is currently one of the few drivers that can be accessed by processes in

the sandbox, so it's an excellent attack surface for sandbox escape.

The Binder

#BHUSA @BlackHatEvents

• CVE-2019-2025

Named "Waterdrop", influence versions from Nov, 2016 to Mar, 2019.

• CVE-2019-2215

The Project Zero team found this 1day bug was used in the wild in September

2019. It affected Pixel 2 and below models and was fixed in October 2019.

• CVE-2020-0041

OOB vulnerability found by @bluefrostsec, influence versions from Feb, 2019 to

Mar, 2020, includes devices Pixel 4 and Pixel 3/3a XL on Android 10.

Multiple exploitable vulnerabilities

#BHUSA @BlackHatEvents

Statistics show that there is a bug for every 1000 to 1500 lines of code, and the

binder.c file totals less than 6000 lines of code. Is there still such serious security

bug?

New bug still exists?

#BHUSA @BlackHatEvents

Statistics show that there is a bug for every 1000 to 1500 lines of code, and the

binder.c file totals less than 6000 lines of code. Is there still such serious security

bug?

New bug still exists?

#BHUSA @BlackHatEvents

The Binder Root is like a nuclear warhead, and the browser RCE is like a launch pad.
The combination of them will become an intercontinental nuclear missile.

#BHUSA @BlackHatEvents

Client

binder_ioctl

Binder Server

BC_TRANSACTION

User Space Kernel Space User Space

BR_TRANSACTION

BR_REPLY BC_REPLY

(1) (2)

(3)(4)

Binder Communication Process

The UAF Bug

#BHUSA @BlackHatEvents

Client Binder Server

w w

node

thread->todo proc->refs_by_node

binder_ref
*node

workbinder obj w

User Space Kernel Space User Space

BR_TRANSACTION binder obj

Attach binder_work to thread->todo list

BC_TRANSACTION

The UAF Bug

#BHUSA @BlackHatEvents

static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, ...)
{

... skip ...
while (1) {
... skip ...
struct binder_work *w = NULL;
w = binder_dequeue_work_head_ilocked(list);
... skip ...
switch (w->type) {
case BINDER_WORK_TRANSACTION: {
... skip ...

} break;
... skip ...
case BINDER_WORK_NODE: {
... skip ...

} break;
... skip ...
}

... skip ...
return 0;

}

Generally, client can process todo list by
sending BINDER_WRITE_READ command to
call binder_thread_read() function:
binder_ioctl()

binder_ioctl_write_read()

binder_thread_read()

The UAF Bug

#BHUSA @BlackHatEvents

static void binder_release_work(struct binder_proc *proc, struct list_head *list)
{
struct binder_work *w;

while (1) {
w = binder_dequeue_work_head(proc, list);
if (!w)
return;

switch (w->type) {
case BINDER_WORK_TRANSACTION: {

... skip ...
} break;
case BINDER_WORK_RETURN_ERROR: {

... skip ...
} break;
... skip ...
default:

pr_err(“unexpected work type, %d, not freed\n”, w->type);
break;

}
}

Client can also send BINDER_THREAD_EXIT
command to call binder_release_work() to
process the todo list:
binder_ioctl()

binder_thread_release()

binder_release_work()

The UAF Bug

#BHUSA @BlackHatEvents

static void binder_release_work(struct binder_proc *proc, struct list_head *list)
{
struct binder_work *w;

while (1) {
w = binder_dequeue_work_head(proc, list);

// race window here!
if (!w)
return;

switch (w->type) {
case BINDER_WORK_TRANSACTION: {
... skip ...

} break;
case BINDER_WORK_RETURN_ERROR: {
... skip ...

} break;
... skip ...
default:
pr_err(“unexpected work type, %d, not freed\n”, w->type);
break;

}
}

static struct binder_work
*binder_dequeue_work_head(

struct binder_proc *proc,
struct list_head *list)

{
struct binder_work *w;

binder_inner_proc_lock(proc);
w = binder_dequeue_work_head_ilocked(list);
binder_inner_proc_unlock(proc);
return w;

}

The UAF Bug

#BHUSA @BlackHatEvents

Client Binder Server

w w

node

thread->todo proc->refs_by_node

binder_ref
*nodewor

k

w

BINDER_THREAD_EX
IT

User Space Kernel Space User Space

BC_BUFFER_FREE

binder
obj

thread_release_work

release

Server can synchronously send BC_BUFFER_FREE command to decrease
binder_ref reference count to zero, finally the binder_node containing
binder_work is freed in the race window, which leads to UAF !

The UAF Bug

#BHUSA @BlackHatEvents

How to exploit this bug?

static void binder_release_work(struct binder_proc *proc,

struct list_head *list)

{

...skip...

switch (wtype) {

...skip...

case BINDER_WORK_TRANSACTION_COMPLETE: {

…skip…

kfree(w);

binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE);

} break;

...skip...

case BINDER_WORK_CLEAR_DEATH_NOTIFICATION: {

…skip…

death = container_of(w, struct binder_ref_death, work);

kfree(death);

binder_stats_deleted(BINDER_STAT_DEATH);

} break;

…skip…

[1]

[2]

Convert to double-free

#BHUSA @BlackHatEvents

How to exploit this bug?

• Hijack freelist to allocate specific memory

• Modify swapper to achieve KSMA

#BHUSA @BlackHatEvents

Heap
Spray

Bypass
KASLR

Hijack

Freelist

KSMA

Attack

LPE Solution

#BHUSA @BlackHatEvents

<+140>: bl 0xffffff800915bffc <_raw_spin_lock> <------------- spin_lock()
<+144>: ldr x8, [x19]
<+148>: cmp x8, x19
<+152>: csel x21, xzr, x8, eq // eq = none <---------------------- w =
binder_dequeue_work_head()
...skip...
<+220>: bl 0xffffff800915c23c <_raw_spin_unlock> <---------- spin_unlock()

// race window here !
<+224>: cbz x21, 0xffffff8008e6431c <binder_release_work+604>

<+228>: ldr w1, [x21, #16] <--- switch(w-

>type)

<+232>: sub w8, w1, #0x1
<+236>: cmp w8, #0x6
<+240>: b.hi 0xffffff8008e64254 <binder_release_work+404> // b.pmore
<+244>: adr x9, 0xffffff8008e641c4 <binder_release_work+260>

Heap Spray

very narrow race window !

#BHUSA @BlackHatEvents

static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply,
binder_size_t extra_buffers_size)

{
... skip ...
t->buffer = binder_alloc_new_buf(&target_proc->alloc,
tr->data_size, tr->offsets_size, extra_buffers_size,
!reply && (t->flags & TF_ONE_WAY));

// narrow race window !
if (IS_ERR(t->buffer)) {
…skip…
goto err_binder_alloc_buf_failed

}
t->buffer->allow_user_free = 0;
t->buffer->debug_id = t->debug_id;
…skip…

}

binder_alloc_new_buf()

binder_alloc_new_buf_locked()

mutex_unlock()

__mutex_fastpath_unlock()

__mutex_unlock_slowpath()

__mutex_unlock_common_slowpath()

wake_up_q()

Heap Spray in CVE-2019-2025

#BHUSA @BlackHatEvents

void wake_up_q(struct wake_q_head *head)

{

struct wake_q_node *node = head->first;

while (node != WAKE_Q_TAIL) {

struct task_struct *task;

task = container_of(node, struct task_struct, wake_q);

BUG_ON(!task);

/* Task can safely be re-inserted now: */

node = node->next;

task->wake_q.next = NULL;

try_to_wake_up(task, TASK_NORMAL, 0, head->count);

put_task_struct(task);

}

}

Waking up other threads means giving up

the CPU, and thus also provides enough

time for heap spray thread to race.

Heap Spray in CVE-2019-2025

#BHUSA @BlackHatEvents

static void binder_release_work(struct binder_proc *proc, struct list_head *list)
{
struct binder_work *w;

while (1) {
w = binder_dequeue_work_head(proc, list);

// race window here!
if (!w)
return;

switch (w->type) {
case BINDER_WORK_TRANSACTION: {
... skip ...

} break;
case BINDER_WORK_RETURN_ERROR: {
... skip ...

} break;
... skip ...
default:
pr_err(“unexpected work type, %d, not freed\n”, w->type);
break;

}
}

• However, binder_dequeue_work_head uses
spinlock

• Unlike mutex lock, spin_unlock() won't wake
up other thread

Heap Spray

#BHUSA @BlackHatEvents

Keypoints of solution(1/2):

• Make CPU as busy as possible

 Bind multiple threads to the same CPU

Heap Spray

cpu

#BHUSA @BlackHatEvents

Keypoints of solution(2/2):

• binder_release_work() use loop to process todo list

 Send multiple binder objects to trigger dequeue operation multiple times

 Spray failure won't result in any system abnormalities(the process will enter

default code branch)

Heap Spray

#BHUSA @BlackHatEvents

Heap
Spray

Bypass
KASLR

Hijack

Freelist

KSMA

Attack

LPE Solution

#BHUSA @BlackHatEvents

static void binder_release_work(struct binder_proc *proc, ...)
{
struct binder_work *w;

while (1) {
w = binder_dequeue_work_head(proc, list);
if (!w)
return;

switch (w->type) {
... skip ...
case BINDER_WORK_TRANSACTION_COMPLETE: {
binder_debug(BINDER_DEBUG_DEAD_TRANSACTION,

"undelivered TRANSACTION_COMPLETE\n");
kfree(w);
binder_stats_deleted(BINDER_STAT_TRANSACTION_COMPLETE);

} break;
... skip ...
}

}

Assuming binder_node object address is A, control w->type to trigger kfree (A+8) through spray

Bypass KASLR

pwndbg> pt /o struct binder_node

/* offset */ type = struct binder_node {

/* 0 */ int debug_id;

/* 4 */ spinlock_t lock;

/* 8 */ struct binder_work {

/* 8 */ struct list_head {

/* 8 */ struct list_head *next;

/* 16 */ struct list_head *prev;

/* total size (bytes): 16 */

} entry;

/* 24 */ enum type;

} work;

...skip...

/* total size (bytes): 128 */

}

#BHUSA @BlackHatEvents

• seq_file is a common type of virtual file

system in Linux

• Multiple files in /proc/ directory is managed

as seq_file

• For some special seq_file, like /proc/cpuinfo,

op field is a global structure address, which

can be used to leak kernel base

Bypass KASLR

pwndbg> pt /o struct seq_file

/* offset */ type = struct seq_file {

/* 0 */ char *buf;

/* 8 */ size_t size;

/* 16 */ size_t from;

/* 24 */ size_t count;

...skip...

/* 96 */ const struct seq_operations *op;

/* 104 */ int poll_event;

/* 112 */ const struct file *file;

/* 120 */ void *private;

/* total size (bytes): 128 */

}

The race vulnerability can be triggered in several seconds

#BHUSA @BlackHatEvents

content controlled

A

A+8

overlap

other

(1) Trigger kfree(A+8)

(2) Occupy A+8 with binder_node

(3) Trigger kfree(A)

(4) Occupy A with seq_file

(5) call binder_thread_read() to leak ptr, which is actually op
pointer

Bypass KASLR

#BHUSA @BlackHatEvents

Heap
Spray

Bypass
KASLR

Hijack

Freelist

KSMA

Attack

LPE Solution

#BHUSA @BlackHatEvents

freelist
A

A+8

overlap

other

(1) Spray with send_msg()

(3) recv_msg() to kfree(A)

(2) Trigger kfree(A+8)

Hijack Freelist

n
e
x
t

x

(4) Allocate A by send_msg() and write x(swapper addr) into it

(5) Allocate A+8 and update freelist to x

(6) Allocate x, now we get arbitrary write

#BHUSA @BlackHatEvents

Heap
Spray

Bypass
KASLR

Hijack

Freelist

KSMA

Attack

LPE Solution

#BHUSA @BlackHatEvents

flame:/ # cat /proc/iomem
...skip...
80000000-856fffff : System RAM
80080000-8237ffff : Kernel code
82480000-8367dfff : Kernel data

85d00000-85dfffff : System RAM
85f40000-85ffffff : System RAM
8a100000-8b6fffff : System RAM
...skip...

Keypoints of KSMA attack on Pixel 4:

• Kernel code segment physical start address is

0x80080000

• KSMA attack's basic map size is 1GB

• Fake page table uses address 0x80000000

• Offset 0x80000 is needed when read/write

kernel code

KSMA Attack

#BHUSA @BlackHatEvents

bool ksma_check()
{

// if exception, setjmp return 1
if (setjmp(env) == 1)

return false;

try_access_kernel_address();

// no exception, ksma succeeds
return true;

}

signal(SIGTRAP, handle);

signal(SIGSEGV, handle);

static jmp_buf env;
void handle(int signal)
{

// log_err("[-] exception handle\n");
longjmp(env, 1);

}

KSMA Attack

We don't know whether the bug is triggered or not, so we need to detect
it by accessing a kernel address.

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

Challenge in Sandbox：

• Limited syscalls (binding CPU is no longer allowed)

• Limited file/device access, especially write

• More protections (BPF in Chrome sandbox）

• Chrome is 32-bit while kernel is 64-bit

 Differences between 32-bit and 64 bit syscalls

 KSMA cannot be directly used

Escape from Sandbox to Root

#BHUSA @BlackHatEvents

Port local solution to sandbox?

• Bind CPU？

 Without binding CPU, how to spray or even trigger the bug with such narrow race window ?

• KSMA attack？

 Without KSMA attack, is there any workable solution in strictly limited sandbox

environment?

• Info leak

 The Binder service cannot be built in the sandbox, and the entire information disclosure

process cannot be completed.

• Call send_msg() ?

 Spray is ok, life is not so hard.

Escape from Sandbox to Root

#BHUSA @BlackHatEvents

Escape from Sandbox to Root

#BHUSA @BlackHatEvents

void *padding_thread(void *arg)

{

volatile int internel_counter = 0;

setprio(-20);

while(1) {

internel_counter++;

}

return NULL;

}

Solution to increase race success rate

• Create multiple padding threads to increase

CPU load

• Adjust thread priority to influence time slice

and wait schedule time

• Get currently belonging CPU id by reading

/proc/self/stat

 getcpu() is disabled by BPF

Use CPU-Fengshui to spray

#BHUSA @BlackHatEvents

• put_user/get_user, CVE-2013-6282, ARM platforms do not validate certain addresses,

which allows attackers to read or modify the contents of arbitrary kernel memory

locations via a crafted application.

• addr_limit + iovec, tamper thread_info->addr_limit to 0xFFFFFFFFFFFFFFFE to invalidate

user space and kernel space address checking and then achieve arbitrary read and write.

Arbitrary Read/Write Example

Pointer Control

We studied some powerful exploit methods in Android root in history, and they are all able

to achieve stable arbitrary address read or write.

#BHUSA @BlackHatEvents

• mmap + ret2dir, proposed at the 2014 USENIX conference. User maps a section of

memory, which is allocated in the physmap area of the kernel, so as to achieve the effect

of invisible memory sharing. User can directly read and write the mapped memory, and

kernel can directly access this area by corresponding address in kernel.

• KSMA, a physical memory sharing effect is achieved by creating a new page table entry.

We studied some powerful exploit methods in Android root in history, and they are all able

to achieve stable arbitrary address read or write.

Arbitrary Read/Write Example

Memory Share

#BHUSA @BlackHatEvents

• mmap + sysctl, method used in CVE-2020-0041 exploit. By inserting a node which is saved

in an user mmap memory block into kern_table, thus user can control the content of the no

de structure, and realize arbitrary write by cooperating with the interface call of sysctl file.

Arbitrary Read/Write Example

Memory Share & Pointer Control

We studied some powerful exploit methods in Android root in history, and they are all able

to achieve stable arbitrary address read or write.

#BHUSA @BlackHatEvents

Arbitrary Read/Write Model

Memory Share

Basic models:

• Memory Share

• Pointer Control

Struct B

Struct A

obj

data data&obj
share memory

Struct A

Struct B

#BHUSA @BlackHatEvents

Struct A

ptr
read/write

try to control ptr
Pointer Control

Arbitrary Read/Write Model

Basic models:

• Memory Share

• Pointer Control

#BHUSA @BlackHatEvents

ashmem

seq_file

…

epitem

Structures might be applicable to the arbitrary
read/write model

Arbitrary Read/Write Model

#BHUSA @BlackHatEvents

(gdb) pt /o struct file
/* offset */ type = struct file {
...skip…
/* 184 */ u64 f_version;
/* 192 */ void *f_security;

/* 200 */ void *private_data;

/* 208 */ struct list_head {
/* 208 */ struct list_head *next;
/* 216 */ struct list_head *prev;

/* total size (bytes): 16 */
} f_ep_links;

...skip…
/* total size (bytes): 256 */

}

static int get_name(struct ashmem_area *asma, void __user *name)
{
... skip ...
if (asma->name[ASHMEM_NAME_PREFIX_LEN] != '\0') {

... skip ...
len = strlen(asma->name + ASHMEM_NAME_PREFIX_LEN) + 1;

memcpy(local_name, asma->name + ASHMEM_NAME_PREFIX_LEN, len);

} else {
len = sizeof(ASHMEM_NAME_DEF);
memcpy(local_name, ASHMEM_NAME_DEF, len);

}
... skip ...

if (unlikely(copy_to_user(name, local_name, len)))

ret = -EFAULT;
return ret;

}

Read based on ashmem

Arbitrary Read/Write Based on Ashmem

#BHUSA @BlackHatEvents

static int set_prot_mask(struct ashmem_area *asma, unsigned long prot)
{
…skip…
/* the user can only remove, not add, protection bits */
if (unlikely((asma->prot_mask & prot) != prot)) {
ret = -EINVAL;
goto out;

}

/* does the application expect PROT_READ to imply PROT_EXEC? */
if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
prot |= PROT_EXEC;

asma->prot_mask = prot;
…skip…

}
Write based on ashmem (1/2)

Arbitrary Read/Write Based on Ashmem

#BHUSA @BlackHatEvents

static int set_name(struct ashmem_area *asma, void __user *name)
{
... skip ...
len = strncpy_from_user(local_name, name, ASHMEM_NAME_LEN);
if (len < 0)
return len;

if (len == ASHMEM_NAME_LEN)
local_name[ASHMEM_NAME_LEN - 1] = '\0';

mutex_lock(&ashmem_mutex);
/* cannot change an existing mapping's name */
if (unlikely(asma->file))
ret = -EINVAL;

else
strcpy(asma->name + ASHMEM_NAME_PREFIX_LEN, local_name);

mutex_unlock(&ashmem_mutex);
return ret;

}

Arbitrary Read/Write Based on Ashmem

Write based on ashmem (2/2)

#BHUSA @BlackHatEvents

struct seq_file
{

char *buf;
size_t size;
size_t from;
size_t count;
size_t pad_until;
loff_t index;
loff_t read_pos;
u64 version;
struct mutex lock;
const struct seq_operations *op;
int poll_event;
const struct file *file;
void *private;

};

Arbitrary Read/Write Based on Seqfile

ssize_t seq_read(struct file *file, char __user *buf,
size_t size, loff_t *ppos)

{
... skip ...
/* if not empty - flush it first */
if (m->count) {

n = min(m->count, size);
err = copy_to_user(buf, m->buf + m->from, n);
... skip ...

}
/* we need at least one record in buffer */
pos = m->index;
p = m->op->start(m, &pos);
... skip ...

}

try to control

Read based on seq_file

#BHUSA @BlackHatEvents

static int comm_show(struct seq_file *m, void *v)
{

struct inode *inode = m->private;
struct task_struct *p;
p = get_proc_task(inode);
if (!p)

return -ESRCH;
task_lock(p);
seq_printf(m, "%s\n", p->comm); // call

seq_printf to write p->comm into seq_file->buf
task_unlock(p);
put_task_struct(p);
return 0;

}

void seq_vprintf(struct seq_file *m, const char *f,
va_list args)

{
int len;
if (m->count < m->size) {

len = vsnprintf(m->buf + m->count, m->size -
m->count, f, args);

if (m->count + len < m->size) {
m->count += len;
return;

}
}
seq_set_overflow(m);

}

Write based on seq_file (/proc/self/comm)

Arbitrary Read/Write Based on Seqfile

#BHUSA @BlackHatEvents

(gdb) pt /o struct epitem epitem
/* offset | size */ type = struct epitem {

... skip ...
/* 112 | 16 */ struct epoll_event {
/* 112 | 4 */ __u32 events;
/* XXX 4-byte hole */
/* 120 | 8 */ __u64 data;

/* total size (bytes): 16
*/

} event;
/* total size (bytes): 128 */

}

int pfd[2];
int epoll_fd;
struct epoll_event evt;

pipe(pfd);
epoll_fd = epoll_create1(0);
epitem_add(epoll_fd, pfd[0]);

bzero(&evt, sizeof(evt));
evt.events = event;
evt.data.u64 = data;
epoll_ctl(ep, EPOLL_CTL_MOD, epoll_fd, &evt);

Address Fixed Write Based on Epitem

Stable 8 bytes write at fixed address

#BHUSA @BlackHatEvents

Stable Arbitrary Read/Write Solution

file1

private_data1

file2ashmem1

private_data2

fake
ashmem1 fake

ashmem2

ashmem2

• Leak file1 address

• Leak file2 address

• Modify private_data1 to the

address of fake ashmem1

How to build an arbitrary address read and write model through ashmem:

Harsh conditions, are there any other better solutions ?

#BHUSA @BlackHatEvents

epitem

seq_file

data buf

0x78

events

ws

.

.

.

.

0x80

0x80

size

from

• Sizes of epitem and seq_file are both 128, can be

allocated on the same page

• Double free happens to have an offset of +8,

which perfectly corresponds to this scheme

• No leak or write is needed

Stable Arbitrary Read/Write Solution

Build an arbitrary address read and write model through seqfile:

A solution to achieve stable arbitrary reading and writing by

triggering the vulnerability only once

#BHUSA @BlackHatEvents

op seq_file op seq_file

A CB D

A op structure is allocated before seq_file, and it can not be
deallocated separately

Trouble when doing heap fengshui

#BHUSA @BlackHatEvents

eventfd1 eventfd2 eventfd3

eventfd2

freelist

next

next

......

0x80

• Syscall for creating eventfd can be accessed in sandbox
• A slab object with size 0x80 will be allocated when creating eventfd
• The slab object will be deallocated immediately when closing the eventfd
• We could prepare holes by closing the eventfd slab objects in a specific order

Prepare holes with eventfd

#BHUSA @BlackHatEvents

op eventfd2 seq_file

op seq_file

0x80

0x80
freelist

• Close eventfd3, then close eventfd1
• Open /proc/self/comm, op and seq_file is separated by

eventfd2
• Close eventfd2, there is a hole before seq_file

Prepare holes with eventfd

#BHUSA @BlackHatEvents

seq_file seq_file

0x80 0x80 0x80 0x80

A CB D

binder_node seq_file binder_node seq_file

A CB D

Build arbitrary read and write

Step 1. Prepare some holes before seq_file when doing Heap-Fengshui

Step 2. Fill these holes with binder_node

#BHUSA @BlackHatEvents

binder_node seq_file binder_node seq_file

A CB D

0x80

0x8 0x8

freelist

epitem seq_file seq_file

A CB D

epitem

0x8 0x8
data

buf

Step 3. Trigger kfree(C+8)

Step 4. Allocate C+8 for epitem

Build arbitrary read and write

#BHUSA @BlackHatEvents

seq_file seq_file

A B D

async_todo->prev

seq_file

C

async_todo->next seq_file->buf

0x800x80

pwndbg> pt/o struct binder_node
/* offset | size */ type = struct binder_node {
/* 0 | 4 */ int debug_id;
/* 4 | 4 */ spinlock_t lock;
... skip ...
/* 112 | 16 */ struct list_head {
/* 112 | 8 */ struct list_head *next;
/* 120 | 8 */ struct list_head *prev;
/* total size (bytes): 16 */
} async_todo;
/* total size (bytes): 128 */
}

Doubly linked list points to itself after
initialized. once we overwrite buf pointer
with prev pointer, content after the
binder_node can be leaked.

Leak kernel address

leak from here

#BHUSA @BlackHatEvents

• Close Selinux

 Set selinux_enforcing to 0

• Set uid/gid to 0

Last step to get root ?

#BHUSA @BlackHatEvents

Chrome BPF filter disallows a lot of syscalls, so BPF must be closed.

• thread->seccomp->filter point to BPF rules, can not be directly set to NULL.

• In our test, there are four items in the filter chain in the Chrome sandbox,

setting filter to the penultimate item will disable the BPF protection.

Last step to get root !

#BHUSA @BlackHatEvents

• Arbitrary read/write solution heavily depends on structure size

• Size of seq_file, binder_node may change in different system version

• Once the size changes, the solution might fail, but it is possible to

find some other alternatives based on this model.

• Still need to adapt the selinux_enforcing currently

• Could it be done automatically ?

Solution Limitations

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

• Thanks to Guang Gong(@oldfresher), Jun Yao(@_2freeman) and Chi Zhang

Acknowledge

#BHUSA @BlackHatEvents

Thank you !

