‘ Windows Heap-Backed Pool

The good, the bad, and the encoded

Yarden Shafir
CrowdStrike

® About Me

O o Software Engineer at CrowdStrike

° Previously a Security Researcher at SentinelOne

°© Circus Artist - Aerial Arts Performer & Instructor
° Windows Internals Instructor

° Former Pastry Chef

° Blogging about Windows Security stuff

o Windows-internals.com

° Twitter: @yarden_shafir

Windows Kernel Pool

° Kernel dynamic memory - used to store data for
drivers and the system

o Similar to the user-mode heap
°© Can be Paged or NonPaged

°© Common target for buffer overflow attacks leading
to elevation to Ring ©

° Used to have lots of information leaks from
uninitialized memory buffers being copied to user-
mode

o New API zeroes out allocations by default, avoiding those
bugs

® Windows Kernel Pool APIs

() © ExAllocatePool This gets even
© ExAllocatePool2 more complicated
°© ExAllocatePool3 under the hood

© ExAllocatePoolMm

© ExAllocatePoolSanityChecks

© ExAllocatePoolWithQuota

© ExAllocatePoolWithQuotaTag

© ExAllocatePoolWithTag

© ExAllocatePoolWithTagFromNode
© ExAllocatePoolWithTagPriority

Internal Kernel Pool Structure -

° Every pool page stands
by itself

° Easy to parse

°© Metadata is clearly
readable

°© Easy to fake when
exploiting an overflow

POOL_HEADER

POOL_HEADER

POOL_HEADER

POOL_HEADER

[~

-

—

Pre RS5

- |
-
-
—_—
~ o

| PreviousSize |
BlockSize

PoolType
PoolTag

Align to 1MB

e Internal Kernel Pool Structure - RS5+

OxFFFFFBAO'12300000

- HEAP_PAGE_SEGMENT «

A heapKey * &heapPageSeg » OxA2E64EADA2EG4EAD

DescArray[0x03]
DescArray[0x04]

DescArray[0x05] o e e e e

HEAP_VS_CHUNK_HEADER_SIZE +

:

UnsafePrevSize 5--. i

HEAP_VS_SUBSEGMENT +;

T ey [

OxFFFFFBA0'12303000
HEAP_VS_SUBSEGMENT
HEAP_VS_CHUNK_HEADE
Data
HEAP_VS_CHUNK_HEADER

HEAP_VS_CHUNK_HEADER
Data

SEGMENT HEAP

UserContext

AllocMetadata

B LhContec |

+
+ HEAP_SEG_CONTEXT

]

SegContexts[1]

[conen
LfhContext —

EX_HEAP_POOL_NODE
Heaps[1]
Heaps[2]
Heaps[3]

Lookasides[0]
Lookasides[1]

== HEAP_LFH_CONTEXT

[

. HEAP_PAGE_RANGE_DESCRIPTOR

(VS Subsegment)
RangeFlags (OxF)

BackendCtx
Callbacks

HEAP_LFH_SUBSEGMENT_OWNER

0xFFFFFBAQ'12304000

B HEAP_LFH_SUBSEGMENT

HEAP_LFH_SUBSEGMENT =

Data

SlotCount

| _, HEAP_PAGE_RANGE_DESCRIPTOR

(LFH Subsegment)

RangeFlags (0x!

FullSubsegmentList

HEAP_LFH_SUBSEGMENT_OWNER

OXFFFFFBAQ'12305000

i HEAP_LFH_SUBSEGMENT

Data

(LFH Subsegment)

RangeFlags (0xB)

, HEAP_PAGE_RANGE_DESCRIPTOR

AvailableSubsegmentList

Slotind
AvailableSubsegmentList

ullSubsegmentList

el X

HEAP_LFH_BUCKET
State

TotalBlockCount
TotalSubsegmentCount

AffinitySlots[0...SlotCount]

m
=
x
m
b3
®
(v
m
&
3
c
2z
L%
>
=
m

EX_POOL_HEAP_MANAGER_STATE

nt!ExPoolState
HeapManager
NumberOfPools
PoolNode[0]

PoolNode[63]
SpecialHeaps

RTLP_HP_HEAP_GLOBALS

nt!RtlpHpHeapGlobals
HeapKey
LfhKey

HeapManager
PagedEnv
PagedHeap
SpecialPoolHeap

RTLP_HP_HEAP_MANAGER i
|
]

Large Pool

HEAP_VAMGR_RANGE
Allocated .
Allocatorindex

HEAP_LARGE_ALLOC_|

VirtualAddress
UnusedBytes
AllocatedPages

HEAP_VAMGR_ALLOCATOR =~

Allocatorindex

> RTL_CSPARSE_BITMAP

RTL_CSPARSE_BITMAP
[.]

HEAP_VAMGR_VASPACE
AddressSpaceType

BaseAddress
VaRangeArray

---= HEAP_VAMGR_CTX

VaSpace

Allocators]...]

Allocators[255]

Comm recto

-

-

® Let’s Break This Down...

O ° New pool design is managed through the same
libraries as the user-mode heap

° Every individual pool is managed through a
SEGMENT_HEAP structure

°© Allocations are handled differently based on their
size
o Different mechanisms are used for different sizes

o Large pool is still managed through the VA space

o Looking at a single page of pool memory is no longer
useful

[m]

[m]

[m]

[m]

[m]

e SEGMENT_ HEAP

O °© Manages a pool
°© (Contains all the metadata for the pool

Reserved / Committed / Free pages
Stats for large pages

Commit limit

Max allocation size

Beginning and end of committed range

° Has pointers to the structures that
manage different types of pool
allocations

SEGMENT HEAP

LargeAllocMetadata

MemStats

AllocatedBase
UncommittedBase
ReservedLimit
SegContexts[0]
SegContexts[1]
VsContext
LfhContext

Pool Allocation Sizes

°© Every heap can manage 3 types of allocations:
o Up to 508KB (©-0x7F000)
o 5@8KB to 8128KB (Ox7F000-0x7F0000)
o Over 8128KB

° First two types are managed by segments

o SEGMENT_HEAP has 2 HEAP_SEG _CONTEXT structures that handle
those

° Allocations over 8128KB are managed by large pool

° The kernel keeps track of allocations in a bitmap
that marks their type

o nt!ExPoolState->HeapManager->AllocTracker->AllocTrackerBitmap

® Bitmap to Heap Structure

O ° Every two bytes represent an address in the kernel
address space

° For efficiency and better use of space, bitmap has
3 layers:

o CommitDirectory SEGMENT HEAP

o CommitBitmap Val 0
alue =
| 4 LargeAllocMetadata

o UserBitmap

Bitmap Nhkiahdm SegContexts[0]

Check SegContexts[1] These are
VsContext e
Value =2 - we’ll get
LfhContext --' | back to

them!

® HEAP SEG_CONTEXT

°© Every HEAP_SEG_CONTEXT structure is split into
segments

o SegmentListHead links all the segments
o FreeSegmentList links all the free segments
o Each represented by a HEAP_PAGE_SEGMENT

° Every segment manages a set size of memory
o SegContexts[@] handles 1MB segments in base units of 1 page
o SegContexts[1l] handles 16MB segments in base units of 16 pages

o SegmentMask field tells us how to get from pool
address to its segment

SEGMENT HEAP

LargeAllocMetadata

SegContexts[0]
SegContexts[1]
VsContext

LfhContext

| }
I
M
>
I'U
wn
m
Im I
0O
®)
P
_|
M
>
_|

PR—

®@ Structures so far

LfhContext
VsContext

SegmentListHead
SegmentCount

FreeSegmentList

HEAP_PAGE_SEGMENT

— IEEEV

BT
—
—oeonmimon |

oeomioen
ﬁ

® HEAP PAGE_SEGMENT

O ° Has an array of 256 descriptors
o Every descriptor describes a unit, which is part of a range
o Describes the type of subsegment and offset of unit in it
m And the size of the subsegment, if it’s the first unit
°© ListEntry connects all segments in the SegContext
°© Signhature can lead back to the HEAP_SEG CONTEXT - but
not easily
o Usually looks something like this: ©xb3a5b3d3a6f86cde

o Needs to be decoded using a magic value, segment address and a
heap key

o HeapKey is saved in a global kernel variable, not exported

@ Two Types of Subsegments

O ° LFH - Low Fragmentation Heap
o Used for allocations of 129 common sizes
o All allocations in a subsegment have the same size

o Gets created after a certain number of allocations of
the same size

o Max size 1is 0x4000 - only exists in SegContexts[9]

= No need for unique header for each block - saves space

o Block status is managed by a bitmap in the header

° VS - Variable Size
o Manages all blocks that don’t fit LFH buckets

o Every block has its own header to describe it

 |FH vs. VS Ranges

HEAP_LFH_SUBSEGMENT g

Data
Data

Data

Data

Data

Data

Data

Data

e

Encoded hummmm

HEAP_VS_SUBSEGMENT
HEAP_VS_CHUNK_HEADER

Data

HEAP_VS_CHUNK_HEADER
Data
HEAP_VS_CHUNK_HEADER

Heap Subsegments - VS and LFH

°© Structures containing block sizes are encoded
o VS headers encode with the heap key, LFH use LFH key

o Makes it a lot harder to parse the pool - and fake
headers when exploiting an overflow

°© Size of subsegments is not fixed

°© Subsegments wrap several pages - have to start at
beginning of subsegment to parse

o Looking at a single page isn’t possible anymore - data
will make no sense

°© Allocated blocks will still have POOL_HEADER

o But free blocks won’t, can’t rely on them to parse the
pool anymore and nothing uses them

® Subsegment Headers Encoding

® ° HEAP_LFH_SUBSEGMENT
o Block sizes and offsets is in encoded BlockOffsets field
o Data = EncodedData ~ LfhKey ~ ((ULONG)(Subsegment) >> 12)
°© HEAP_VS SUBSEGMENT

o Has a linked list of all subsegments - needs to be decoded
with the address of current subsegment

m LFH subsegments are also linked - but this list isn’t encoded
o HEAP_VS_CHUNK_HEADER
o Exists for every block in VS subsegment

o Block size and allocation status in encoded Sizes field

o Data = Sizes.HeaderBits ”~ HeapKey ~ ChunkHeader

@ LFH and VS Contexts

°© SEGMENT_HEAP contains LFH context and VS context
o HEAP_VS_CONTEXT

o Contains a list of all VS subsegments in the heap
o Keeps track of committed and free chunks

o Has suballocator callbacks - allocate, free, commit..

° HEAP_LFH_CONTEXT
o Has array of 129 LFH buckets

m Each bucket links all subsegments that use that size

m Keeps data on block size, subsegment count, block count

o Has suballocator callbacks as well

© Support common block sizes that are multiples of 0x10, 0x40,
O Ox80, 0x100, 0x200

© @Get activated after 0x10 allocations of the same size

RtlpBucketBlockSizes dw 0, X 5 i 3 5 5 5 3 5

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

L o T P
L L T ™
L ™
L
L S S
L " "
L T

L P "J P VE V

L
L S P
["
L
L S P

[SR VA

[R

O SEGMENT HEAP

LargeAllocMetadata

SegContexts[0]
SegContexts[1]

VsContext

LfhContext

’
’
’
’
’
’

@ LFH and VS Contexts

HEAP_VS_CONTEXT Ntoskrnl.exe

FreeChunkTree RtlpHpSegVs*

SubsegmentList

RtlpHpSegLfh*

Callbacks

~
~
N
N
N
\ ~.
\ N
N
S N
\ ..

HEAP_LFH_CONTEXT

Callbacks

Buckets

@ Exploitation Limitations

O °© Spraying the pool is harder

o Need to take into account subsegment types of sprayed
objects and overflowing allocation - have to be exact
same size if they will use LFH

°© Overflowing VS allocation will overwrite encoded
VS header

o Will need to account for header size and fake it

o Successfully faking a header requires leaking heap key
and exact address of header that will be faked

@ Exploitation Limitations - Cont.

-, ° Subsegments cross page boundaries - blocks don’t

o Can create empty spaces at the end of pages that need to
be known and accounted for in exploitation

° Overflowing the last block in a subsegment leads
to overwriting next subsegment header

o Need complex info leak to tell where it is and which
subsegment type

o Might require more encoding to fake
° And all older pool mitigations..

o Pool allocations are zeroed out to prevent info leaks

o Object header mitigations to break known exploit
techniques

®@ But There are Some Benefits too

O ° Every pool type is initialized when system starts

°© Necessary structures are allocated in the pool

o SEGMENT_HEAP - contains 2 HEAP_SEG_CONTEXT, VS context
and LFH context

° This includes the executable NonPagedPool
o This type is not in use anymore, but still exists

o Will only have one page - the one needed for
SEGMENT_HEAP and the structures it contains

o SEGMENT_HEAP uses around 0x800 bytes - leaving half a
page of unused RWX kernel memory!

o In HVCI systems this page won’t exist

o Alex Ionescu discovered this

RWX Kernel Pool Page

° ntlExPoolState has array of nodes

°© Each node has 4 pools:
o NonPagedPool
o NonPagedPoolNx
o PagedPool
o PagedPool (Prototype pool)

@: kd> dx -s @%$tl = ((nt!_EX POOL_HEAP_MANAGER_STATE*)&nt!ExPoolState)->PoolNode[@].Heaps[Q]
9: kd> !pte @%t1

VA ffff838ff5a00000
PXE at FFFF804020100838 PPE at FFFF8040201071F8 PDE at FFFF804020E3FD68 PTE at FFFF8041C7FADOOO
contains ©ADOOORLPV16CE6863 contains PABLROBLRVV1647863 contains OAPPOLRVOB1650863 contains OADOOOOO7A826863
pfn 16¢c6 ---DA--KWEV pfn 1647 ---DA--KWEV pfn 1650 ---DA--KWEV pfn 7a826 ---DA-

® Secure Kernel Address Leaks

O °© Secure Pool is managed by the secure kernel and is
read only for normal kernel code

o Meant for drivers to protect their data from corruption
by malicious code running in Ring ©

o Uses the same design as normal kernel pools
°© SEGMENT_HEAP exists in the beginning of the pool
and contains VS and LFH Contexts

o These contain Callbacks - pointing to SecureKernel.exe
functions (discovered by Alex Ionescu and fixed)

°© But the secure pool is still leaking addresses..

o HEAP_PAGE SEGMENT exists in each subsegment - can leak
the address of the secure pool and the secure kernel
metadata heap

® Debugging and Analysis Tools

O o Ipool extension was broken for a while

o Fixed and doing better now
°© PoolViewer - GUI tool to visualize kernel heap

° PoolViewExt - debugger extension

o Searches for pool allocation (like !pool)

o Implements searching for pool tag

® Previous Work

© Kernel heap exploitation technique:
() https://github.com/synacktiv/Windows-kernel-SegmentHeap-Aligned-
Chunk-Confusion/blob/master/Scoop The Windows 10 pool.pdf

© Overview of segment heap: https://speakerdeck.com/scwuaptx/windows-
kernel-heap-segment-heap-in-windows-kernel-part-1

© Segment heap internals: https://www.blackhat.com/docs/us-
16/materials/us-16-Yason-Windows-10-Segment-Heap-Internals.pdf

