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Windows Kernel Pool

° Kernel dynamic memory - used to store data for
drivers and the system

o Similar to the user-mode heap
°© Can be Paged or NonPaged

°© Common target for buffer overflow attacks leading
to elevation to Ring ©

° Used to have lots of information leaks from
uninitialized memory buffers being copied to user-
mode

o New API zeroes out allocations by default, avoiding those
bugs




® Windows Kernel Pool APIs

() © ExAllocatePool This gets even
© ExAllocatePool2 more complicated
°© ExAllocatePool3 under the hood

© ExAllocatePoolMm

© ExAllocatePoolSanityChecks

© ExAllocatePoolWithQuota

© ExAllocatePoolWithQuotaTag

© ExAllocatePoolWithTag

© ExAllocatePoolWithTagFromNode
© ExAllocatePoolWithTagPriority




Internal Kernel Pool Structure -

° Every pool page stands
by itself

° Easy to parse

°© Metadata is clearly
readable

°© Easy to fake when
exploiting an overflow
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Align to 1MB

e Internal Kernel Pool Structure - RS5+
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® Let’s Break This Down...

O ° New pool design is managed through the same
libraries as the user-mode heap

° Every individual pool is managed through a
SEGMENT_HEAP structure

°© Allocations are handled differently based on their
size
o Different mechanisms are used for different sizes

o Large pool is still managed through the VA space

o Looking at a single page of pool memory is no longer
useful
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e SEGMENT_ HEAP

O °© Manages a pool
°© (Contains all the metadata for the pool

Reserved / Committed / Free pages
Stats for large pages

Commit limit

Max allocation size

Beginning and end of committed range

° Has pointers to the structures that
manage different types of pool
allocations
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Pool Allocation Sizes

°© Every heap can manage 3 types of allocations:
o Up to 508KB (©-0x7F000)
o 5@8KB to 8128KB (Ox7F000-0x7F0000)
o Over 8128KB

° First two types are managed by segments

o SEGMENT_HEAP has 2 HEAP_SEG _CONTEXT structures that handle
those

° Allocations over 8128KB are managed by large pool

° The kernel keeps track of allocations in a bitmap
that marks their type

o nt!ExPoolState->HeapManager->AllocTracker->AllocTrackerBitmap




® Bitmap to Heap Structure

O ° Every two bytes represent an address in the kernel
address space

° For efficiency and better use of space, bitmap has
3 layers:

o CommitDirectory SEGMENT HEAP

o CommitBitmap Val 0
alue =
| 4 LargeAllocMetadata

o UserBitmap

Bitmap Nhkiahdm SegContexts[0]

Check SegContexts[1] These are
VsContext e
Value =2 - we’ll get
LfhContext --' | back to

them!




® HEAP SEG_CONTEXT

°© Every HEAP_SEG_CONTEXT structure is split into
segments

o SegmentListHead links all the segments
o FreeSegmentList links all the free segments
o Each represented by a HEAP_PAGE_SEGMENT

° Every segment manages a set size of memory
o SegContexts[@] handles 1MB segments in base units of 1 page
o SegContexts[1l] handles 16MB segments in base units of 16 pages

o SegmentMask field tells us how to get from pool
address to its segment
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® HEAP PAGE_SEGMENT

O ° Has an array of 256 descriptors
o Every descriptor describes a unit, which is part of a range
o Describes the type of subsegment and offset of unit in it
m And the size of the subsegment, if it’s the first unit
°© ListEntry connects all segments in the SegContext
°© Signhature can lead back to the HEAP_SEG CONTEXT - but
not easily
o Usually looks something like this: ©xb3a5b3d3a6f86cde

o Needs to be decoded using a magic value, segment address and a
heap key

o HeapKey is saved in a global kernel variable, not exported




@ Two Types of Subsegments

O ° LFH - Low Fragmentation Heap
o Used for allocations of 129 common sizes
o All allocations in a subsegment have the same size

o Gets created after a certain number of allocations of
the same size

o Max size 1is 0x4000 - only exists in SegContexts[9]

= No need for unique header for each block - saves space

o Block status is managed by a bitmap in the header

° VS - Variable Size
o Manages all blocks that don’t fit LFH buckets

o Every block has its own header to describe it




 |FH vs. VS Ranges
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Heap Subsegments - VS and LFH

°© Structures containing block sizes are encoded
o VS headers encode with the heap key, LFH use LFH key

o Makes it a lot harder to parse the pool - and fake
headers when exploiting an overflow

°© Size of subsegments is not fixed

°© Subsegments wrap several pages - have to start at
beginning of subsegment to parse

o Looking at a single page isn’t possible anymore - data
will make no sense

°© Allocated blocks will still have POOL_HEADER

o But free blocks won’t, can’t rely on them to parse the
pool anymore and nothing uses them




® Subsegment Headers Encoding

® ° HEAP_LFH_SUBSEGMENT
o Block sizes and offsets is in encoded BlockOffsets field
o Data = EncodedData ~ LfhKey ~ ((ULONG)(Subsegment) >> 12)
°© HEAP_VS SUBSEGMENT

o Has a linked list of all subsegments - needs to be decoded
with the address of current subsegment

m LFH subsegments are also linked - but this list isn’t encoded
o HEAP_VS_CHUNK_HEADER
o Exists for every block in VS subsegment

o Block size and allocation status in encoded Sizes field

o Data = Sizes.HeaderBits ”~ HeapKey ~ ChunkHeader




@ LFH and VS Contexts

°© SEGMENT_HEAP contains LFH context and VS context
o HEAP_VS_CONTEXT

o Contains a list of all VS subsegments in the heap
o Keeps track of committed and free chunks

o Has suballocator callbacks - allocate, free, commit..

° HEAP_LFH_CONTEXT
o Has array of 129 LFH buckets

m Each bucket links all subsegments that use that size

m Keeps data on block size, subsegment count, block count

o Has suballocator callbacks as well




©  Support common block sizes that are multiples of 0x10, 0x40,
O Ox80, 0x100, 0x200

© @Get activated after 0x10 allocations of the same size
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@ LFH and VS Contexts
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@ Exploitation Limitations

O °© Spraying the pool is harder

o Need to take into account subsegment types of sprayed
objects and overflowing allocation - have to be exact
same size if they will use LFH

°© Overflowing VS allocation will overwrite encoded
VS header

o Will need to account for header size and fake it

o Successfully faking a header requires leaking heap key
and exact address of header that will be faked




@ Exploitation Limitations - Cont.

-, ° Subsegments cross page boundaries - blocks don’t

o Can create empty spaces at the end of pages that need to
be known and accounted for in exploitation

° Overflowing the last block in a subsegment leads
to overwriting next subsegment header

o Need complex info leak to tell where it is and which
subsegment type

o Might require more encoding to fake
° And all older pool mitigations..

o Pool allocations are zeroed out to prevent info leaks

o Object header mitigations to break known exploit
techniques




®@ But There are Some Benefits too

O ° Every pool type is initialized when system starts

°© Necessary structures are allocated in the pool

o SEGMENT_HEAP - contains 2 HEAP_SEG_CONTEXT, VS context
and LFH context

° This includes the executable NonPagedPool
o This type is not in use anymore, but still exists

o Will only have one page - the one needed for
SEGMENT_HEAP and the structures it contains

o SEGMENT_HEAP uses around 0x800 bytes - leaving half a
page of unused RWX kernel memory!

o In HVCI systems this page won’t exist

o Alex Ionescu discovered this




RWX Kernel Pool Page

° ntlExPoolState has array of nodes

°© Each node has 4 pools:
o NonPagedPool
o NonPagedPoolNx
o PagedPool
o PagedPool (Prototype pool)

@: kd> dx -s @%$tl = ((nt!_EX POOL_HEAP_MANAGER_STATE*)&nt!ExPoolState)->PoolNode[@].Heaps[Q]
9: kd> !pte @%t1

VA ffff838ff5a00000
PXE at FFFF804020100838 PPE at FFFF8040201071F8 PDE at FFFF804020E3FD68 PTE at FFFF8041C7FADOOO
contains ©ADOOORLPV16CE6863 contains PABLROBLRVV1647863 contains OAPPOLRVOB1650863 contains OADOOOOO7A826863
pfn 16¢c6 ---DA--KWEV pfn 1647 ---DA--KWEV pfn 1650 ---DA--KWEV pfn 7a826 ---DA-




® Secure Kernel Address Leaks

O °© Secure Pool is managed by the secure kernel and is
read only for normal kernel code

o Meant for drivers to protect their data from corruption
by malicious code running in Ring ©

o Uses the same design as normal kernel pools
°© SEGMENT_HEAP exists in the beginning of the pool
and contains VS and LFH Contexts

o These contain Callbacks - pointing to SecureKernel.exe
functions (discovered by Alex Ionescu and fixed)

°© But the secure pool is still leaking addresses..

o HEAP_PAGE SEGMENT exists in each subsegment - can leak
the address of the secure pool and the secure kernel
metadata heap




® Debugging and Analysis Tools

O o Ipool extension was broken for a while

o Fixed and doing better now
°© PoolViewer - GUI tool to visualize kernel heap

° PoolViewExt - debugger extension

o Searches for pool allocation (like !pool)

o Implements searching for pool tag




® Previous Work

© Kernel heap exploitation technique:
() https://github.com/synacktiv/Windows-kernel-SegmentHeap-Aligned-
Chunk-Confusion/blob/master/Scoop The Windows 10 pool.pdf

© Overview of segment heap: https://speakerdeck.com/scwuaptx/windows-
kernel-heap-segment-heap-in-windows-kernel-part-1

© Segment heap internals: https://www.blackhat.com/docs/us-
16/materials/us-16-Yason-Windows-10-Segment-Heap-Internals.pdf







