
Oh No! KPTI Defeated
Unauthorized Data Leakage is Still Possible

Yueqiang Cheng, Zhaofeng Chen, Yulong Zhang, Yu Ding, Tao Wei
Baidu Security

About Speakers

Dr. Tao WeiDr. Yueqiang Cheng Mr. Zhaofeng Chen Mr. Yulong Zhang Dr. Yu Ding

Our Security Projects:

How to Read Kernel Data
From User Space?

Unauthorized Data
Unprivileged App?

In kernel space, we have a
secret msg, e.g., xlabsecretxlabsecret,
location is at, e.g., 0xffffffffc0e7e0a0

Specific Settings

Kernel is bug-free:
there is no vulnerability for user application to arbitrarily read kernel space

Simple C code:

char* ptr = (char*) 0xffffffffc0e7e0a0;
printf("%c\n", (*ptr));

A Rough Attempt

Crash due to
segfault

What Really Happened

Lookup TLB

Fetch
Page Table

Update TLB

Protection
Check

Miss Hit

Denied Permitted
Protection

Fault

SIGSEGV

Physical
Address

Virtual Address
0xffffffffc0e7e0a0

What Really Happened

2: Control Registers, e.g., SMAP in CR4

1: Page Table Permissions

Image from Intel sdm

1.Unprivileged App +
2.Permission Checking +
3.Bug-free Kernel

No Way to Go?

However, in order to
gain high performance,

CPU …
1.Unprivileged App +
2.Permission Checking +
3.Bug-free Kernel Meltdown (v3)

Microarchitecture
Speculative Execution + Out-of-order

Execution

Speculative Execution

S

F T

E

No Speculative Execution

Misprediction

Correct Prediction

Out-of-order Execution

Images are from Dr. Lihu Rappoport

Speculative Execution +
Out-of-order Execution

Enough?

Not Enough !!!

Delayed Permission Checking
+ Cache Side Effects

Permission checking
is delayed to Retire

Unit

Image from https://www.cse.msu.edu/~enbody/postrisc/postrisc2.htm

Branch Predictor in
Front End Serving

Speculative Execution

Execution Engine
executes in a out-

of-order way

Side effects in
cache are still

there!!!

1. The content of an attacker-chosen memory location, which
is inaccessible to the attacker, is loaded into a register.

Point to the target
kernel address

e.g., 0xffffffffc0e7e0a0

How Meltdown (v3)
Works

How Meltdown (v3)
Works

2. A transient instruction accesses a cache line based on the
secret content of the register.

Bring data into
cache

This number
should >= 0x6

3. The attacker uses Flush+Reload to determine the
accessed cache line and hence the secret stored at the
chosen memory location.

ArrayBase 256 Slots

0 1 2 254 255

The selected index is the value of the target byte
e.g., if the selected index is 0x65, the value is ‘A’

How Meltdown (v3)
Works

How about Spectre (v1/v2)?

How Spectre
Works

1. The setup phase, in which the processor is mistrained to
make "an exploitable erroneous speculative prediction."
e.g., x < array1_size

Point to the
target address

Slot index of
array2 leaks

data

Real Execution flow
and Speculative

Execution go here

2. The processor speculatively executes instructions from the
target context into a microarchitectural covert channel.
e.g., x > array1_size

How Spectre
Works

Execution flow
should go here

Speculative
Execution goes

here!

A slot of array2 is loaded
into cache

3: The sensitive data is recovered. This can be done by timing
access to memory addresses in the CPU cache.

How Spectre
Works

Array2Base 256 Slots

0 1 2 254 255

The selected index is the value of the target byte
e.g., if the selected index is 0x66, the value is ‘B’

How Spectre Read Kernel Data

array1+x points to
0xffffffffc0e7e0a0

ü array1 and array2 are in user-space
ü x is controlled by the adversary

Slot index of
array2 leaks
kernel data

1.Unprivileged App +
2.Permission Checking +
3.Bug-free Kernel

Get Unauthorized Data

SMAP
Spectre

However...

KPTI
Meltdown

Kernel
Space

PCID helps performanceBefore KPTI

User
Space

Kernel
Space

User
Space

Kernel
Space

User
Space

After KPTI
User/kernel mode kernel mode User mode

KPTI

Even we put the Spectre
gadget into the kernel
space, SMAP will stop it

SMAP

Supervisor
Mode

(kernel Space)

User Mode
(User Space)

ü SMAP is enabled when the SMAP bit in
the CR4 is set

ü SMAP can be temporarily disabled by
setting the EFLAGS.AC flag

ü SMAP checking is done long before
retirement or even execution

Despair...

KPTI + SMAP + User-kernel Isolation

Image from http://nohopefor.us/credits

Before KPTI

User
Space

Kernel
Space

User
Space

Kernel
Space

User
Space

After KPTI
User/kernel mode kernel mode User mode

Hope in Despair

Shared range
as a bridge to

leak kernel data

Kernel
Space

This part cannot
be eliminated

Breaking SMAP + KPTI + user-kernel Isolation

1: Use new gadget to build data-dependence
between target kernel data and the bridge
(bypass SMAP)

2: Use Reliable Meltdown to probe bridge to
leak kernel data (bypass KPTI and user-
kernel isolation)

New Variant Meltdown v3z

1st Step: Trigger New Gadget
Similar to Spectre gadget, but not exact the same

Point to the
target address

Arr2+offset is the
base of ”bridge”

x and offset should be controlled by the adversary!!

Slot index of
“bridge”

How to Trigger the New Gadget
There are many sources to trigger the new gadget

1: Syscalls
2: /proc and /sys etc. interfaces
3: Interrupt and exception handlers
4: eBPF
5: …

How to Find the New Gadget
Source Code Scanning

We use smatch for Linux Kernel 4.17.3,
Ø Default config: 36 gadget candidates
Ø Allyes config: 166 gadget candidates

However, there are many restrictions to the gadget in real exploits
ü Offset range
ü Controllable invocation
ü Cache noise
ü …

Binary Code Scanning??

2nd Step: Probe Bridge

UserArrayBase

0 1 2 254 255

BridgeBase

0 1 2 254 255

User Space

Obviously, in each round there are (256*256) probes
To make the result reliable, usually we need multiple rounds

Bridge

Inefficient

Make it Practical/Efficient

UserArrayBase

0 1 2 254 255

BridgeBase
0 1 2 254 255

Why do we need to probe 256 times in Meltdown?
If we know the value of the slot 0 of the BridgeBase, we probe it only once.

Can we know the values in advance?

User Space

Bridge

No for Meltdown (v3)
Meltdown is able to read kernel data.
But, it requires that the target data is in the CPU L1d cache.

If the target data is NOT in L1d cache, 0x00 returns.

We need reliably reading kernel data!

Reliable Meltdown (V3r)

We test it on Linux 4.4.0 with Intel CPU E3-1280 v6, and MacOS
10.12.6 (16G1036) with Intel CPU i7-4870HQ

V3r has two steps:

1st step: bring data into L1d cache

2nd step: use v3 getting data

Point to the
target address

Everywhere
in kernel

Put Everything Together

Offline phase:
ØUse v3r dumping bridge data, and save them into a table

Online phase:
Ø 1st step: Build data dependence between target data and

bridge slot
Ø2nd step: Probe each slot of the bridge

Efficiency:
Ø from several minutes (even around 1 hour in certain

cases) to only several seconds to leak one byte.

Demo Settings

Kernel: Linux 4.4.0 with SMAP + KPTI
CPU: Intel CPU E3-1280 v6

In kernel space, we have a
secret msg, e.g., xlabsecretxlabsecret,
location is at, e.g., 0xffffffffc0e7e0a0

Countermeasure Discussions
Software Mitigations

ü Patch kernel to eliminate all expected gadgets

ü Minimize the shared “bridge” region

ü Randomize the shared “bridge” region

ü Monitor cache-based side channel activities

Countermeasure Discussions
Hardware Mitigations

ü Do permission checking during or even execution stage

ü Revise speculative execution and out-of-order execution

ü Use side channel resistant cache, e.g., exclusive/random cache

ü Add hardware-level side channel detection mechanism

Take Away
• Trinational Spectre and Meltdown have been defeated

by KPTI + SMAP + user-kernel Isolation combination.

• Our new Meltdown variants is able to break the
strongest protection (KPTI + SMAP + user-kernel
Isolation).

• All existing kernels need to be patched to mitigate our
new attack

Baidu X-Lab Medium: https://medium.com/baiduxlab

Oh No! KPTI Defeated
Unauthorized Data Leakage is Still Possible

Q&A image is from https://i.redd.it/wbiwgnokgig11.jpg

https://medium.com/baiduxlab

