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Abstract

Fuzzing has started to gain more recognition over the
past years. The basic concept behind it is passing ran-
dom or otherwise procedurally generated data as in-
put to the tested software. Multiple fuzzers emerged
which have an impressive number of bugs discovered.
However, their applicability in fuzzing targets requiring
highly structured yet arbitrarily nuanced input data,
such as interpreters, is questionable. At the same time,
an interpreter’s input is often untrusted. This, coupled
with their widespread usage, makes them a high prior-
ity target for security research, especially considering
the interpreter’s large codebase and high complexity.

In this paper, we introduce the concept of combining
coverage guided fuzzing with synthesizing code given
arbitrary input data. We will discuss the implemen-
tation of this idea in the F1uff project and describe
its integration with American Fuzzing Lop — an
open-source fuzzer. We show that by using Fluff
we can achieve larger code coverage than with current,
state of the art solutions.

1 Introduction

1.1 Overview

Fuzzing is a technique used to automatically test soft-
ware. A basic fuzzer could generate random data and
pass it as input to the target. Modern fuzzers often uti-
lize automatic analysis of the program source code or
instrumentation in order to gather information about
the program and control flow. They use that informa-
tion as a feedback in order to improve the quality of the
test cases. A common metric to measure the quality of
an input is, is checking whether the target program be-
haved in a way which has not yet been observed (for ex-
ample the program reached a location in the code which
has not been visited before, or it crashed). Fuzzers
which track executed branches visited across runs and
try to maximize this value are called coverage guided.
Fuzzers can utilize mutators, which modify either pre-
viously used inputs or a seed provided by a user launch-
ing the tool, in order to generate new test cases. Of-
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ten fuzzers utilize multiple approaches, algorithms and
heuristics in order to achieve high effectiveness.

Fuzzing, as a technique, has been proven to be
highly efficient at discovering bugs and security vul-
nerabilities. As an example, Zalewski — author of
American Fuzzy Lop (AFL) [1] and Vyukov — au-
thor of syzkaller |2|, display an impressive number
of issues discovered by their tools. A wide range of
programs is continuously fuzzed by 0SS-fuzz [3] —
an initiative by Google which allows maintainers of
open source projects to integrate their codebase with
the ClusterFuzz, which then automatically synchro-
nizes and tests the software using Google’s infrastruc-
ture. As of writing this paper, more than 8000 bugs
were reported by the 0SS—fuzz project.

Interpreters of various languages are commonly found
in modern software as they allow developers to create a
more engaging and interactive user experience. One of
the most prominent uses of interpreters are JavaScript
execution engines embedded in web browsers. As of
March 2019, TIOBE [4], which measures popularity
of programming languages, has ranked JavaScript as
the 7*" most popular technology. Other popular in-
terpreted technologies include Python, PHP and Ruby.
All of those technologies are not only widely used, but
also highly complex and constantly developed, which
makes them perfect security research targets.

Interpreters are a class of software which is difficult
to fuzz. The reason for that is the ease with which they
reject invalid inputs. On one hand interpreters perform
multiple validations on the input in order to reject any
erroneous source codes, on the other they accept and
execute a very wide range of valid codes. This results in
a situation where most test cases generated by a fuzzer
are quickly rejected, thus yielding low test coverage.

1.2 Attack scenarios

Exploiting vulnerabilities in an interpreter is especially
interesting as it can change the scope of an attack by
escaping the restricted execution environment. To vi-
sualize the risks connected with security vulnerabilities
present in this class of software, we will enumerate sev-
eral possible attack scenarios:



e Web browsers
If a malicious entity controls a website (either by
legitimately owning it or by compromising an ex-
isting service) it can craft JavaScript code which
will be executed by default in the browser of each
user visiting the webpage. Exploiting the execu-
tion engine and browser could lead to the attackers
gaining complete control over the visitor’s system.

e Online execution services
Some online services offer a functionality to ex-
ecute code provided by the user (for example
ideone [5]). Such services can be used to quickly
test, share code or explain certain features. While
those services take great measures to make sure
that executing arbitrary code does not compro-
mise their safety, exploiting one of the interpreters
might allow an attacker to gain control of the sys-
tem or gather more information about its internals.

e Continuous integration systems

Those systems are integrated with version control
software and allow developers to define tasks which
are to be executed periodically. A common task
is building the application and running tests. A
malicious user could craft code specifically to ex-
ploit the execution engine in order to take control
or otherwise attack the system itself, or even the
machines running it.

e Social engineering
An attacker could try to post malicious code to on-
line developer forums (like StackOverflow [6]) and
ask for help, or otherwise try to trick users to exe-
cute his specifically crafted code, hoping to exploit
and compromise systems of people thinking that
they are helping someone.

1.3 Related work

Grammar based approaches require a user-provided
formal grammar and generate a script which will out-
put test cases compliant with that grammar. A sample
tool utilizing this approach is Grammarinator [7]. Al-
though this approach does not support any sort of feed-
back loop by design, it can be implemented in a way
which does. Vegard has described in his blog post [8]
his approach to fuzzing GCC [9] compiler, which is also
grammar based but uses AFL as the backend and there-
fore utilizes a feedback loop. This approach is flexible,
because one can create an input grammar for many pro-
gramming languages. However, it is impossible to en-
force certain properties, which are sometimes desired,
using context free grammars (further elaborated in ap-

pendix |A.1]).

Grey-box fuzzing is a technique of incorporating
information about the target to the fuzzer. In the case
of fuzzing interpreters, this can be done by providing
keywords or whole code snippets which the fuzzer in-
corporates into the generated test cases. AFL can work
in this way if a user provides it with a list of keywords.
Another well known tool in this category is jsfunfuzz
|10], which works by constructing JavaScript code snip-
pets and executing them. Those snippets are gen-
erated using predefined templates, magic values, key-
words and hard-coded randomness. This project does
not use any instrumentation nor symbolic execution. It
is also tightly coupled with JavaScript and in particu-
lar, with Mozilla’s SpiderMonkey engine. Langfuzz
|11] is another fuzzer in this category, which utilizes
both generative and mutative approaches in order to
create new test cases. It is however a Mozilla internal
tool. This approach can be effective, as it is easier for
this type of fuzzers to create a valid program and pass
parser, thus reaching backend of the interpreter. Unfor-
tunately, fuzzers in this category share the downsides of
both grammar based approaches and generic mutative
fuzzers, as they are either limited by the hardcoded val-
ues and snippets (as is the case with jsfunfuzz), or
not limited enough and can’t reliably pass parser (like
AFL with dictionary).

csmith [12] is a tool which synthesizes completely
valid C programs and passes them for compilation and
execution in multiple compilers. The outputs are then
executed and the behavior of generated files is moni-
tored in order to spot errors in logic. Any crashes dur-
ing the compilation process are also stored for analysis.
csmith is a mature and highly efficient tool, however,
it does not cooperate with any fuzzer, nor employ any
mutative approach, which could increase its effective-
ness. csmith focuses on finding bugs in logic, which
cause the compiler to generate incorrect machine code.
It also supports only C language.

Formal verification could allow to ensure, in a
provable way, that a piece of software is secure and cor-
rect. It is still difficult to perform formal verification
of projects as big as interpreters and compilers due to
the amount of required work and computational power,
however, there is an ongoing effort to create a fully ver-
ified compiler — compcert [13]. We are not aware of
any ongoing effort aiming to formally verify any exist-
ing interpreter.

1.4 Paper outline

Section [2] describes different levels of fuzz testing. Sec-
tion |3| introduces F1uff, which is our contribution to
this field. That section contains description of its de-
sign, implementation and limitations, as well as ex-
tensions and design choices. Section 4| describes the



methodology used to evaluate selected approaches to
fuzzing. Section [5| presents results of our research and
comparison of Fluff with other approaches to fuzzing
interpreters. Finally, section |§| summarizes findings of
our work, as well as presents several further research
ideas.

2 Fuzzing interpreters

In fuzzing we can differentiate between multiple levels
of increasing test case quality [14]. Below is the list
of levels we are interested in when fuzzing interpreters,
especially JavasScript runtimes.

Level 0. Sequence of bytes. This is the most basic
level, equivalent of the passing unix /dev/urandom as
the input to the tested program. This approach is espe-
cially useful when practiced on targets, that do not re-
quire highly structured input, e.g. audio/video codecs.
In the context of fuzzing interpreters this technique is
effective in fuzzing components which perform initial
processing of the runtime code — parsers and lexers.
We have found several bugs in those components, for
example ones that occurred during parsing unicode en-
coded characters in the program source code. Some
runtimes allow the bytecode (representation of parsed
source code) for runtime virtual machine to be exe-
cuted, in this case tests at this level can also be used.
This feature in most cases is meant for the runtime
developers, and is not enabled in e.g. web browsers by
default. Examples of fuzzers which operate at this level
are AFL, radamsa |1} [15].

Level 1. Sequence of ASCII characters. This
is a simple variation of Level 0 which is not interesting
in our case. Usage of only ASCII characters increase
the probability of constructing valid keywords and thus
passing the parser, but makes it impossible to detect
errors mentioned in description of level 0.

Level 2. Sequence of words, separators and
white space. Using this approach fuzzer can get past
parsing and lexing with more test cases. Unfortunately,
most of the test cases still will not be a syntactically
correct programs, so the interpreter will throw an ex-
ception and stop the execution. This level is an equiv-
alent of fuzzing with prepared dictionary. Success rate
of the test cases is strictly correlated with the size and
quality of the dictionary. As an example, AFL has an
option to fuzz with specified dictionary of keywords to
incorporate in the test cases [1].

Level 3. Syntactically correct programs. Test
cases at this level are correct JavaScript code, utilize
various features of the language and therefore can find
bugs in the exposed runtime logic. The family of fuzzers
which can generate this test cases are grammar fuzzers,
e.g. grammarinator [7].
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Figure 1: Decomposition of the sample program into
AST

Apart from syntactical correctness we want to en-
force semantical correctness, in order to make sure, that
the generated test cases are not only a valid JavaScript
code, but can also be executed by the interpreter.

JavaScript runtimes are complex targets, therefore
coverage based fuzzing can be employed to help the
fuzzer find more bugs. In our work we evaluate the ef-
fectiveness of combining generation of semantically cor-
rect test cases with coverage guided fuzzing.

3 Fluff

3.1 Concept

Our goal was to create a fuzzer which could synthesize
semantically correct JavaScript source code and pass it
for execution using a chosen interpreter. Due to the
high number of interpreters and lack of unified API to
execute code, easy integration with new target inter-
preters was also a design goal for us. Throughout this
section we will describe how F1uff works and the types
of generated test cases.

Our tool was designed as a translation layer, work-
ing between AFL fuzzer and the interpreter. Thanks to
this, F1uff benefits from AFL’s instrumentation, tool-
ing and test harness.

3.2 Synthesising arithmetic expressions

Our approach to synthesizing code from arbitrary data
is a bit similar to the process of parsing code written
in a programming language. First, the parser performs
lexing (also called tokenization) which breaks down the
code into lezemes (tokens) such as keywords, identifiers
etc. Those lexemes are later parsed to create an object
abstracting a tree structure of the given source code.
Such trees are called Abstract Syntaz Trees (AST). Fig-
ure[I] shows an AST of a program demonstrated in list-

ing [T}

—

Listing 1: Sample program



The tree generated by compilers can be serialized just
like any other tree structures, for example using prefix
left-to-right traversal.

Our idea is, in a sense, to reverse the work of a parser.
Our tool takes as input a serialized AST of a certain
program, which we first deserialize and reconstruct the
tree, and then emit high level code. Since programs
are highly structured, we make our deserializer as per-
missive as possible, in order to accept and successfully
generate code for a wide range of inputs.

We will present a simpler version of Fluff — a
program which given arbitrary input generates valid,
simple arithmetic programs in a language consisting of
integer literals, addition, multiplication and variables.
Sample programs in that language (which is actually a
subset of JavaScript) is proposed in listing

1 |var x

2 |x =2+ 10

3 |x x 40

Listing 2: Sample program in a subset of
JavaScript

Take into consideration that even such a simple lan-
guage cannot be defined using a context free grammar
(see appendix. Therefore we rely on simple decom-
positions of languages and provide support for more
complex features by design. In this case, a sample
grammar /decomposition is presented in figure

Statement
Instruction Expression
Variable declaration  Addition  Multiplication Literal  Variable

Figure 2: Abstract Syntax Tree for arithmetic

We will use the syntax tree presented in figure [3] to
parse input data. The first step is to label each edge
with a natural number, such that each vertex has its
edges labeled 0, 1, 2, ....

There exist multiple valid labelings of the presented
tree, and it does not matter which labeling is chosen.
We will use the labeling presented in figure
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Variable declaration =~ Addition = Multiplication Literal =~ Variable

Figure 3: Labeled Abstract Syntax Tree for arithmetic

The labeling is now used to parse input. F1luff reads
the input byte by byte, reading a number between 0 and
255. This value is used to move in the labeled AST until
a leaf is reached. Reading a number x while being in
vertex vp results in transition to vertex vy if there exists
an edge from v; to vz with label x mod deg™ (v1).

A sample chain of transitions for the following input:
0x01, 0x07 is presented in figure @

Statement - - - - 9591\
o \\‘y
Instruction Expression - - - - »03(97
0 01 T3 — )
Variable declaration ~ Addition — Multiplication = Literal = Variable

Figure 4: Parser state transition chain when reading
input

Once the parser reaches a leaf, it takes actions spe-
cific to the current state. We will present sample pseu-
docode implementations for leafs in the sample tree.
Helper functions will be used without presenting im-
plementations. Their role is as follows:

e ReadBuyte() — read and return a single byte from
input

e GetExpression() — set the parsing state to
FExpression and return the parsed expression

o AllocateVariableId() — returns a unique id for a
variable

e GetVariable(n) — return n-th variable identifier

Implementations for the leafs could be defined as shown

in listings 3] [ [} [6] and [7

1 id =
2 Emit ("var "

AllocateVariableId()
id)

Listing 3: Implementation of Variable declaration
leaf

lhs =

rhs =

Emit (1
("
(

GetExpression ()
GetExpression ()
hs)
)y
hs)

Emit
Emit (r

CUB W N =

Listing 4: Implementation of Addition leaf



lhs =

rhs =

Emit (1
(l
(

GetExpression ()
GetExpression ()
hs)
l*")
hs)

Emit
Emit (r

Uk W N~

Listing 5: Implementation of Multiplication leaf

—_

value = ReadByte ()
2 |Emit (value)

Listing 6: Implementation of Literal leaf

—_

numper = ReadByte ()
2 |variable_id = GetVariable (number)
3 |Emit ("var " . variable_id)

Listing 7: Implementation of Variable leaf

Finally, note that there exist inputs such that the last
instruction is unfinished or otherwise malformed — an
example of such a situation in our arithmetic language
is an input consisting of a single byte 0x01. The parser
would not be able to construct a valid expression with-
out more data. Similarly, the input [0x01, 0x02,
0x10, 0x01, 0x00, 0x02, 0x17] would correctly
deserialize the first instruction as a single integer lit-
eral 16 followed by a malformed addition (due to the
lack of the right hand side operand). At first we have
decided to ignore this problem and simply reject the
malformed instruction. However, after some testing we
have discovered that the fuzzer often creates a very deep
expression and runs out of data to finish it, resulting in
unexpectedly short outputs compared to the number of
input bytes. Therefore, we have implemented default
values for instructions. As a result, an input consist-
ing of only [0x01, 0x00] would be transformed into
(0+0).

3.3 Extensions and limitations

The basic idea presented in the previous section can be
extended to generate a real programming language, in
our example JavaScript. It is important to note, that
there are many ways to configure the language gen-
eration and deciding between those possibilities may
have a big impact on the results of research. Another
important thing to note is that generating the actual
code is highly dependent on the target language. This
approach will be applicable for most imperative pro-
gramming languages, but may not be as meaningful for
other paradigms like functional or logic.

number_of_instructions = ReadByte ()

number_of_arguments = ReadByte ()

function_id = AllocateFunctionId/()

Emit ("function " function_id ." (")

for i in 0..number_of_arguments:
argument = AllocateVariableId()
Emit (argument . ", ")

Emit(ll) {vv)

for i in 0..number_of_instructions:

10 instruction = GetInstruction/()

11 Emit (instruction)

12 Emit ("} ")

O 00O Uk W~

Listing 8: Implementation of function code gener-
ation

In order to produce full-fledged JavaScript code, sev-
eral features must be considered:

1. Types

Depending on the target language, types can play
an important role. In the case of JavaScript, the
type system is permissive, so we did not have to
worry about making sure, that for example we are
not summing integers with strings or treating float-
ing numbers as boolean values. However, in lan-
guages with stronger type systems correctly han-
dling types must be implemented. Our idea to
solve this issue is to implement a special register
which tracks types of variables, functions and argu-
ments and can be queried for variables or functions
returning certain type. Another challenge would
be type casting, which allows implicit or explicit
casts between different types. A graph-like struc-
ture could be used to track this information.

2. Functions

Functions can be treated similarly to how we ap-
proached variables in section In JavaScript,
functions do not have a fixed number of arguments
— you can declare a function with 2 arguments and
call it without providing any, or declare a function
with no arguments but call it with one, which can
later be accessed using the arguments variable.
Because of JavaScript permissive type system, the
program does not have to take into consideration
function arguments types or return value type. In
our case, the number of arguments and the number
of instructions in a function is read by the parser
as a single byte. We also do not force return state-
ments, as shown of listing [§]

3. Classes
JavaScript since ECMAScript 6 contains classes,
which in fact are just syntactic sugar on top of the
function declaration [16]. We treat classes very



similarly to functions — we also simply read the
number of methods and fields from input and sim-
ply treat the next instructions as part of the class.
We also remember which methods have been de-
clared, to allow calling them.

4. Name scopes

Some identifiers have limited scope — for example
function arguments are not visible outside of that
functions and variables declared inside one block
may not be visible in another. This is more compli-
cated in JavaScript since ECMAScript 6 standard
[16], as variables have different visibility depend-
ing on how were they defined — whether it was
declared with let, const or var. Choosing how
to handle this correctly may increase performance
or coverage. We have decided to not use variable
shadowing, as using it would not increase the num-
ber of discovered issues, but only complicate the
code of our project.

5. Target interpreter portability

As mentioned in section [3.1] we wanted to be able
to test multiple execution engines. Our solution
is using a simple interface for interacting with and
abstract JavaScript execution engine and prepared
a specific implementation for each of the test tar-
gets. This allowed us to abstract away interactions
with each specific interpreter, while still allowing
to fuzz multiple targets.

From those descriptions we can start to notice the
following limitations:

e Integer literals are not greater than 255,

e String literals are not longer than 255,

Code blocks (functions, loop bodies, etc.) are not
longer than 255 instructions,

e No incorrect bracketing is possible,

e Variable and function names follow a set pattern.

Despite those limitations, it is possible to achieve
big numbers by using arithmetic, long strings can be
achieved by concatenating multiple strings together and
function and variable names do not play any role in
execution and may only be useful during exploitation.
At the same time, incorrect bracketing may sometimes
trigger bugs, but it is something that a pure AFL fuzzer,
without F1uff as the middleware, is capable of testing.

3.4 Built-ins

A significant coverage boost can be achieved by allow-
ing Fluff to generate code which uses built-in objects

and functions, such as the aforementioned arguments,
or functions like filter, parse etc. Usually there are
also some built-in objects, like Date or JSON. Those
objects, while not being part of the language grammar,
should be utilized. We achieve this by feeding them
into the sets of variables, objects and functions. Many
of the errors discovered by F1uff were related to using
some of those built-ins.

Approaching the task of composing this list is
specific to each interpreter and language. For
JavaScript runtimes we were able to write a
script that uses Object.getPrototypeOf and
Object.getOwnPropertyNames to iterate through
all built-ins available in the runtime. We filled miss-
ing ones using documentation for the interpreter.

3.5 Corruptions

Having constructed the syntax tree in memory, we are
able to perform arbitrary modifications to it. The ap-
proach described up to this point allows us to gener-
ate valid programs. However, we wanted to introduce a
way to corrupt the generated code (by sometimes intro-
ducing undefined identifiers, placing a series of strange
bytes between keywords or otherwise). Being able to
produce corrupted statements in our generated code
can help us with fuzz testing some parts in interpreters,
specifically the parser and lexer.

One way to implement this feature is to include such
corrupted statements in our simplified grammar as new
entities. However, this would cause a blow-up of our
codebase, as each statement is represented by a sep-
arate class and has custom parsing logic implemented
for it. We also find this approach inelegant, as we want
the language description to be as simple as possible.

Instead, we decided to approach implementing this
feature in the following way: after parsing and build-
ing any statement we read an extra byte, which we call
corruption byte, and use it to decide whether this par-
ticular statement should be corrupted, and if so — how.
We can thus model parsing in the way shown on listing
9l

1 | statement = ReadStatement () ;
2 | corruption_byte = ReadByte();
3 | statement.Corrupt (corruption_byte) ;

Listing 9: Handling of the corruption byte

This approach allows us to not only keep the gram-
mar simple and minimal, but also allows us to con-
trol the probability with which the corruptions oc-
cur, as well as include multiple types of corrup-
tions for each statement. What the Corrupt func-
tion actually does is highly dependent on the state-
ment which is being corrupted. For example, a



corrupted integer literal could be a very big num-
ber, or it might contain a non-numerical character in
it. It could be implemented as shown on listing [I0]

1 |ExprIntLiteral::Corrupt (char corruption) {
2 if (corruption < 200) {

3 return;

4 }

5 if (corruption % 5 == 0) {

6 this->value = VERY_BIG_VALUE;

7 }

8 if (corruption % 7 == 0) {

9 this->value .= NON_ASCII_CHARACTER;
10 }

11 |}

Listing 10: Corruption implementation in the In-
teger class

It might be beneficial to have some test cases gener-
ated without corruptions at all. Using this approach it
is highly unlikely that not a single statement will get
corrupted, which may decrease the overall effectiveness
of fuzzing if the corruptions cause the generated test
cases to be rejected without execution or other deeper
processing. We have decided to remedy this by treating
the first byte of input (which we call sanitization byte)
and treating it specially — based on its value we can
choose to not include any corruptions. Therefore the
final version of parser could work in the way described

on listing [TT]

corruption_byte = ReadByte();
statement.Corrupt (corruption_byte) ;

1 |global sanitization_byte = ReadByte();
2

3

4

5 | statement = ReadStatement () ;

6 |1if (sanitization_byte % 3 != 0) {

7

8

9

}

Listing 11: Sanitization byte implementation

3.6 Integrating Fluff with American Fuzzy
Lop

In order to use F1uff in a real life scenario a testing
harness and a data generator must be provided. We
recommend to use AFL with F1uff, because it can pro-
vide not only the aforementioned components, but also
its own instrumentation which can be useful in finding
new, interesting test cases.

Example setup used in evaluating our project is
shown on figure In this setup AFL is responsible
for repeatedly invoking F1uf £ binary, detecting crashes
and hangs and generating and mutating input data.
Data from AFL are passed to Fluff, and using input

v
Test N i
corpus ~ AFL Feedback
(AFL instrumentation)
Test case
{binary)
4
Fluff 1 [ R S
Grammar g Fluf
Test case
(JavaScript)
v

JavaScript Runtime

[

Fluff process !

Figure 5: AFL and F1luff integration

grammar file transformed into JavaScript code, which is
being executed in JavaScript runtime. Another benefit
of using AFL is its built-in timer, which automatically
detects and terminates test cases on timeouts.

Because both Fluff and JavaScript runtime are
built with AFL wrappers over C/C++ compilers, they
have AFL own instrumentation. During execution AFL
collects feedback which consists of paths taken by the
program during the execution. This kind of instru-
mentation is especially useful with F1uff, because it
will help AFL generate payloads triggering every pos-
sible path in F1uff parser. This results in producing
JavaScript test cases that use various features of the
target language.

Because we designed Fluff with modularity in
mind, it is easy to change JavaScript runtime. We pro-
vide examples of F1uff interfaces to many JavaScript
runtimes (including ChakraCore, jerryscript and
others). It is also possible to invoke the target runtime
using system functions, such as execve.

4 Evaluation

4.1 Target selection

From the available JavaScript runtimes we selected
ChakraCore to benchmark Fluff performance. It is
a full-fledged JavaScript runtime with a handful of fea-
tures, made by Microsoft corporation.

Open sourced. ChakraCore is an open source
project, therefore we can measure code coverage, which



is a useful metric to compare F1luff with other tools.
Furthermore, it allows us to perform quicker assessment
of found crashes, in order to determine their exploitabil-
ity.

ES2015 support. ChakraCore supports most of
the ECMAScript 6 features, that makes it relevant and
enlarges the possibility of bug occurrence [17]

Large codebase. As measured by llvm—gcov,
ChakraCore on Linux x64 (git commit SHAI
22£0a427031bcdab990b59ceead8bfa329166a49)
has 225960 lines of code. Compared to other engines
like JerryScript (21717 lines of code), it is a larger
attack surface. One drawback from large number of
source code lines is slower execution of build with
coverage enabled.

Relevant. ChakraCore is used in various products,
including Microsoft Edge, Universal Windows applica-
tions, Azure Document DB and others |1§].

Embedable. Developers can easily embed
ChakraCore as JavaScript runtime in their applica-
tions, because of that it is easy to integrate F1uf f with
ChakraCore.

Easy to build. We had no issues with building
ChakraCore in reasonable time for our tests.

4.2 Performance metrics

There are many performance metrics that can be used
to benchmark fuzzers. The ideal parameter used for
comparison is crashes identified in predefined amount
of time [19]. From our trial runs on various JavaScript
engines we noticed that achieving substantial amount
of crashes took too much time, and therefore we aban-
doned this approach.

Another metric that can be used to benchmark per-
formance of fuzzers is the generated code coverage of
the tested target. This metric differentiates F1uff
from non-grammar fuzzers like AFL. Using this metric
we can check how many features of the language test
cases generated by F1uff are utilizing. Another argu-
ment in favor of using code coverage as a metric is that
fuzzing will not find a bug that exists in non-executed
line of code. Therefore we assume that the higher per-
centage of code coverage we get from testing, the better
chance of finding a crashing input.

Because of the nature of the target and limited time
we decided to use this metric for comparison. Each
fuzzer will be measured by running for 25 hours on se-
lected target.

4.3 Fuzzers selection

As the first fuzzer to measure performance of Fluff
against we decided to use AFL, which has been de-
scribed before in section [2]

In order to show other features of AFL, we will also
compare Fluff performance to AFL using JavaScript
dictionary, provided by the author. This feature can
help AFL generate valid JavaScript test cases, that do
not fail on parsing, but instead can be executed. Sam-
ple JavaScript dictionary is provided with AFL source
code.

From the available grammar fuzzers we have selected
a previously described (in section|l.3) grammarinator
[7] to compare its performance to proposed solution.
It is an open source fuzzer utilizing ANTLR v4 gram-
mars, many of which are available as open source
projects — including those for JavaScript. Output
from grammarinator should be correctly parsed and
executed in JavaScript runtime. On the other hand,
grammarinator does not utilize the same feedback
mechanism as AFL, so this fuzzer cannot adjust its in-
put data to cover new paths in the target binary.

We compare the code coverage produced by Fluff
and the selected fuzzers (AFL, AFL with dictionary and
grammarinator) in order to evaluate our approach.

4.4 Fuzzing code with coverage

In order to measure the code coverage, target must
be built with the coverage support. This is handled
by adding specific compilation and linking flags to the
building process. This produces an executable that is
instrumented in such a way, that during execution de-
tailed information about source code lines the program
executed is stored in a separate file, unique for every
source code file. To get a full result we can use a tool
such as gcovr to get summary coverage [20].

This method combined with fuzzing imposes a signif-
icant problem. Because fuzzed binary is accessing large
amount of files with coverage information, it slows down
execution rate significantly. For the chosen target we
observed approximately 100 times slower execution.

To perform benchmarking using code coverage as a
metric with much higher execution speeds we decided
to use different approach. The testing procedure was
split into two steps:

1. Fuzzing — 25 hours of fuzzing target binary with-
out coverage, with AFL instrumentation,

2. Code coverage — calculating code coverage of tar-
get binary.

We performed fuzzing with AFL on the target binary
without code coverage, and measured code coverage
by executing target binary with code coverage enabled
for every test case generated by the fuzzer, saved in
the queue folder. According to AFL documentation,
queue folder consists of files from input directory (test
corpus) and mutated inputs that discovered new paths
in fuzzed binary [21].



4.5 Fuzzing with grammarinator

A challenge while fuzzing using grammarinator is the
fact that it requires a custom test harness, as out of the
box this fuzzer only generates test cases. This fuzzer
also does not accept seed from the user. To give this
fuzzer a fair comparison with others, we calculated ap-
proximate number of the test cases other fuzzers were
generating (based on the observed execution speed)
within 25 hours. This value approximated at 3 456
000. Because of the slower execution of target binary
with code coverage enabled, we decided to use AFL tool
afl-cmin on this test corpus and target binary with-
out code coverage, in order to reduce test corpus size.
Then we performed code coverage calculation only on
the test cases, that discovered new paths, and therefore
increased code coverage.

4.6 Experimental setup

Because of the random nature of fuzzing, each fuzzer
was tested on 24 independent runs for 25 hours. Us-
ing Mann-Whitney U test we calculated the p-value to
make sure that results are statistically significant, as
described in section [£.2]

All tests and compilations were run on Ubuntu ver-
sion 16.04 (x64). AFL (version 2.52b) was built us-
ing clang version 7.0.0 (trunk 337895). Both
target ChakraCore and Fluff were built using
afl-clang-fast++.

Fuzzing was running in parallel on a virtualized ma-
chine with 24 cores (CPU Intel Xeon Gold 6130) and
48 GB of RAM. The resources were shared between 24
fuzzer instances.

5 Results

Figure |§| shows the measured code coverage. On aver-
age, after fuzzing the target for 25 hours on 24 indepen-
dent instances, F1uff had the largest code coverage.

T z (%) o

Fluff | 60282 27 7874

AFL 2.52b with dictionary | 54744 24 8563
grammarinator 18.10 | 42741 18 463
AFL 2.52b | 41094 18 1174

Table 1: Results after 25 hours of fuzzing, £ — number
of lines covered, 0 — standard deviation

Comparing F1luff with its closest competitor — AFL
with dictionary, gave the result of p = 0.001, which
means that obtained results are significant.

The standard deviation values in the case of Fluff
and AFL with dictionary are larger than AFL and

grammarinator. The high deviation values are ex-
pected, as they reflect the process of discovering inter-
esting test cases and mutating them further to discover
more paths. We observed high increases of coverage on
some of the instances, meaning that they managed to
construct an interesting test case and used it to dis-
cover multiple paths. Such test cases were semantically
correct programs or usages of a new feature.

The slow increase of coverage in the case of AFL visu-
alises the difficulty of constructing a syntactically cor-
rect program without utilizing prior knowledge. Low
deviation in the results from grammarinator reflect
the lack of feedback loop, which does not allow the
fuzzer to focus on interesting test cases.

During the test there were no crashes reported by any
of the fuzzer. During the development phase of F1uff
we discovered multiple bugs in various JavaScript run-
times, as shown in appendix [A:2]

6 Summary

6.1 Conclusions

Interpreted programming languages are very common
in modern software. Due to their widespread usage,
discovering and exploiting vulnerabilities of their inter-
preters poses a high security risk to their users. At the
same time, interpreters are often very complex projects,
including not only parser and runtime environment, but
often also garbage collectors, libraries providing addi-
tional functionalities or even JIT compilers. Because of
that, fuzzing operating at level 0 or 1, can be ineffective.

In this paper, we presented a novel approach to
fuzzing interpreters, which uses both generation of syn-
tactically valid code and coverage guidance. This ap-
proach can be used on a wide range of software, which
has been difficult otherwise.

Apart from being well suited for testing software
that requires highly structured input, Fluff provides
the developer with complete control over the gener-
ated test cases. Moreover, the presented methodology
that F1uff is based upon is generic and can be ap-
plied not only to interpreters, but also compilers or any
other type of software, which has a strictly defined in-
put form. Our implementation of this approach in the
Fluff project proved the effectiveness of this approach
by discovering numerous issues in several JavaScript in-
terpreters [A-2]

Trials using F1luff and other fuzzers have shown,
that after 25 hours of fuzzing this approach results in
larger code coverage.

The idea that we presented will allow developers and
other researches to thoroughly test and verify the se-
curity of interpreters, compilers and other similar soft-
ware. We also think that this work may encourage re-
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searchers and security engineers to use fuzzers in cre-
ative ways, and not rely only on the tool smartness to
discover vulnerabilities.

6.2

Future work

In this section, we will present our ideas which could
be researched, tested and implemented.

1.

Testing different languages

Our implementation of F1luff is tightly coupled
with JavaScript. The design however (both high-
and low-level) is generic and applicable to any pro-
gramming language. Implementing this project for
different technologies would allow to discover bugs
and vulnerabilities in other popular interpreters.

. Language agnostic implementation

Implementing this approach in a language agnostic
way is a natural generalization. It is more difficult
than the previous proposal, but if done correctly, it
would allow to quickly test multiple technologies,
including interpreters and compilers of various lan-
guages, but also parsers of structured documents
(XML, YAML, etc).

. Extend functionality to compilers

Our aim was to test runtimes of interpreters. How-
ever, our approach can be used to test compilers.
In such case, the generated code could be compiled
and the fuzzer would check if it crashed, without
running the generated code.

. Verifying standard compliance

It could be possible to include logic into Fluff
which would analyze the generated code and assess
what the interpreter (or different target) should
do with it, i.e. what errors should be raised or
how should the output look like. Verifying whether
those expectations are met would allow to detect
behaviors which are not compliant with standard
or specification.

. Cross validation

This is a similar idea to the previous one, but in-
stead of implementing the logic of predicting be-
havior of a given code snippet, one could use the
same test case on multiple targets and check if they
behave in a similar way. Any differences between
executions could be indications of bugs or lack of
standard compliance.

. Continuous fuzzing

As mentioned in section[[.1] 0SS—fuzz is an effort
to continuously fuzz open source software. Because
Fluff does not depend on the backend fuzzer, and
our targets are open source projects, it could be

11

possible to use F1luff as a middleware on the in-
frastructure used by this project, thus increasing
the effectiveness of 0SS-fuzz.
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A  Appendix

A.1 Programs are not context free

In this section we present a proof that the language of programs which do not contain errors such as usage of
undefined identifiers is not context free.

For this proof, we will work with the C language, but analogous proofs can be made to match syntaxes of other
programming languages.

Proof. Assume that the language of C programs which compile (denote L) is in fact context free.
Now, recall that an intersection of a context free language and a regular language is a context free language.
We will use the following regular expression:

void f() {int aa™; aa” = aa”;}
to intersect it with L. The resulting language is
{void f() {int a*; a* =a";} | k e N,k > 0}

which is isomorphic to
{a"ba"ba” | k € N}

which is known to not be context free.
This contradiction proves that L is not context free. O

A.2 Discovered issues

Product Underlying issue (linking to the bug tracker)
jerryscript Uncontrolled recursion

jerryscript | Null pointer dereference
jerryscript | [Heap buffer overflow

Espruino | Memory leak

Espruino | |Uncontrolled resource consumption
Espruino | Buffer overread

Espruino | Buffer overread

Jsish | Buffer overread

Jsish | Null pointer dereference

Jsish | |Assertion reachable

Jsish | Buffer overwrite

Jsish | Buffer overread

iv/lvh | 'Uncontrolled recursion

iv/lvh | Uncontrolled resource consumption
Jsish | Buffer overread

Jsish | INull pointer dereference

Jsish | INull pointer dereference

Jsish | Buffer overread

Jsish | INull pointer dereference

Jsish | [Uncontrolled recursion

Jsish | |Assertion reachable

ChakraCore | Heap buffer overflow (no public listing)
Jsish | Buffer overread

The bugs with issue types in bold have been assigned the following CVE numbers (in order): CVE-2018-1000636,
CVE-2018-1000655, CVE-2018-1000661, CVE-2018-1000663, CVE-2018-1000668.
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