
Presenter’s Name

Presenter's Position

MODERN SECURE BOOT ATTACKS:
BYPASSING HARDWARE ROOT OF

TRUST FROM SOFTWARE

Alex Matrosov
@matrosov

Who We Are: Alex Matrosov
Leading Offensive Security REsearch at

Former Security Researcher @Cylance @Intel @ESET

Doing Security REsearch since 1997

Book co-author nostarch.com/rootkits

@matrosov

Agenda

Disclaimer

I don’t speak for my employer.

All opinions, information here

are mine responsibilities

😈 (include all bad jokes) 😈

Agenda
REsearch Target

Agenda
What is Hardware Root of Trust?

Computrace Never Dies
✓ OS Enable/Disable
✓ Permanent Disabling is a joke o_O

SMI over WMI is too evil 😈
✓ SMM communications without ring-0
✓ WMI-based fileless FW rootkits?

EC is not a security boundary 🤦‍♂️

(*EC – Embedded Controller)

Hardware Root of Trust

WTF Hardware Root of Trust?
➢ Root of Trust baked in pure Hardware?

✓ Cant be extracted/modified from software (developed in RTL)?

✓ not flexible with OEM’s

✓ hard to support in the field (updates and etc.)

✓ hard to implement secure way to cooperate with firmware on the same chip

➢ In the most of the cases Hardware Root of Trust
it’s a mix between firmware and locked in the FUSE
value or by specific bit.

➢ Secure state transition between hardware and
firmware is hard. It’s always something missing.

UEFI Vulnerabilities

Result of Exploitation Compromised Supply Chain

Secure Boot Bypass

UEFI Firmware Implant

Persistent Non-SMM (DXE, PEI)

Weak Configuration

Outdated BIOS with known issues

BIOS Update Issues

Not Authenticated BIOS Updates

Implanted BIOS update image

Wrong Configured Protections

Not Secure Root of Trust

Malicious Peripheral Devices

Persistent SMM (DXE)

SMM Privilege Escalation

Not Persistent SMM (shellcode)

https://medium.com/@matrosov/uefi-vulnerabilities-classification-4897596e60af

UEFI vulns classification

Boot Guard: Boot Flow in Perfect World

Locked in BIOS

Locked in Hardware

CPU

Microcode

CPU

Reset

Boot Guard

ACM

Reset

Vector

IBB

(SEC + PEI)

Secure Boot

(DXE + BDS)
OS Loader

https://github.com/nccgroup/TPMGenie

@qrs@uffeux

HW Root of Trust: TPM is broken?

@0x446f49

https://pulsesecurity.co.nz/articles/TPM-sniffing

HW Root of Trust: TPM is broken?

https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Seunghun-Finally-I-Can-Sleep-Tonight-Catching-Sleep-Mode-
Vulnerabilities-of-the-TPM-with-the-Napper.pdf

Boot Guard: Boot Flow in REAL World

Locked in BIOS

Locked in Hardware

CPU

Microcode

CPU

Reset

Boot Guard

ACM

Reset

Vector

IBB

(SEC + PEI)

Secure Boot

(DXE + BDS)
OS Loader

But world is not perfect :)

https://github.com/LongSoft/UEFITool

Why don’t lock everything in HW?

➢ Hardware not flexible and expensive
✓ OEM’s don’t like locked secrets (supply chain)

✓ The cost for the vulnerabilities very high (no updates)

➢ All the vendors reducing HW locked secrets
✓ Even one locked bit in HW allow to say about HW locked feature

✓ Mix Hardware + Firmware is common in actual implementation

HW manufacturing supply chain is very complex

https://www.blackhat.com/asia-19/briefings/schedule/index.html#intel-visa-through-the-rabbit-hole-13513

Intel Boot Guard:
New Ways to Bypass

How HW-based Root of Trust become a SW

➢ Recovery mode is evil 😈

➢ Secure transition Chain of Trust on different
boot stages is slow hard

➢ In most of the cases without hard reset Root
of Trust moves to pure software for performance

➢ Enterprise hardware need remote update tools

➢ Nobody use Intel BIOS Guard even Intel :)

How HW-based Root of Trust become a SW

➢ Recovery mode is evil 😈

➢ Secure transition Chain of Trust on different
boot stages is slow hard

➢ In most of the cases without hard reset Root
of Trust moves to pure software for performance

➢ Enterprise hardware need remote update tools

➢ Nobody use Intel BIOS Guard even Intel :)

How HW-based Root of Trust become a SW

➢ Recovery mode is evil 😈

➢ Secure transition Chain of Trust on different
boot stages is slow hard

➢ In most of the cases without hard reset Root
of Trust moves to pure software for performance

➢ Enterprise hardware need remote update tools

➢ Nobody use Intel BIOS Guard even Intel :)

How HW-based Root of Trust become a SW

https://embedi.org/blog/nuclear-explotion/

How HW-based Root of Trust become a SW

https://embedi.org/blog/nuclear-explotion/

How HW-based Root of Trust become a SW

https://embedi.org/blog/nuclear-explotion/

How HW-based Root of Trust become a SW

https://embedi.org/blog/nuclear-explotion/

How HW-based Root of Trust become a SW

https://2018.zeronights.ru/en/wp-content/uploads/materials/06-NUClear-explotion.pdf

Platform Controller Hub (PCH)

Management Engine (ME)

Field Programing Fuse (FPF)

hash of root OEM pub key (SHA-256)

RW UEFI Firmware Image

Key Manifest (KM) Initial Boot Block Manifest

(IBBM)

key manifest security version

number (SVN)

hash of IBB pub key

(SHA-256)

OEM root pub key

(RSA-2048)

RSA signature on KM SVN

+

hash of IBBM pub key

IBBM security version number

(SVN)

hash of IBB (SHA-256)

IBBM pub key (RSA-2048)

RSA signature on IBBM SVN

+

hash of IBB

Boot Guard Bypass

Platform Controller Hub (PCH)

Management Engine (ME)

Field Programing Fuse (FPF)

hash of root OEM pub key (SHA-256)

RW UEFI Firmware Image

Key Manifest (KM) Initial Boot Block Manifest

(IBBM)

key manifest security version

number (SVN)

hash of IBB pub key

(SHA-256)

OEM root pub key

(RSA-2048)

RSA signature on KM SVN

+

hash of IBBM pub key

IBBM security version number

(SVN)

hash of IBB (SHA-256)

IBBM pub key (RSA-2048)

RSA signature on IBBM SVN

+

hash of IBB

Boot Guard Bypass

Platform Controller Hub (PCH)

Management Engine (ME)

Field Programing Fuse (FPF)

hash of root OEM pub key (SHA-256)

RW UEFI Firmware Image

Key Manifest (KM) Initial Boot Block Manifest

(IBBM)

key manifest security version

number (SVN)

hash of IBB pub key

(SHA-256)

OEM root pub key

(RSA-2048)

RSA signature on KM SVN

+

hash of IBBM pub key

IBBM security version number

(SVN)

hash of IBB (SHA-256)

IBBM pub key (RSA-2048)

RSA signature on IBBM SVN

+

hash of IBB

Boot Guard Bypass

Boot Guard Bypass: LenovoPcdInit

Boot Guard: Boot Flow in ACTIVE manufacturing mode

Locked in BIOS

Locked in Hardware

CPU

Microcode

CPU

Reset

Boot Guard

ACM

Reset

Vector

IBB

(SEC + PEI)

Secure Boot

(DXE + BDS)
OS Loader

Boot Guard: Boot Flow in ACTIVE manufacturing mode

Locked in BIOS

Locked in Hardware

CPU

Microcode

CPU

Reset

Boot Guard

ACM

Reset

Vector

IBB

(SEC + PEI)

Secure Boot

(DXE + BDS)
OS Loader

Boot Guard Bypass: Where Lenovo PCD stored?

Boot Guard Bypass: Going deeper with SPI dump

Why vendors leave this “backdoors”?

➢ Creating recover process for broken BIOS updates
possible (even remotely).

➢ But leaving “backdoors” is always create another
problems even more serious.

➢ Enterprise market need stable solutions right? ☺

➢ Replace broken HW is expensive way but only one which
guarantees security process for system recovery

SMI over WMI is evil

https://medium.com/@matrosov/dangerous-update-tools-c246f7299459

How many exploits you need?

How this REsearch get started?

https://docs.microsoft.com/en-us/windows/desktop/cimwin32prov/win32-bios

How this REsearch get started?

https://docs.microsoft.com/en-us/windows/desktop/cimwin32prov/win32-bios

SMI over WMI is evil

https://download.lenovo.com/pccbbs/mobiles_pdf/kbl-r_deploy_01.pdf

SMI over WMI is evil

https://download.lenovo.com/pccbbs/mobiles_pdf/kbl-r_deploy_01.pdf

SMI over WMI is evil

https://download.lenovo.com/pccbbs/mobiles_pdf/kbl-r_deploy_01.pdf

Agenda

How this REsearch get started?

WTF LenovoSetupUnderOs (Smm/Dxe)?

➢ LenovoSetupUnderOsDxe (0D648466-36BD-42c6-B287-7C3BAA2575C0)

✓ Communicate with LenovoPasswordManagerDxe

➢ LenovoSetupUnderOsSmm (65A72030-B02E-4bf3-8424-BA5F2FC56DE7)

➢ Multiple WSMI Handlers (~12 SMI handlers):
✓ Get/Set BiosPassword

✓ Get/Set BiosSettings

➢ LenovoHiddenSetting
✓ ComputraceDisable

✓ CpuDebugEnable

Setup Automation SMI?

➢ ChangeConfiguration 0x04

➢ ChangePassword 0x81

➢ ChangeBootOrder 0xA7

➢ SecureBootConfiguration 0xAE

➢ It’s more: 0x0f, 0x80, 0x82, 0x9F, 0xB4/B6/B8

Setup Automation SMI?

➢ ChangeConfiguration 0x04

➢ ChangePassword 0x81

➢ ChangeBootOrder 0xA7

➢ SecureBootConfiguration 0xAE

➢ It’s more: 0x0f, 0x80, 0x82, 0x9F, 0xB4/B6/B8

Computrace Never Dies

How I back to my old Computrace REsearch

How I back to my old Computrace REsearch

https://github.com/REhints/Publications/tree/master/Conferences/UEFI%20Firmware%20Rootkits%20Myths%20and%20Reality

https://github.com/REhints/Publications/tree/master/Conferences/UEFI%20Firmware%20Rootkits%20Myths%20and%20Reality

Lenovo security configs

https://github.com/REhints/Publications/tree/master/Conferences/UEFI%20Firmware%20Rootkits%20Myths%20and%20Reality

ComputraceSmiServices->Register Callbacks

https://github.com/REhints/Publications/tree/master/Conferences/UEFI%20Firmware%20Rootkits%20Myths%20and%20Reality

ComputraceSmiServices->Register Callbacks

Computrace SMI Handlers

➢ ComputraceEnable = 0x85

➢ ComputraceDisable = 0x87

➢ ComputraceState = 0x88

➢ ComputraceEnableAction = 0x8d

➢ ComputraceDisableAction = 0x8e

ComputraceSmiServices->Register Callbacks

ComputraceSmiServices->Register Callbacks

ComputraceSmiServices->Register Callbacks

SmiComputraceEnable = 0x85

SmiComputraceDisable = 0x87

SmiComputraceDisable = 0x87

Brutforce Lenovo Computrace Disable Key

for i in range(0,256):
chipsec_util smi 0x0 0x85 0x0 hex(i)

➢ Computrace Disable Secret Key
✓ 1 BYTE secret value ☺ stored in SPI flash (NVRAM)

✓ Can be different by laptop model line

(my sweet victims p50 and t540p has a different keys)

Fuzz->Check->Repeat->Profit!

DisableSecretKey == 0x57 o_O

Embedded Controller is not
a security boundary

The usability in enterprise world in many cases
the main enemy of security

The vendors understand “Permanent Disable” option
differently

When Hardware-based Root of Trust transfer the
state of Chain of Trust to software, it’s not
hardware anymore

Summary:

Thank you for your attention!

@matrosov

