

Automated REST API Endpoint Identification for Security Testing at Scale

Lei Ding, Azzedine Benameur, Jeffrey Jacob, Jay Chen

Accenture Labs, Security R&D

Steve Pham

Accenture Digital

REST API Background

API Use case: A developer wants to retrieve real-time weather information from OpenWeatherMap for his/her website

REST API Background

API Use case: Amazon website

#BHASIA **Y**@BLACK HAT EVENTS

Why do we need API?

Year 2000 Web-site

What is an API Endpoint?

- API endpoint is the location from which APIs can access the server side resources
 - <u>https://api.example.com/v1/media/recent?access_token=ACCESS_TOKEN</u>
 - Above URL may support one of various different HTTP methods
 - GET: fetch information
 - POST: create objects
 - PUT: update objects
 - •
- We define an API endpoint as a combination of a path and a HTTP method

API Endpoint Request and Response

- A sample request:
 - GET https://openapi.example.com/v1/listing/active?api_key=API_KEY
- Each API response is wrapped in a standard structure that holds the results
 - A sample response

```
{
    "count":integer,
    "results": [
        { result object }
    ],
    "params": { parameters },
    "type":result type
}
```


What is the API Specification?

- Different formal descriptions
 - Open API Specification
 - RAML
 - WADL
 - API Blueprints
 - ...
- Different API versions

API Security Testing Challenges

- Identification of API endpoints largely depends on documentation
- Blind spots can be caused by
 - Lack of API specification
 - API specification discrepancy
 - Undocumented API endpoints
 - Complicated routing/orchestration logic
- Can we automatically identify API endpoint?

Use ML to Accelerate Automation Process

- Reduce probing and testing time
 - Minimize API endpoint search space
- Learning to find URLs that may lead to different API endpoints
 - Analyze lexical and host-based features because they contain information about the URL that is straightforward to collect using automated crawling tools
 - The list of features is extensive, but not necessarily exhaustive
 - Character level comparison is slow

Fuzz Algorithms

- Fuzz algorithm
 - Example:
 - "YANKEES", "NEW YORK YANKEES" : 60
 - "NEW YORK METS", "NEW YORK YANKEES": 75
 - Challenge: the score of the "bad" match is higher than the "right" one

Fuzz Algorithms

- Partial fuzz algorithm
 - Example:
 - "YANKEES", "NEW YORK YANKEES": 100
 - "NEW YORK METS", "NEW YORK YANKEES": 69
 - The score of the "good" match is higher than the "right" one
 - Use best "partial" when two strings are of noticeably different lengths
 - Key idea: if the shorter string is length m, and the longer string is length n, we're basically interested in the score of the best matching length-m substring

Reduced Probing Times

<u>For example</u>: If we crawled 10000 URLs from a domain, our algorithm is able to reduce the search space to around 1000 URLs for API endpoints identification

ACK HAT EVENTS

Accuracy: 98.6% Importance off between reduction constraint and accuracy

Method Distribution (Based on 719 domains scan)

Vulnerability Assessment

- Generate json file can be used as input for vulnerability assessment tools
 - json file contains: method, path, cookie information, payload data if any
- REST API vulnerability assessment tool example

Vulnerability Scanning at Scale

Vulnerability Scanning at Scale

Vulnerability Scanning Result

CORS Misconfig: Cross-Origin Resource Sharing Misconfiguration CSRF: Cross-Site Request Forgery CSS: Cross-Site Scripting

Lessons Learned

- It is even more powerful to extend the scan with proper authentication/authorization to gain the complete API Security landscape
- Spider traps may cause the crawler to download an infinite number of URLs from a website

Contact us

Lei Ding lei.a.ding@accenture.com Jay Chen jay.chen@accenture.com

Azzedine Benameur azzedine.benameur@accenture.com Steve Pham pham.tan.hung@accenture.com